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ABSTRACT

The Poisson process has been widely used in the literature to model call center arrivals. In recent years,
however, there have been empirical studies suggesting the call arrival process has significant non-Poisson
characteristics. In this paper, we introduce a new doubly stochastic Poisson model for call center arrivals
and develop a Bayesian approach for the parameter estimation via the Markov chain Monte Carlo method.
The model can well capture the call arrival process as illustrated by a case study.

1 INTRODUCTION

Telephone call centers, as the primary contact points between customers and their service providers, have
become an integral part of today’s economy. From the managerial perspective, to quantify the uncertainty
of external call volume is essential for efficient staffing and scheduling of call center agents. To that end,
an accurate and tractable model for call arrivals is necessary for evaluating system performance measures.

A widely adopted assumption in the literature of call center management is that calls arrive independently,
so the call arrival process is typically modeled as a Poisson process; see Brown et al. (2005) for supportive
hypothesis tests. However, the same article admits that the Poisson arrival rates are difficult to predict.
Namely, there exists significant uncertainty in the arrival rates that ought to be treated carefully. Indeed,
such an additional layer of randomness on top of the Poisson uncertainty makes both arrival forecasting
and agent staffing challenging (see, for example, Gans et al. (2003)). Empirically, the uncertainty of the
arrival rates is partially revealed by the burstiness of the call volume. Indeed, it has been observed in
recent years that the call volume exhibits enormous overdispersion relative to the Poisson distribution; see,
for example, Jongbloed and Koole (2001) and Avramidis et al. (2004). Both papers analyze a doubly
stochastic Poisson model proposed in Whitt (1999), which characterizes the uncertainty of the arrival rates
by a random variable, whose realized value indicates the “busyness” of the day. As noted in Avramidis
et al. (2004), such a model results in an inaccurate correlation structure of the call volume, essentially
because the randomness of the arrival rates is static.

In this paper, we present a dynamic doubly stochastic Poisson model that can characterize the uncertainty
of the arrival rates much more accurately and develop its Bayesian analysis. Note that the Bayesian approach
permits one to describe the uncertainty about the parameters of our model explicitly via specifying appropriate
prior distributions. See also Soyer and Tarimcilar (2008) for a somewhat similar Bayesian approach for
modeling call arrivals.

Other works on modeling call center arrivals include Bianchi et al. (1993), Andrews and Cunningham
(1995), Weinberg et al. (2007), Shen and Huang (2008a), Shen and Huang (2008b), and Ibrahim and
L’Ecuyer (2012). These papers all utilize time series models and succeed in forecasting intraday or interday
call arrivals. Nevertheless, due to lack of domain knowledge, it might be difficult to derive managerial
insights about the queueing dynamics from these models.

The rest of the paper is organized as follows. We introduce our model in Section 2 and conduct an
extensive Bayesian analysis for our model in Section 3. We present a case study using real data to illustrate
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our model in Section 4. Section 5 gives concluding remarks including the potential extension of our model
to incorporate other seasonal features such as the “day-of-week” effect. The proof of our main result is
provided in the Appendix.

2 DYNAMIC DOUBLY STOCHASTIC POISSON MODEL

Several properties of call center arrivals must be taken into account when building a model. First, the arrival
rate varies considerably with the time of day (i.e. the so-called “time-of-day” effect). Second, the call
volume of a given time period typically has a much larger variance than that of a Poisson distribution (i.e.
the overdispersion). Third, the call volumes of different time periods may be correlated. See Avramidis
et al. (2004). Furthermore, one hopes the model to be parsimonious and analytically tractable.

Let N(t) denote the number of calls that arrive during the time period [0, t]. We model the arrival
process (N(t) : t ≥ 0) as a doubly stochastic Poisson process with arrival rate process (λ (t) : t ≥ 0). Namely,
conditional on Λ(t),

∫ t
0 λ (s)dt, the distribution of N(t) is Poisson given by

P(N(t) = n|Λ(t)) = Λ(t)ne−Λ(t)

n!
.

