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ABSTRACT

Rare events in heavy-tailed systems are challenging to analyze using splitting algorithms because large
deviations occur suddenly. So, every path prior to the rare event is viable and there is no clear mechanism
for rewarding and splitting paths that are moving towards the rare event of interest. We propose and analyze
a splitting algorithm for the tail distribution of a heavy-tailed random walk. We prove that our estimator
achieves the best possible performance in terms of the growth rate of the relative mean squared error, while
controlling the population size of the particles.

1 INTRODUCTION

Most of the probably efficient rare event simulation estimators for heavy-tailed systems have been designed
using importance sampling, see for example (Dupuis et al. 2006, Blanchet et al. 2007), and (Blanchet and
Glynn 2008, Blanchet and Liu 2008, Blanchet and Li 2011, Chan and Lai 2012). Conditional Monte Carlo,
is also a very effective technique, and one of the first to yield provably efficient estimators in heavy-tailed
settings, see (Binswanger and Hojgaard 1997, Asmussen and Kroese 2006). In contrast, in the setting of
light-tailed systems (where the inputs have exponentially decaying tails), both importance sampling and
splitting procedures are popular approaches applied in the construction of provably efficient rare event
simulation algorithms, see (Asmussen and Glynn 2008). Apart from the one that we report in this paper,
we do not know of any splitting algorithm for large deviations in heavy tailed random walks which has
been proved to be efficient. Efficiency is understood in the sense of controlling the optimal rate of decay
of the amount of work required to produce an estimate of the probability of interest with a given degree
of relative precision, see (Asmussen and Glynn 2008), and also Theorem 1 below.

In order to explain why splitting is difficult to apply in rare event simulation for heavy-tailed random
walks let us recall how splitting works at a high level. In traditional splitting applications, the simulator
constructs a sequence of nested “milestone” events (with the last milestone event corresponding to the rare
event of interest). The milestone events, whose sequential occurrence is not rare, are judiciously placed.
Particles are then evolved according to the system’s nominal dynamics and kept splitting whenever a new
milestone is reached. Attached with each particle is a weight defined by the total number of times the
particle has split so that the final estimator is unbiased. We refer readers to (Glasserman et al. 1999)
and (Villén-Altamirano and Villén-Altamirano 2002) for a review on earlier developments in the splitting
method. In summary, the milestone events and the splitting procedure at the time of reaching milestone
events, are designed to increase the population of particles that behave in a way that is consistent with
producing the event of interest.

The issue that arises in the context of large deviations for heavy-tailed random walks, for instance, is
that just prior to the occurrence of a large deviations event, the random walk evolves basically according to
its nominal (unconditional) dynamics. So, there is no obvious way to place the milestone events in order
to encourage particles that behave in a way that is consistent with producing large deviations. Simply put,
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all typical paths prior to the event of interest behave in a way that is consistent with the large deviations
event.

We are interested in designing and studying splitting estimators for heavy-tailed systems because, often,
provably efficient splitting estimators are often easier to design than importance sampling estimators; at least
there is evidence that supports this feature of splitting estimators in light-tailed systems. Indeed, in Dupuis
et al. (2007) and Dupuis and Wang (2009) it is shown that in a conventional large deviations environment
for light-tailed systems, asymptotically optimal importance sampling strategies can be constructed out of
classical sense sub-solutions of a certain control problem. Meanwhile, according to Dean and Dupuis
(2009), in the same large deviations environment, asymptotically optimal splitting based algorithms can
be constructed using only weak-sense sub-solutions to the same equation. Weak-sense sub-solutions are
often easier to construct than classical sense sub-solutions.

In this paper we take a step to explore rare event simulation via splitting based estimators for heavy-tailed
stochastic systems. A natural class of problems to start with is the efficient estimation of the tail probability

pb = P(Sn > b) , (1)

where Sn = X1 +X2 + ...+Xn and the Xi’s are i.i.d. random variables, with a suitable heavy-tailed structure.
This problem has served as a starting point in the analysis of virtually any importance sampling strategy
that has been considered for heavy-tailed systems. This is partly why this model problem appears to be a
natural starting point to start with our investigations in the setting of splitting.

