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ABSTRACT

Models that are built to help make decisions usually involve input parameters, which need to be estimated
statistically using data. However, submitting these estimated parameters directly to the model may result in
biased decisions because the estimated parameters are biased or the model is nonlinear. We propose a new
parameter estimator called Simulation-Based Inverse Estimator (SBIE) to link the statistical estimation and
decision making together. The linkage is achieved by simulating the model and adjusting the estimated
parameters such that the adjusted parameters can adapt to the specific model. We prove that SBIE can
provide us with consistent and unbiased decisions under some conditions and this result is supported by
numerical experiments in queuing models.

1 INTRODUCTION

Models that describe system behaviors are often used in business analytics to make quantitative decisions.
These models often involve parameters that need to be estimated statistically using data. Once the parameters
are estimated, their estimates are plugged into the models to calculate system performances under different
scenarios and to select good decisions. For instance, in call centers, staffing decisions are often made
according to estimates of arrival patterns; in manufacturing companies, procurement decisions and production
planning are often made based on estimates of future demand; and in financial investment firms, portfolios
are often constructed according to estimates of expected returns and covariances of available financial
instruments.

Estimation of parameters is a widely studied problem in the area of statistics. Many methods have been
proposed to solve the problem, including maximum likelihood estimation (MLE), least square estimation,
method of moments, etc. These estimators often possess some nice statistical properties, e.g., unbiasedness,
minimal variance and consistency. When these estimators are plugged into the model, however, the resulted
estimators of system performances may not inherit the same properties. For instance, we consider an
M/M/1 queueing model where the arrival rate is estimated through a sample of interarrival times that are
exponentially distributed and the service rate is set as 1. Suppose that the true value of the arrival rate
is 0.9, then the average queue length of the steady state is 9 according to the model. The MLE of the
arrival rate is on average 0.902 when the sample size is 500. If we plug this MLE of arrival rate into the
model, we find that the the average queue length is 24.5 (i.e., with a relative bias of 172%), showing that
the estimator is heavily biased. Even when we increase the sample size to 1000, the average is still 11.6
(i.e., with a relative bias of 29%). The performance estimates may further deteriorate if the arrival rate
increases.

This phenomenon does not only exist in this M/M/1 example. Indeed, it is quite ubiquitous in business
analytics when a model is used to make quantitative decisions. It occurs because the true values of the
parameters are unknown and they are substituted by their estimators. A rigorously developed statistical
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estimator often possesses two types of properties, large-sample properties and finite-sample properties.
Large-sample properties include consistency, strong consistency, asymptotic normality, etc. that describe
how the estimator deviates from its true value as the sample size goes to infinity. These properties are often
inherited by the model performances when they are continuous functions of the parameters. Finite-sample
properties include unbiasedness, minimal variance, minimal mean square error, etc. that describe how the
estimator deviates from its true value when the amount of data is limited. These properties, on the contrary,
can hardly be inherited by the model performances. For instance, if the system performance is a nonlinear
function of the parameters, parameter estimators that are unbiased and minimal variance may lead to an
estimator of the system performance that is neither unbiased nor minimal variance. Technically, this is
because the mean and variance of a function of a random variable typically do not equal to the function
of the mean and variance of the random variable, i.e., E[ f (θ)] 6= f (E[θ ]) and Var[ f (θ)] 6= f (Var[θ ]). In
many practical situations, however, we only have a limited amount of data and, thus, we are interested more
in finite-sample properties of the system performances than in large-sample properties. For instance, in the
example of call centers, one may have only a few weeks of past arrival data to make staffing decisions; in
the example of manufacturing companies, one may have only a few months of past demand data to make
procurement and production decisions; and in the example of financial investment firms, one may have at
most a few years of past return data to make investment decisions.

The reason that models may deliver poor performance estimates is because parameter estimation and
performance evaluation are considered separately. In this paper, we take a holistic view to link these two
steps together and our goal is to estimate parameters so that, when the estimates are plugged into the
model, the system performances are well behaved. Our approach works as follows: we first use a standard
statistical method to estimate the input parameters and plug them into the model to obtain an estimate of
the output performances. We call this approach a two-step approach and call its estimate of the output
performances the two-step estimator. Note that, when the true values of input parameters are known, we
may simulate a sample of input data to mimic our sample of observed input data and apply the two-step
approach to evaluate the output performances on the simulated data. Through this way, we may build a
functional relationship between the true values of the input parameters and the average output performances.
We can then invert this function at the two-step estimator and use it as our estimate of the input parameters.
We call this approach simulation-based inversion estimation approach and its estimator simulation-based
inversion estimator (SBIE).