It then follows that
E[N(t)] = E[E[N(t)|Λ(t)]] = E[Λ(t)],

so
Var(N(t)) = Var[E(N(t)|Λ(t))]+E[Var(N(t)|Λ(t))] = Var(Λ(t))+E[Λ(t)]> E(N(t)),

if Λ(t) is random. Hence, doubly stochastic Poisson models can capture the overdispersion relative to the
Poisson distribution.

Similarly as the model proposed in Whitt (1999), we use a multiplicative form for the arrival rate
process, namely λ (t) = µ(t)g(t), where µ(t) is a positive deterministic function, capturing the “time-of-day”
effect, and G(t) is a stochastic process, governing the uncertainty of the arrival rate. We call our model
as a dynamic doubly stochastic Poisson process because the uncertainty of the arrival rate in our model is
time-evolving, whereas in the Whitt model, g(t)≡ G for some random variable G so that the randomness
of the arrival rate process is determined by G, thereby static. An implication of the static uncertainty is
that if one observes the call center is unusually busy in the morning of a day, then one can predict for
sure that the afternoon of the day will be busy as well. By contrast, our model permits a more flexible
correlation structure of the call arrivals. Consequently, our model can well incorporate the three properties
of call center arrivals aforementioned.

Although g(t) could be virtually any arbitrary stochastic process to account for the overdispersion, one
needs to consider several additional factors in order to build a reasonable model.

First of all, g(t) should be positive and thus we consider an exponential form g(x) = ex(t).
Secondly, the model should be parsimonious. A continuous-time Markov chain model might be

inappropriate because it is difficult to specify the number of states of the Markov chain and to estimate its
transition probability matrix due to the large number of unknown parameters. Moreover, the model should
be tractable. As a result, we decide to model x(t) as an Ornstein-Uhlenbeck (OU) process because it is a
low-parameter model with Gaussian transition densities.

In short, we model the arrival rate process as λ (t) = µ(t)ex(t), where µ : [0,∞)→ R+ is a positive
deterministic function, and x(t) is an OU process satisfying the following stochastic differential equation
(SDE)

dx(t) =−κx(t)dt +σ dB(t), (1)

where κ and σ are positive constants, and (B(t) : t ≥ 0) is a standard Brownian motion.
Let [0,T ] denote the working hours of a working day for a call center and let 0 = t0 < t1 < · · ·< tk = T

be a partition of [0,T ]. In practice, the partition depends on factors such as data availability or agent
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scheduling considerations. Assume µ(·) is a piecewise constant function defined below

µ(t) = θi, if t ∈ [ti−1, ti) (2)

where θi is a positive constant for i = 1, . . . ,k. Further, assume µ(t) is periodic with period T .
In what follows, we will present a Bayesian analysis of our model. The Bayesian approach requires

that uncertainty about all unknown parameters, including κ , σ , and Θ = (θi : i = 1, . . . ,k), is characterized
probabilistically via a prior (joint) distribution of (κ,σ ,Θ). Note that there are two major difficulties in
estimating the unknown parameters. First, the likelihood function of the observations of the arrival process
N(t) has no analytical expression and its calculation requires “integrating out” the unobservable arrival rate
process, which is a prohibitively high dimensional integration problem. Second, the number of unknown
parameters is large. For instance, if [0,T ] is partitioned half-hourly, which is typically assumed in practice
when modeling the arrival process as an inhomogeneous Poisson process, there would be more than 30
unknown parameters in total. Hence, the numerical optimization problem associated with any maximum
likelihood estimation method would be overwhelmingly difficult. The Bayesian treatment provides an
alternate (and possibly the only) feasible approach for estimating the unknown parameters.

3 BAYESIAN ANALYSIS OF THE MODEL

Assume that the arrival process N(·) is observed at equally spaced time epochs{iδ : i= 0,1, . . . ,(m+1)δ}, but
the analysis can be extended to any sequence of time epochs without essential difficulty except for notational
complexity. To simplify notations, we let Xi = x(iδ ), Yi = N((i+1)δ )−N(iδ ), so that X = {X0,X1, . . . ,Xm}
is the vector of unobserved arrival rates at observation time epochs and Y = {Y0,Y1, . . . ,Ym} is the observed
data.