We must be clear that there are a number of very efficient importance sampling based algorithms for (1)
as b→∞ (see, for example, Dupuis et al. 2006, Blanchet and Liu 2012, Blanchet and Li 2011, Juneja and
Shahabuddin 2002, Blanchet and Lam 2012). The goal of this paper is not trying to develop an algorithm
that is superior in efficiency to some of the existing algorithms in this setting; but rather we contribute
by giving a first attempt to explore the idea of crafting splitting procedures in rare event simulation for
heavy-tailed systems that are provably efficient. Our motivation is to see if, as in the light-tailed case,
splitting algorithms might have a hope of being easier to set up while still maintaining provable efficiency
(in the form of weak efficiency or logarithmic efficiency). As we shall see, we conclude that, in some
sense, there seems to be some evidence that this may well be the case. While some of the importance
sampling strategies that are available (see Blanchet and Liu 2012) provide a stronger control on the second
moment of the estimator, those importance sampling strategies require different setup depending on specific
tail properties of the increments (see, for example, the counterexample Shi 2013). The splitting based
algorithms considered here benefit from an easier setup as the same treatment is given to all applicable
random variables (including Weibull and Pareto). This flexibility, we believe, is similar in spirit to our prior
discussion involving the difficulty in applying importance sampling vs splitting in light-tailed settings.

Finally, we comment on the form of our splitting algorithm. The different nature of how large deviations
occur in a heavy-tailed system forces us to abandon the idea of splitting in the original state space. Instead
of splitting in the original state space, we embed a splitting procedure in the hazard function space, and
then transform back to the original space to obtain the sampled increments.

We close our discussion by noting that there is a literature on particle methods in general (of which
splitting algorithms are just a particular case). This important body of work has been fueled by the
connection to genealogical particle systems and Feynman-Kac flows, see for instance (del Moral 2004),
and in a related class of problems (Cérou et al. 2006). Likely, the algorithms that we propose here can be
embedded, in form, in a Feynman-Kac flow representation by enlarging the state-space.

The rest of the paper is organized as follows. Section 2 we list our assumptions, then provide the form
of the splitting estimator that we analyze and then state our main result, which summarizes the asymptotic
optimality of the estimator as b→∞. The proof of our main result is given in Section 3. We include some
numerical examples in Section 4.
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2 ASSUMPTIONS, ESTIMATOR AND MAIN RESULT

2.1 Assumptions

Let {Xj : 1 ≤ j ≤ n} be independent and identically distributed (i.i.d.) random variables (r.v.’s) with
distribution F (·), with support [0,∞). The integrated hazard function, Λ(·), of X is defined as Λ(x) =
− logF (x).
Assumption 1 The spectrum of distributions we consider satisfy the following conditions.

A1 Λ(x) is strictly increasing in x.
A2 The random variables Xi are subexponential in the sense that

P(X1 + ...+Xn > b) = nexp(−Λ(b))(1+o(1))

as b→ ∞.
A3 The hazard rate λ (t) = dΛ(t)/dt exists is non increasing.

Assumption A3) can be replaced by requiring λ (·) to be eventually non increasing. These assumptions
are satisfied by most heavy-tailed random variables that arise in practice (such as Pareto and Weibull
distributions, see Embrechts et al. 1997).

2.2 The Splitting Estimator and Main Result

Sampling of a single increment X is conducted in two phases. In the first phase we use a splitting based
procedure to sample Λ(X), which is exponentially distributed with unit mean. In the second phase, we
transform it back to the original space with the inverse function Λ−1(·). We explain how to sample the
component X1 and then we will explain how to proceed with the rest.

The splitting based procedure is perhaps best described in terms of a tree construction. Let ∆ be a
pre-determined positive number and define m(b), the total number of ∆-sized levels, via

m = m(b) = min{k ≤ 1 : k∆≥ Λ(b)}= dΛ(b)/∆e.

We introduce an integer r ≥ 2 which will correspond to the number of children that are obtained at every
single splitting of a particle.