It is important to note that the SBIE approach is model adaptive, i.e., its estimators of input parameters
rely on not only the input data but also the model. These estimators of input parameters may not be as
good as estimators of more standard statistical methods, however, they lead to better estimates of model
performances that we care about. In this paper we show that the performance estimators of the SBIE
approach guarantee to have lower biases compared to those of the two-step approach. In particular, if the
biases of the two-step approach are of the order of n−α as in the cases of consistent estimation approaches,
where α is a number greater than 0 (i.e., α = 1

2 in maximum likelihood estimation), the biases of the SBIE
approach are of the order smaller than n−2α .

In this paper we show that the SBIE approach can also be applied to situations where consistent two-step
estimators are not readily available. In many practical situations, data may be contaminated by the data
collection process. For instance, demands of a product in a grocery store are often censored at the inventory
level (i.e., the observed demand can never be more than the inventory level), and potential arrivals to a
restaurant may be turned away by the long queue causing the interarrivals longer than what they should
be. When data are contaminated, parameter estimations are often quite difficult. However, if we ignore
the contamination, the resulted estimators are often inconsistent and biased. Using the SBIE approach, we
can reproduce the data contamination when we simulate the input data and learn how estimates of output
performances are distorted by the contamination process as well as the two-step estimation approach. We
show that the SBIE approach can reduce the bias in this case from an order of one to an order smaller than
n−α .
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Another advantage of the SBIE approach is that it is easy to use. Once the input data can be simulated,
the SBIE approach can be applied. One only needs to simulate the input data and apply the original
two-step estimation process multiple times and maybe at multiple values of the parameters to find the SBIE
estimator. However, the advantages of the SBIE approach come with a cost on computation, as multiple
(and often a large number of) simulation runs are often needed and an optimal solution needs to be searched.
Nevertheless, with today’s widespread availability of computing capacity, the computational requirement
of the SBIE approach is rarely an issue, and it offers a solution which may be far more inexpensive when
compared to the solution of collecting more data.

Literature Review

The study of parameter uncertainties in decision models is an important research area of operations
research and management science. In the stochastic simulation literature, how to account for the parameter
estimation errors has always been a very important research problem. The problem is often formulated
as the construction of a valid confidence interval for output performance when there are uncertainties in
parameter estimation in literature; see, for instance, ? for a review. Another common approach to handle
parameter uncertainties is the robustness approach, which assumes that parameters are constrained in a set
(e.g., a confidence set) and we are interested in the worst performance of the model when parameters are
in the set. For instance, ? and ? studied optimization problems with various uncertainty sets. Similar idea
has also been applied to simulation problems where the goal is to estimate the worst performance given
that the parameters of the model are in an uncertainty set. For instance, ? considered the problem of robust
simulation and applied it to global warming policy makings.

The use of simulation methods in estimation is in general called simulation-based estimation (SBE) in
econometrics literature; see, for instance, Chapter 12 of ?. Its basic idea is to use a Monte Carlo method
to approximate an expectation with no closed form expressions. Another SBE method is called indirect
inference, introduced by ? and ?, using simulations performed under the initial model to correct for the
asymptotic bias of input parameters estimated from an approximate model, which is used to replace the
complicated and intractable initial models. These methods have been applied to many econometric models
including limited dependent variable models (?) and dynamic panel models (?). Unlike the above SBE
methods, which focus on precisely estimating the parameters, our method focuses on the estimations of
model performance and decisions. What is closest to our work in the literature is a simulation-based
estimator of contingent-claims prices proposed by ?. However, they only considered how to reduce the
bias of the maximum likelihood estimator in this application and provided little theoretical analysis beyond
numerical studies. In this paper, we propose a more general method and analyse the bias correction in
more details.