Let Ξ denote all the unknown parameters, i.e. Ξ = (κ,σ ,Θ). The central piece of the Bayesian analysis
is to compute p(Ξ,X|Y), the posterior joint distribution of the unknown parameters and the unobserved
arrival rates conditional on the observations. From the computational perspective, it is prohibitively involved
to generate samples of (Ξ,X) from this enormously high dimensional conditional distribution due to lack of
an analytically tractable form. Nonetheless, the Markov chain Monte Carlo (MCMC) method accompanied
by the Gibbs sampler provides a feasible solution to explore this distribution via simulating a Markov
chain whose stationary distribution is p(Ξ,X|Y). We refer to Robert and Casella (2005) for an extensive
treatment of the MCMC method and refer to Gelfand and Smith (1990) for a review of the Gibbs sampler.

The Gibbs sampler permits to break down the posterior distribution of (Ξ,X) into a group of one-
dimensional conditional distributions. In particular, the Hammersley-Clifford theorem (see Hammersley
and Clifford 1970) implies that p(Ξ,X|Y) is uniquely determined by its full conditionals, including

p(Xi | X−i,Y,Ξ), i = 0,1, . . . ,m, (3)

p(κ | σ ,Θ,X,Y), (4)

p(σ | κ,Θ,X,Y), and (5)

p(θi | κ,σ ,Θ−i,X,Y), i = 1, . . . ,k (6)

where Θ−i = {θ j : j 6= i} and X−i = {Xj : j 6= i}.
In order to compute the above full conditionals to analytically tractable form, we adopt the follow-

ing two approximation. First, we approximate the one-step transition distribution of the Markov chain
{X0,X1, . . . ,Xm} via the Euler discretization scheme (see, for example, Amussen and Glynn 2007) of the
SDE (1), i.e.

Xj+1−Xj ≈−κXjδ +σ
√

δε j+1,

where εi’s are i.i.d. standard normal random variables. So

p(Xj+1 | Xj,Ξ)≈
1√

2δσ2
exp
(
−
(Xj+1− (1−κδ )Xj)

2

2δσ2

)
. (7)
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Second, given X and Ξ, we approximately treat Yj as a Poisson random variable with mean∫ ( j+1)δ

jδ
µ(s)ex(s) ds≈ θI( j)δeXj ,

where I( j) = i if µ( jδ ) = θi, and treat {Y0,Y1, . . . ,Ym} as conditional independent. Hence,

p(Y | X,Ξ)≈
m

∏
j=0

p(Yj | Xj,Ξ)≈
m

∏
j=0

(θI( j)δeXj)Yj

(Yj)!
exp
(
−θI( j)δeXj

)
. (8)

Note that for a typical call center, the observation resolution parameter δ can be very small, e.g. δ < 1/10
hour, so the approximations (7) and (8) can be very accurate.

In light of (7) and (8), the full conditionals (3) - (6) can now be reduced to analytically tractable forms.
Note that

p(Xi | X−i,Y,Ξ) ∝ p(X,Ξ) · p(Y | X,Ξ)

= p(Xi | X−i,Ξ) · p(X−i,Ξ) ·
m

∏
j=0

p(Yj | Xj,Ξ)

∝ p(Xi | X−i,Ξ) · p(Yi | Xi,Ξ), (9)

where the last equality holds because any item not involving Xi can be viewed as constant. Moreover, the
Markov property of X implies that for i = 1, . . . ,m−1,

p(Xi | X−i,Ξ) = p(Xi | Xi−1,Xi+1,Ξ) ∝ p(Xi | Xi−1,Ξ) · p(Xi+1 | Xi,Ξ). (10)

It then follows from (9) and (10) that

p(Xi | X−i,Y,Ξ) ∝ p(Xi | Xi−1,Ξ) · p(Xi+1 | Xi,Ξ) · p(Yi | Xi,Ξ), (11)

for i = 1, . . . ,m−1. At the two end points, we have the obvious corrections by setting p(Xi | Xi−1,Ξ) = 1
for i = 1 and setting p(Xi+1 | Xi,Ξ) = 1 for i = m. Since the right-hand-side of (11) can be computed
analytically by (7) and (8), the Metropolis-Hastings algorithm can easily be applied to generate samples
from the conditional distribution p(Xi | X−i,Y,Ξ); see, for example, Robert and Casella (2005).