We now explain precisely how to construct a tree required to sample the first increment X1. Let us
write Π0 to denote a trivial tree containing only a single element which we call root; we write Π0 = {0}.
Let Z0 = {0} be the set of elements (nodes) in Π0 that are associated to active particles; intially we have
only one active particle corresponding to the root. The set of elements in Π0 that are inactive is denoted
by D0 = Π0\Z0 = ∅.

Now, we introduce the following notation to enlarge any element of a tree. Given s = (s1, ...,sk) and
sk+1 ∈ {0,1, ...,r} we have that ((s1, ...,sk),sk+1) = (s1, ...sk,sk+1).

We say that t = (t1, ..., tk) is an enlargement of s = (s1, ...,sl), denoted via t � s, if l ≤ k and s1 =
t1, ...,sl = tl . We say that t is a strict enlargement of s, denoted via t � s, if k < l and s1 = t1, ...,sl = tl .

Using this notation, the trees Π1, ...,Πm, along with the set of active nodes Z1, ...,Zm and inac-
tive nodes D1, ...,Dm are constructed according to the following recursive procedure. Define Ik−1 =
(I(u) = I (A(u) > ∆) : u ∈Zk−1), where A(u)’s form a collection of i.i.d. exponentially distributed r.v.’s
with unit mean (if Zk−1 = ∅, then Ik−1 = ∅). So, in particular E(I(u)) = exp(−∆). Then,

Zk = ∪u∈Zk−1:I(u)=1{(u,1) , ...,(u,r)}, (2)

Πk = Πk−1∪u∈Zk {(u,1) , ...,(u,r)}, (3)

Dk = {u ∈Zk−1 : I(u) = 0}. (4)
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for 1≤ k ≤ m. Finally, define Dm+1 = Zm. Note that if Zk = ∅, then Πk = Πk−1, and Dk = Zk−1.
Next, define L (Πk−1) to be the set of leaves at the top of Πk−1. In precise terms, s ∈L (Πk−1) if s

does not have any enlargement in Πk−1. Observe the decomposition

L (Πm) = D1∪D2∪ ...∪Dm∪Zm, (5)

where D1, ...,Dm,Zm are disjoint sets.
Next, for any l ≥ 0, let us write Πl (s) to denote an i.i.d. copy of the tree Πl , but rooted at (s,0); so,

Π0 (s) = {(s,0)} and L (Π0 (s)) = Π0 (s). The definition of Zk and Dk is adapted in an obvious way to
their counterparts Zk (s) and Dk (s), constructed when evolving the recursions rooted at s. In particular,
given Ik−1 (s) = (I(u) = I (A(u)≤ ∆) : u ∈Zk−1 (s)), we write

Zk(s) = ∪u∈Zk−1(s):I(u)=1{(u,1) , ...,(u,r)},
Πk(s) = Πk−1(s)∪u∈Zk(s) {(u,1) , ...,(u,r)}, (6)

Dk(s) = {u ∈Zk−1(s) : I(u) = 1},

for 1≤ k ≤ m and define Dm+1 (s) = Zm (s).
We now are ready to provide a recursive construction of the overall splitting procedure. Define Π̄0,l = Πl

for 0≤ l ≤ m, and set
Π̄i,l = Π̄i−1,m∪{Πl (s) : s ∈L

(
Π̄i−1,m

)
, (7)

for i = 1,2, ...,n−1. The splitting procedure is completed after constructing Π̄n−1,m.
In order to extract the increments from Π̄n−1,m we need some final definitions. For every s∈L

(
Π̄ j−1,l

)
for 1≤ j≤ n and 0≤ l ≤m−1 define the steam of s via (hi (s) : 1≤ i≤ j−1) where hi−1 (s)∈L

(
Π̄i−1,m

)
and s� hi−1 (s) and we set h0 (s) = 0. Further, for every s ∈L

(
Π̄ j−1,l

)
for 1≤ j≤ n and 0≤ l ≤m define

L(s) = dim(s)−dim(h j−1 (s))−1,

where dim(t) is the dimension (the number of components) of t.
Finally, for each t ∈L

(
Π̄i−1,m

)
with 1≤ i≤ n define

Vi (t) = L(t)∆+(A(t)−∆)I (L(t) = m)+A(t) I (L(t)≤ m−1) . (8)

It follows, by the memory less property, that V (t) is exponentially distributed with mean one. Moreover,
for each s ∈L

(
Π̄n−1,m

)
we have that

{V (h1 (s)) ,V (h2 (s)) , ...,V (hn−1 (s)) ,V (hn(s))},

where hn (s) = s, forms a set of n i.i.d. r.v.’s exponentially distributed with unit mean. Consequently, for
each Xj (s) = Λ−1(V (h j(s))) is distributed according to F (·).