2 BASIC IDEAS OF SBIE

Suppose we have observed a sample of data X(θ0) = {X1, . . . ,Xn}, where θ0 is an unknown parameter (or
parameter vector) of a data generating process that we use to model the sample, i.e., we may generate new
random samples that have the same distributions as X(θ) if θ is known using the same data generating
process. In a simple case, for instance, X(θ0) may be an independent and identically distributed (i.i.d.)
sample of an exponentially distributed interarrival time and θ0 is the unknown arrival rate. In a more
complicated case, for instance, X(θ) may be an i.i.d. sample of normally distributed demand data censored
by an inventory-control scheme and θ0 includes the unknown mean and variance of the normal distribution.
Because θ0 is unknown we need to estimate θ0 using the observed data X(θ0). Denote the estimator
by θ̂n. Note that θ̂n is a function of X(θ0), i.e., θ̂n = θ̂n(X(θ0)). Many statistical methods have been
proposed to obtain θ̂n and they often focus on the properties of θ̂n with respect to θ0. In many practical
problems, however, our ultimate goal is not to estimate θ0 but to use θ0 in some models to estimate system
performances or to reach optimal decisions. Let p(θ) denote the output performances or decisions of a
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model given the parameter θ and, in these problems, what we are interested in is to estimate p(θ0). An
often used approach is to use p̂n = p(θ̂n) as an estimator of p(θ0). This is the two-step approach, because
it first estimates θ0 and then plugs the estimate to p(·) to estimate p(θ0).

However, one of the critical problem of the two-step approach is that p(θ̂n) as an estimator of p(θ0) may
not possess the nice properties of θ̂n as an estimator of θ0. For instance, when p(·) is a nonlinear function,
p(θ̂n) may be biased even when θ̂n is unbiased. To solve the problem, an ideal approach is to estimate
p(θ0) directly. However, in many practical problems, p(θ0) may not directly observable. Therefore, we
have to use θ0 as a bridge to estimate p(θ0) and the estimation of θ0 appears inevitable. Nevertheless, in
this paper, we want to find an estimator of θ0 that combines the properties of p(·) as well as those of the
data generating process and ultimately lead to a good estimator of p(θ0).

Let X(θ) = {X1(θ), . . . ,Xn(θ)} be a sample of size n generated from the data generating process with
parameter θ for any θ ∈Θ, where Θ is the parameter space. Then, following the two-step approach, p(θ)
may be estimated by p

(
θ̂n(X(θ))

)
, sometimes written as p̂n(θ).

To avoid unnecessary complexity in the presentation, we assume that θ is one dimensional and leave
its multi-dimensional extension as a future work. Let

bn(θ) := E [p̂n(θ)] .

We assume that E [p̂n(θ)] is well defined for all θ ∈Θ. Then, bn(θ) is a function defined on the parameter
space Θ and it is called a binding function as in ?. Note that bn(θ) depends on the sample size n and
bn(θ)− p(θ) is the bias of p̂n(θ).

Suppose that bn(θ) is a known function and it can be inverted, i.e., b−1
n (·) is well defined. Then, given

the sample X(θ0) and the two-step estimator p̂n(θ0), we propose a new estimator of θ0,

θ̃n = b−1
n (p̂n(θ0)) , (1)

assume that θ̃n ∈ Θ and call θ̃n the inversion estimator of θ0 given the performance function p(·). Note
that θ̃n is a quite intuitive estimator of θ0 and we may explain the intuitions in at least the following two
ways. First, θ̃n is the root of

p̂n(θ0) = bn(θ), (2)

which may be viewed as a special case of the method of moments with bn(θ) being the mean (i.e., first
moment) of the observed output performance p̂n(θ0). Second, θ̃n is the optimal solution of

min
θ∈Θ

[bn(θ)− p̂n(θ0)]
2 ,

which may be viewed as a special case of the least squared method with only one observation of output
performance, i.e., p̂n(θ0). Hence this minimization problem reduces to a root finding problem, similar to
Equation (2).

To find the inversion estimator of Equation (1), we need to solve the following root-finding problem:

p̂n(θ0) = E
[
p
(
θ̂n(X(θ))

)]
. (3)

If the closed-form expression of the binding function bn(θ), i.e., E
[
p
(
θ̂n(X(θ))

)]
, is known, the root

finding problem is generally a simple problem and it may be solved analytically. In most practical situations,
however, the closed-form expression of the binding function bn(θ) is unknown and it may only be estimated
through running simulation experiments at the corresponding θ values. In this paper we propose to use
Monte Carlo methods to solve the root finding problem.

It is worthwhile noting that, when Monte Carlo methods are used to solve the root finding problem,
there is also an approximation error caused by the randomness in the Monte Carlo sample. However, this
error is often negligible compared to the estimation error introduced by the randomness in the data X(θ0).
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This is because Monte Carlo samples are often computationally cheap to generate and much cheaper than
the actual data. Then, we can (and should) solve the root finding problem with a very large sample size
to reduce the Monte Carlo error to a level that is negligible compared to the error caused by the actual
data. Therefore, in this paper, we do not differentiate SBIEs and inversion estimators and treat SBIEs as
inversion estimators when analyzing their statistical properties.