On the other hand, conjugate prior distributions for Ξ can be found for the posterior distributions (4),
(5), and (6). In particular, we have the following theorem, whose proof is given in Appendix.
Theorem 1 Suppose that the approximations (7) and (8) are applied. Assume that the priors of Ξ are
given by

κ ∼ Gaussian,

σ
2 ∼ inverse Gamma, and

θi ∼ Gamma, i = 1, . . . ,k;

and that the above priors are mutually independent. Then,

κ | σ ,Θ,X,Y∼ Gaussian,

σ
2 | κ,Θ,X,Y∼ inverse Gamma, and

θi | κ,σ ,Θ−i,X,Y∼ Gamma, i = 1, . . . ,k.
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By virtue of Theorem 1, we can implement the Gibbs sampler to {(Ξ( j),X( j)) : j = 0, . . . ,J}, where J
is the number of samples one hopes to generate, from the posterior distribution p(Ξ,X|Y) as follows.

1. Initialize an estimate of (Ξ,X) at (Ξ(0),X(0)).
2. Given (Ξ( j),X( j)),

(a) simulate κ( j+1) from the Gaussian posterior p(κ | σ ( j),Θ( j),X( j),Y) by (13);
(b) simulate (σ2)( j+1) from the inverse Gamma posterior p(σ2 | κ( j),Θ( j),X( j),Y) by (14);
(c) simulate θ

( j+1)
i from the Gamma posterior p(θi | κ( j),σ ( j),Θ

( j)
−i ,X

( j),Y) for i = 1, . . . ,k by (15);

(d) simulate X ( j+1)
i from the posterior p(Xi | X( j)

−i ,Ξ
( j),Y) by (11) with the Metropolis-Hastings

algorithm, for i = 0,1, . . . ,m.
3. Return to Step 2 until the desired number of samples have been simulated.

Note that the posterior predictive distribution of the arrival counts in [s, t] is Poisson with mean

E
(∫ t

s
µ(r)ex(r) dr

∣∣∣∣Y)≈ E

(
r2−1

∑
l=r1

δ µ(lδ )eXl

∣∣∣∣Ξ,X
)

dp(Ξ,X|Y), (12)

assuming s = r1δ and t = r2δ . Hence, we can assess the goodness-of-fit by evaluating the error between
the observed arrival counts and the posterior mean of the arrival counts (12), which can be approximated
by the posterior sample mean

1
J

J

∑
j=1

r2−1

∑
l=r1

δ µ
( j)(lδ )eX ( j)

l .

4 A CASE STUDY

In this section, we apply our model to a real call center case. The data set used here is publicly available at
the Service Enterprise Engineering (SEE) Center, Technion. It is from an anonymous call center in Israel
and contains all the telephone records in November and December 1999. We analyze only the weekdays,
because the call arrivals on weekends obviously have a distinctive pattern and require a slightly revised
parameter specification. As will be seen later we easily can extend our model to reflect the “day-of-week”
effect when necessary.

The call center opens at 7am and closes at midnight on weekdays and there are 44 weekdays in the data
set. For simplicity, we assume that the call center operates “nonstoppingly” in the sense that each weekday
has 17 hours and there are no weekends. Further, we divide each day into 34 half-hourly subintervals, so the
time-of-day factor µ(t) defined in (2) takes values from Θ = {θi : i = 0,1, . . . ,33}. We plot average arrival
count in each of the 34 subintervals across the 44 weekdays as well as the 95% band of the observations
in Figure 1. Note that under the Poisson model the arrival count has a Poisson distribution and thus its
variance equals its mean. We also plot the 95% confidence intervals under the Poisson model in Figure
1. Clearly, the arrival counts have a much larger variance than what the Poisson model suggests, which
demonstrates a fundamental flaw of the Poisson model.