The splitting estimator, p̂b, can be computed as follows: Select r = exp(∆), and compute

p̂b = ∑
s∈L (Π̄n)

r−L(h1(s))r−L(h2(s))....r−L(hn(s))Jb (s) , (9)

where Jb (s) = I (X1 (s)+ ...+Xn (s) > b).
For each s ∈L

(
Π̄n−1,m

)
, the factor r−L(h1(s))r−L(h2(s))....r−L(hn(s)) is called the weight of particle s.

It is straightforward to check that p̂b is unbiased, that is, E(p̂b) = pb. We now state our main result
which estimates both E(p̂2

b) and the cost required to generate a single replication of p̂b, which is computed
in terms

W (b) = E
(
|L
(
Π̄n−1,m

)
|
)
,

where |A | denotes the cardinality of any set A
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Theorem 1 Under assumptions A1) to A3) we have that the work normalized achieves asymptotic
optimality. More precisely, we have that

E(p̂2
b)W (b) = O

(
p2−ε

b

)
, (10)

for any ε > 0.
The criterion (10) is equivalent to requiring the total number of random variables necessary to obtain

one single estimate has to grow at least at the same rate as the work-normalized squared coefficient of
variation. When considering the splitting based estimator, this notion of efficiency is by far the most
commonly used (see (Dean and Dupuis 2009)). The proof of Theorem 1 is given in Section 3. In particular,
Lemma 1 provides a bound for W (b) and Lemma 2 provides estimates for E(p̂2

b). These results combined
in particular imply Theorem 1.

It is important to mention, as we shall see, that the estimates that we shall obtain appear to deteriorate
significantly as a function of n. No effort has been made in order to improve the estimates for large n.
Our emphasis here is on b large and moderate n. We believe that improved bounds for n and b growing
simultaneously are possible, but the construction of the subtrees corresponding to the increments must
change somewhat, depending on which increment one is simulating. Progress on these types of constructions
will be reported in future work.

3 PROOF OF THEOREM 1

The proof of Theorem 1 is divided in several parts. First, we study an estimate for W (b). The second part
involves an estimate for E(p̂2

b).

3.1 Expected Number of Particles

The following result provides an estimate for W (b).
Lemma 1

W (b) = [(r exp(−∆))m +(1− exp(−∆))
m

∑
k=1

(r exp(−∆))k−1]n.

In particular, if r exp(−∆) = 1, we have that W (b) = O(mn) = O(Λ(b)n) as b→ ∞.

Proof. From the (2)-(4), we have that if Zk = |Zk| and Dk = |Dk| we have the recursion

Zk = ∑
s∈Zk−1

rI(s) , and Dk = ∑
s∈Zk−1

(1− I(s)) = Zk−1−Zk/r,

with Z0 = 1. In particular, Zk follows a Galton-Watson process (see Harris 1963). We then have that

E (Zk) = (r exp(−∆))k , and E (Dk) = (r exp(−∆))k−1 (1− exp(−∆)).

The decomposition (5) implies

E |L (Πm)|= E (Zm)+
m

∑
k=1

E (Dk) = (r exp(−∆))m +(1− exp(−∆))
m

∑
k=1

(r exp(−∆))k−1 .

In total, we have by construction that W (b) = (E |L (Πm)|)n, and thus we obtain the result.

728



Blanchet and Shi

3.2 The Second Moment of the Splitting Estimator

In order to estimate E(p̂2
b), following the ideas in (Dean and Dupuis 2009), it is useful to introduce the

so-called “Fully Branching Representation” of p̂b. To this end we introduce a sequence of full trees whose
construction is completely parallel to that of Πl and Π̄i. In particular, Π′l is a tree with root at 0, with l
generations, and each node - except for the leaves at the top - has exactly r children. So, in total L (Π′l)
has rl elements and Π′0 = {0}. Now, define Π̄′0,l = Π′l and recursively set for i≥ 1 and 0≤ l ≤ m,

Π̄
′
i,l = Π̄

′
i−1,m∪{Π′l (s) : s ∈L (Π′i−1,m)},

where Π′l (s) is a full tree (each node except the leaves has r children) with l generations rooted at (s,0).

Observe that |L
(

Π̄′i,l

)
|= rim+l .

Now, if s∈L
(
Π̄n
)

we have the steam information h1 (s) ,h1 (s) , ...,hn (s), with h0 (s) = 0 and hn (s) = s.
We also have that

h1 (s) ∈DL(h1(s))+1 (h0 (s)) ,h2 (s) ∈DL(h2(s))+1 (h1 (s)) , ...,hn (s) ∈DL(hn(s))+1 (hn−1 (s)) .

So, each particle s ∈L
(
Π̄n
)

is replaced by rm−L(h1(s))rm−L(h2(s)) · ... · rm−L(hn(s)) particles each with weight
r−nm, and these particles are all put together in a set denoted by Kn (s). The sets {Kn (s) : s ∈L

(
Π̄n
)
}

are disjoint and their union contains rmn elements, and so it can be put into one to one correspondance
with the set L

(
Π̄′n−1,m

)
. Thus, we will write L

(
Π̄′n−1,m

)
= ∪{Kn (s) : s ∈ L

(
Π̄n
)
}. Now to each

y ∈L
(

Π̄′n−1,m

)
we can associate a unique element θy = s ∈L

(
Π̄n
)
; in simple words, θy is the unique

element in L
(
Π̄n
)

such that y ∈Kn (θy).
It is clear then that following equivalent representation for p̂b holds,

p̂b = ∑
y∈L (Π̄′n)

r−mnJb (θy) . (11)

Of course, representation (11) is only useful for theoretical purposes, not for computational ones. For
computational purposes we we should keep in mind (9).

Representation (11) then implies

p̂2
b = ∑

y∈L (Π̄′n−1,m)

r−2mnJb (θy)+ ∑
y,z∈L (Π̄′n−1,m):y6=z

r−2mnJb (θy)Jb (θz) . (12)

It will be useful to decompose the second summation in (12) in terms of the last common ancestor
of y and z (i.e. x ∈ Π̄′n−1,m such that y,z � x and there is no v ∈ Π̄′n−1,m, with y,z � v � x). Just as we

partitioned L
(

Π̄′n−1,m

)
into as many equivalence classes as members of the set L

(
Π̄n−1,m

)
we can also

partition L
(

Π̄′i−1,l

)
for 1 ≤ i ≤ n and 0 ≤ l ≤ m, into equivalence classes {Ki−1,l (s) : s ∈L (Π̄i−1,l)}.

So, if z ∈L
(

Π̄′i−1,l

)
we can define θz = s ∈L (Π̄i−1,l) such that z ∈Ki−1,l (s).

Now, if x ∈ Π̄′i−1,l with 1 ≤ i ≤ n and 0 ≤ l ≤ m− 1 we define the set of children of x, denoted by
C (x), as the immediate descendants of x, namely C (x) = {(x,1), ...(x,r)}. We then can write

∑
y,z∈�̄′n−1,m,y6=z

r−2mnJb (θ (z))Jb (θ (y))

=
n

∑
i=1

m−1

∑
l=0

∑
x∈L (Π̄′i−1,l)

∑
y′,z′∈C (x):y′ 6=z′

r−2(i−1)mr−2l

(
∑

y:y�y′
r−mn+(i−1)m+lJb (θy)

)(
∑

z:z�z′
r−mn+(i−1)m+lJb (θz)

)
.

(13)
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Now we are ready to state a result that described the behavior of E(p̂2
b).

Lemma 2 If r = exp(∆), under Assumptions A1) to A3) there exists a (computable) constant κn > 0 such
that

E(p̂2
b)≤ κn p2

b.