When running the Bayesian analysis, we draw 20,000 MCMC samples and discard the first half. We
use the trace plots of the unknown parameters to ensure that the Gibbs sampler has approximately converged
and that it does not depend significantly on its initial value. See Chapter 11.6 of Gelman et al. (2004)
for a further discussion on the convergence assessment of the MCMC method. In Figure 2, we plot the
time-of-day factor µ(t) (or equivalently, θi’s) as well as its associated 95% posterior confidence band based
on the 10,000 effective MCMC samples and compare it with the mean arrival numbers in each half-hourly
subintervals. Obviously, µ(t) well captures the time-of-day effect.

Moreover, the histograms of κ , σ , and several selected θi’s are shown in Figure 3. The mean and
standard deviation of each unknown parameter are reported in Table 1.
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Figure 1: Time-of-day effect and overdispersion relative to the Poisson distribution.

Figure 2: Time-of-day factor µ(t) and mean arrival counts.

Table 1: Estimation results of the unknown parameters.

κ σ θ0 θ1 θ2 θ3 θ4 θ5 θ6

Mean 1.55E-02 4.05E-02 26.68 35.31 60.73 78.81 103.23 130.78 134.46
S.D. 5.98E-03 3.35E-04 1.02 1.18 1.51 1.71 1.94 2.16 2.18

θ7 θ8 θ9 θ10 θ11 θ12 θ13 θ14 θ15

Mean 116.31 104.72 101.11 92.69 88.89 93.60 98.78 102.38 110.23
S.D. 2.06 1.91 1.88 1.80 1.76 1.82 1.89 1.91 2.02

θ16 θ17 θ18 θ19 θ20 θ21 θ22 θ23 θ24

Mean 112.33 108.04 87.87 88.38 67.26 75.37 74.09 64.17 62.46
S.D. 2.03 2.00 1.82 1.79 1.58 1.67 1.69 1.57 1.52

θ25 θ26 θ27 θ28 θ29 θ30 θ31 θ32 θ33

Mean 60.13 51.75 55.92 54.80 60.64 56.32 51.81 46.71 32.17
S.D. 1.51 1.41 1.46 1.46 1.52 1.45 1.41 1.35 1.10
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Figure 3: Histograms of some unknown parameters.
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Figure 4: Histograms of the absolute error and the relative error of the posterior prediction.

Finally, we assess the goodness-of-fit by comparing the observed arrival counts and the posterior mean
of the arrival counts in each of the 34×44 = 1,496 half-hourly subintervals. The histogram of the absolute
errors and the relative errors are shown in Figure 4. Moreover, in Figure 5 we plot the posterior mean
of the arrival counts in the half-hourly subintervals of the first five weekdays as well as their associated
95% confidence intervals and compare them with the 95% confidence intervals under the Poisson model.
Obviously, our model significantly reduces the estimation variance by introducing only two additional
parameter κ and σ . The fitting for the other weekdays is similarly well.

5 CONCLUDING REMARKS

In this paper, we have introduced a doubly stochastic Poisson model for the call arrival process of a
call center. The arrival rate has a multiplicative structure which consists of a deterministic part and a
stochastic part. The former captures the “time-of-day” effect whereas the latter governs the uncertainty of
the arrival rate. We have also developed a tractable Bayesian analysis in which the unknown parameters
can be simulated via conjugate priors whereas the latent variables via the Gibbs sampler. Finally, we have
presented a real case study which demonstrates our model can fit the data very well and it is significantly
superior to the widely used Poisson model, especially considering our model has only two more parameters
κ and σ .

If one wants to incorporate the weekends or the “day-of-week” effect is apparent, then one can revise
the model such that each weekday/weekend has a set of parameters (κ,σ ,Θ). The Bayesian analysis
derived in this paper then can be applied after a simple modification.