Proof. Define

G1 (b) = ∑
y∈L (Π̄′n−1,m)

r−2mnE[Jb (θy)], G2 (b) = ∑
y,z∈L (Π̄′n−1,m):y6=z

r−2mnE[Jb (θy)Jb (θz)].

Using (12) we have that
E(p̂2

b) = G1 (b)+G2 (b) .

Using A2) we have that

G1 (b) = ∑
y∈L (Π̄′n−1,m)

r−2mn p(b) = r−mn p(b)≤ rp(b)n+1Cn, (14)

for some Cn ∈ (0,∞). In order to analyze G2 (b) using representation (13), define for x ∈L
(

Π̄′i−1,l

)
with

1≤ i≤ n and 0≤ l ≤ m−1, the σ -field

Fx = σ({I(s) : θx � s}).

Note that conditional on Fx, we have we know that L j = l j for j = 1, ..., i, where the random variables L j
are defined via

L1 = L(h1 (θx)) , ...,Li−1 = L(hi−1 (θx)) ,Li = L(θx)∧ l.

Now define i.i.d. r.v.’s (Vj : 1 ≤ j ≤ n) exponentially distributed with unit mean. Note that we can
write always write

Vj = I (Vj < m∆)
(
∆
⌊
Vj/∆

⌋
+(Vj−∆

⌊
Vj/∆

⌋)
)+VjI (Vj ≥ m∆) ;

this decomposition corresponds to (8), in the sense that we can easily check that (V (t) ,min(bV (t)/∆c ,m)) =d
(V (t) ,L(t)), where the symbol “=d” denotes equality in distribution. Given Fx, the random variables
∑y:y�y′ r−mn+im+lJb (θ (y)) and ∑z:z�z′ r−mn+im+lJb (θ (z)) are independent and identically distributed and

E( ∑
y:y�y′

r−mn+im+lJb (θ (y)) |Fx) = pn−i (b|L1, ...,Li) ,

where

pn−i (b|l1, ..., li) = P
(
Λ
−1 (V1)+ ...+Λ

−1 (Vn) > b| bVk/∆c∧m = lk,k ≤ i−1,bVi/∆c∧ l = li
)

≤ P(Λ−1 ((Vi−∆l)+ +(li +1)∆
)
+Λ

−1 (Vi+1)+ ...+Λ
−1 (Vn) > b− l−1 − ...− l−i−1),

Therefore,

E([ ∑
y:y�y′

r−mn+im+lJb (θ (y))]× [ ∑
z:z�z′

r−mn+im+lJb (θ (z))]|Fx) = p2
n−i (b|l1, ..., li) , (15)

where

pn−i (b|l1, ..., li)
= P

(
Λ
−1 (V1)+ ...+Λ

−1 (Vn) > b| bVk/∆c∧m = lk,k ≤ i−1,bVi/∆c∧ l = li
)
.

730



Blanchet and Shi

Note that if bVk/∆c∧m = lk, we have that

Λ
−1 (Vk)≤ Λ

−1 ((Vk−∆m)+ +(lk +1)∆
)
.

Moreover, conditional on Vk > ∆m, we have that

Λ
−1 ((Vk−∆m)+ +(lk +1)∆

)
=d Λ

−1 (V ′k +∆
)
,

where V ′k is independent of Vk. Of course, conditional on Vk ≤ ∆m we simply have

Λ
−1((Vk−∆m)+ +(lk +1)∆) = Λ

−1((lk +1)∆).

Putting these considerations together we see that

pn−i (b|l1, ..., li)
≤ P(Λ−1 (V ′1 +∆

)
+ ...+Λ

−1(V ′i +∆)+Λ
−1 (Vi+1)+ ...+Λ

−1 (Vn) > b− l−1 − ...− l−i ), (16)

where l−j = Λ−1 ((l j +1)∆) for j = 1, ..., i. It then follows easily from the subexponential property (A2)
and (16) that there exists C′n ∈ (0,∞) such that

pn−i (b|l1, ..., li)≤C′n exp
(
−Λ
(
b− l−1 − ...− l−i

))
. (17)

Now, since λ (t) is non increasing (by A3) we have that for any a1,a2 > 0

Λ(a1 +a2)≤ Λ(a1)+
∫ a1+a2

a1

λ (s)ds≤ Λ(a1)+
∫ a2

0
λ (s)ds = Λ(a1)+Λ(a2) .

Therefore, applying the previous inequality i times we conclude that

Λ(b)≤ Λ
(
b− l−1 − ...− l−i

)
+Λ

(
l−1
)
+ ...+Λ

(
l−i
)
,

which yields that

exp
(
−Λ
(
b− l−1 − ...− l−i

))
≤ exp(−Λ(b)+∆l1 + ...+∆li + i∆) . (18)

Similarly

exp
(
−Λ
(
b− l−1 − ...− l−i−1

))
P(Vi > ∆l)≤ exp(−Λ(b)+∆l1 + ...+∆li−1 +(i−1)∆−∆l) . (19)

We then conclude that there is Cn ∈ (0,∞) such that

pn−i (b|l1, ..., li)≤ p̄n−i (b|l1, ..., li) := Cn exp(−Λ(b)+∆l1 + ...+∆li) .

Plugging in this bound into (15) and using (13) we conclude that G2 (b) is bounded by

n

∑
i=1

m−1

∑
l=0

∑
x∈L (Π̄′i−1,l)

∑
y′,z′∈C (x):y′ 6=z′

r−2(i−1)mr−2lE(p̄2
n−i (b|L1, ...,Li))

= Cn exp(−2Λ(b))
n

∑
i=1

m−1

∑
l=0

∑
x∈L (Π̄′i−1,l)

∑
y′,z′∈C (x):y′ 6=z′

exp(−2(i−1)m∆)exp(−2l∆)E exp(2∆L1 + ...+2∆Li).

(20)

731



Blanchet and Shi

Now, recall that Li =d bVi/∆c∧m and therefore

E exp(2∆L1) =
m−1

∑
l=0

exp(2∆l)exp(−∆l)(1− exp(∆))+ exp(∆m)≤ 2exp(∆m) .

We conclude that

E exp(2∆L1 + ...+2∆Li)≤ 2i exp(∆m(i−1))exp(∆l) .

Consequently, plugging this estimate into (20) we have that G2 (b) is bounded by

Cn2n exp(−2Λ(b))
n

∑
i=1

m−1

∑
l=0

∑
x∈L (Π̄′i−1,l)

∑
y′,z′∈C (x):y′ 6=z′

exp(−(i−1)m∆)exp(−l∆)

= Cn2n exp(−2Λ(b))
n

∑
i=1

m−1

∑
l=0

r(i−1)m+1 exp(−(i−1)m∆)exp(−l∆)

= Cn2n exp(−2Λ(b))r
n

∑
i=1

m−1

∑
l=0

exp(−l∆)≤ nCn2n exp(−2Λ(b))r
1− exp(−∆)

= O
(

p2
b
)
. (21)

Combining bound (14) and (21) together we conclude the proof of the lemma.

4 NUMERICAL EXAMPLES

In this section, we implement and test the proposed splitting algorithm on the following examples, for
various choices of b:

(i) p1 = P(X1 + · · ·+X4 > b), where Xj’s are Pareto with index α = 1.5, i.e., P(X > x) = 1/(1+ x)α .
(ii) p2 = P(Y1 + · · ·+Y4 > b), where Yj’s are Weibull, with parameter γ = 0.5 such that P(Y > y) =

exp(−2(y+1)γ).