In practice, one might not be able to a priori identify the appropriate specification of the parameters,
which calls for a model selection procedure. One can either estimate the Bayes factors (see Kass and
Raftery 1995) or other criteria such as the Bayesian information criterion (BIC) and the deviance information
criterion (DIC) (see Gelman et al. (2004)).

720



Zhang

Figure 5: The 95% posterior confidence intervals of the arrival counts under our model, the 95% confidence
intervals of the arrival counts under the Poisson model, and the observed arrival counts in the half-hourly
subintervals of the first five weekdays.

A APPENDICES

Proof of Theorem 1 First of all, suppose that the prior distribution of κ is Gaussian with mean a1 and
standard deviation b1. Noting that p(Y | X,Ξ) does not involve κ by (8) and applying (7),

p(κ | σ ,Θ,X,Y) ∝ p(Ξ,X,Y) = p(Y | X,Ξ) · p(X | Ξ) · p(Ξ)

∝

m−1

∏
j=0

p(Xi+1 | Xi,Ξ) · p(κ),

=
m−1

∏
j=0

[
1√

2πδσ2
exp

(
−

∑
m−1
j=0 (Xj+1− (1−κδ )Xj)

2

2δσ2

)]
· 1√

2πb2
1

exp
(
−(κ−a1)

2

2b2
1

)

∝ exp

[
−κ

2

(
1

2b2
1
+

m−1

∑
j=0

δX2
j

2σ2

)
+κ

(
a1

b2
1
−

m−1

∑
j=0

Xj(Xj+1−Xj)

σ2

)]
. (13)

Hence, κ | σ ,Θ,X,Y is Gaussian with mean B
A and variance 1

A , where

A =
1
b2

1
+

δ

σ2

m−1

∑
j=0

X2
j and B =

a1

b2
1
− 1

σ2

m−1

∑
j=0

(Xj(Xj+1−Xj)).
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Similarly, supposing that the prior distribution of σ2 is inverse Gamma with shape parameter a2 and
scale parameter b2, we have

p(σ 2 | κ,Θ,X,Y) ∝

m−1

∏
j=0

p(Xi+1 | Xi,Ξ) · p(σ2),

=
m−1

∏
j=0

[
1√

2πδσ2
exp
(
−
(Xj+1− (1−κδ )Xj)

2

2δσ2

)]
·

ba2
2

Γ(a2)

(
σ

2)−a2−1
exp
(
−b2

σ2

)

∝
(
σ

2)−a2−1−m
2 exp

[
1

σ2

(
−b2−

m−1

∑
j=0

(Xj+1− (1−κδ )Xj)
2

)]
, (14)

implying that σ2 | κ,Θ,X,Y is inverse Gamma with shape parameter a2 +
m
2 and scale parameter

b2 +
m−1

∑
j=0

(Xj+1− (1−κδ )Xj)
2.

Lastly, suppose that the prior distribution of θi is Gamma with shape parameter ci and rate parameter
di. Then, noting that p(X | Ξ) does not involve Θ by (7) and applying (8),

p(θi | κ,σ ,Θ−i,X,Y) ∝ p(Ξ,X,Y) = p(Y | X,Ξ) · p(X | Ξ) · p(Ξ)
∝ ∏
{ j:µ( jδ )=θi}

p(Yj | Xj,Ξ) · p(θi)

= ∏
{ j:µ( jδ )=θi}

(θiδeXj)Yj

(Yj)!
exp
(
−θiδeXj

)
· 1

Γ(ci)d
ci
i

θ
ci−1
i exp(−diθi)

∝ θ

ci−1+∑
j
Yj

i exp

[
−θi

(
di +δ ∑

j
eXj

)]
. (15)

Therefore, θi | κ,σ ,Θ−i,X,Y is Gamma with shape parameter Ci and rate parameter Di, where

Ci = ci + ∑
{ j:µ( jδ )=θi}

Yj and Di = di +δ ∑
{ j:µ( jδ )=θi}

eXj .
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