The performance of the splitting algorithm (SPLT) is compared against 1) crude Monte Carlo, 2) the state-
dependent importance sampling (SDIS) in (Dupuis et al. 2006) and (Blanchet and Liu 2012) (for the Pareto
and Weibull cases respectively), and 3) hazard-rate twisting (JS-IS) in (Juneja and Shahabuddin 2002).
Note that importance sampling requires a different set-up depending on the type of tail behavior (Weibull
or Pareto). In contrast, splitting preserves their basic structure (i.e. do not need a special adaptation) both
for Pareto and Weibull tails and in that sense is robust. As we indicated in the introduction, importance
sampling is expected to work better because it takes into account more information on the structure of
the tails, where as splitting basically only uses the (eventual) non-increasing property of the hazard rate
in an essential way. We included the JS-IS strategy because this one is state-independent. Our splitting
strategy is also state-independent so the comparison here, we believe is more meaningful with regard to
the main objective of this experiment, namely, to have a sense of how much does one loose when using
splitting vs importance sampling. We conclude that the efficiency loss could be significant specially when
compared to state-dependent strategies. However, splitting still appears to be a good alternative against
crude Monte Carlo (running from around six to twenty times faster). We believe that our results call for
additional investigation on splitting strategies in which the tree construction varies slightly depending on the
corresponding increment corresponding to the subtree in question. We intend to pursue these investigations
in the future.

The results are demonstrated in Tables 1 - 2 below. For each algorithm, we report the following
quantities:

1) Estimate. The SDIS, JS-IS and SPLT algorithms are all run N = 106 times. For crude Monte Carlo,
we produce N = 108 replications for each example.
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2) Work-normalized relative error. For each algorithm, this is calculated as the equivalent relative
error of the estimate as if the algorithm is run for the same length of time as the benchmark crude
Monte Carlo. In particular, let T,Tc be the running time for the current algorithm and the crude
Monte Carlo, respectively, then the work-normalized relative error for this splitting algorithm is
calculated as

REnormalized =
(

Var (p̂)
N p̂

T
Tc

)1/2

,

where p̂ is a single replication of the associated estimator under consideration.
3) Variance reduction factor, which is calculated as REcrudeMC

/REnormalized , where REcrudeMC is the
relative error of the crude Monte Carlo estimator.

Table 1: Numerical results for p1, i.e., sums of Pareto with α = 1.5.

b = 5×104 Crude MC SDIS JS-IS SPLT
Estimate 3.80×10−7 3.58×10−7 3.54×10−7 3.51×10−7

Work-normalized rel. err. 16.22% 0.02% 0.24% 1.89%
Var. reduction factor 1.00 811.00 67.74 8.60

b = 105 Crude MC SDIS JS-IS SPLT
Estimate 1.10×10−7 1.26×10−7 1.26×10−7 1.25×10−7

Work-normalized rel. err. 30.15% 0.02% 0.27% 1.25%
Var. reduction factor 1.00 1918.64 111.00 24.15

Table 2: Numerical results for p2, i.e., sums of Weibull with β = 0.5.

b = 50 Crude MC SDIS JS-IS SPLT
Estimate 2.28×10−6 2.14×10−6 2.11×10−6 2.14×10−6

Work-normalized rel. err. 6.62% 0.18% 0.16% 1.13%
Var. reduction factor 1.00 360.53 228.55 5.85

b = 75 Crude MC SDIS JS-IS SPLT
Estimate 1.00×10−7 9.12×10−8 9.17×10−8 9.15×10−8

Work-normalized rel. err. 35.36% 0.20% 0.26% 2.24%
Var. reduction factor 1.00 173.66 138.37 15.81

5 CONCLUSIONS

We have discussed a provably efficient splitting estimator for tail probabilities probabilities of random
walks. The estimator is particularly suited for heavy-tailed increments. The results are interesting because
standard splitting estimators require the underlying process to gradually move towards the rare-event region.
Heavy-tailed random walks, however, will typically reach a rare-event region by a sudden jump, so it is not
clear how to apply splitting (i.e. it is not clear when to split particles and thus reward ”good” behavior).
However, heavy-tailed increments typically have a decreasing hazard rate. Thus, it is natural to perform
splitting by looking both at the state of the random walk and by simulating the next increment in (conditional)
segments that become increasingly large and perform splitting accordingly. This is the strategy that this
paper studies and we show its asymptotic efficiency. The resulting estimator is also robust in the sense of
requiring a uniform setup to produce probably efficient estimators - contrary to state-dependent importance
sampling, which requires different setup depending on the asymptotic behavior of the hazard rate. It is an
interesting (future) research project to consider random walks in large deviations scaling (i.e. large number
of increments) and other types of processes.
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