3 PROPERTIES OF SBIE

In the introduction we have argued that the two-step estimator p(θ̂n) may not possess the nice small-sample
properties of θ̂n. In particular, as illustrated by the M/M/1 example, p(θ̂n) may be heavily biased even
when θ̂n is nearly unbiased. Indeed, this was one of the motivations for us to consider SBIEs. Another
important motivation is that we observe that θ̂n may itself be significantly biased due to data censoring
and it may leads to a two-step estimator p(θ̂n) that is also significantly biased. In this paper we propose
SBIEs to address the issue of bias reduction. It is worthwhile noting that the basic idea behind SBIEs is
a learning mechanism, which uses Monte Carlo simulations as a tool to learn the expected value of the
two-step estimator at any θ value, i.e., the binding function bn(θ). When θ is known (as in the learning
process), p(θ) is also known. Therefore, through the learning process, we acquire the knowledge of the
bias, i.e., bn(θ)− p(θ). Then, SBIEs use this knowledge to correct the bias in the two-step estimator when
θ is unknown (i.e., when θ = θ0). Note that Monte Carlo simulations play a critical role in the learning
process. It also justifies why we call the estimator SBIE instead of only inversion estimator.

In this section we analyze the consistency and the bias-reduction property of SBIEs rigorously for the
case where θ̂n is consistent as well as the case where θ̂n is inconsistent due to data censoring. We show that
SBIEs are consistent no matter the θ̂n are consistent or not, and SBIEs reduce the biases of the two-step
estimators in both cases. In the last of this section, we study the variance of SBIEs.

3.1 Consistency

To study the statistical properties of SBIEs, we concentrate on the one dimensional case and begin with
the following assumptions.
Assumption 1 (a) There exists an open interval Θ0 = (a,b), where a < b < ∞ and a,b ∈ R such that θ0
lies in Θ0.

(b) The performance or decision p(·) is Lipschitz continuous and strictly monotone on Θ0.
Next we will give some assumptions about θ̂n(X(θ)). Note that the binding function is defined by

bn(θ) := E
[
p
(
θ̂n(X(θ))

)]
, where X(θ) is a sample of size n generated from the data generating process.

In simulation, we can generate a sample path ω and set ω fixed, then we can simulate X(θ ,ω) over
different parameter θ by only changing the value θ . In this sense, X(θ) is a function of θ and ω and can
be denoted by X(θ ,ω). Observed data can be viewed as X(θ0,ω0), where ω0 is a realization of ω . In the
rest of this paper, we will use X(θ) and X(θ ,ω) to express the same meaning for convenience.
Assumption 2 θ̂n(X(θ ,ω)) is strictly monotone with respect to θ for each fixed ω .

Next, we define an uniform convergence in probability of a sequence of random variables in the
following, similar as that of ?.
Definition 1 A sequence of random variables Y1(θ), . . . ,Yn(θ) converges to a function y(θ) in probability
uniformly in θ ∈Θ if

sup
θ∈Θ

Pθ (|Yn(θ)− y(θ)|> ε)→ 0

as n goes to infinity for every ε > 0.
Assumption 3 The estimator θ̂n(X(θ)) converges to h(θ) in probability uniformly in θ ∈ Θ0 as n goes
to infinity, where h(·) is a Lipschitz continuous and strictly monotone function.
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Assumption 4 For some r > 0,

sup
n

sup
θ∈Θ0

E
[∣∣θ̂n(X(θ))

∣∣1+r
]
< ∞.

Lemma 1 (Existence and Uniqueness of θ̃n) Under Assumptions 1 and 2, and if p(θ̂n) lies in the range
of bn(·) on the domain Θ0, then θ̃n exists and is unique and lies in Θ0.

In terms of the assumptions, θ̂n(X(θ ,ω)) and p(·) are both strictly monotone, then p(θ̂n(X(θ ,ω))) is
strictly monotone at any sample path ω . As the monotonicity exists at any sample path, the expectation
of p(θ̂n(X(θ ,ω))) is strictly monotone as well, which means bn(·) is monotone. The inverse function of
bn(·), denoted by b−1

n (·), exists and is one-to-one mapping. Then if p(θ̂n) lies in the range of bn(·), then
θ̃n = b−1

n (p(θ̂n)) exists and is unique. Later we will show that bn(·) converges to p(h(·)) uniformly on Θ0.
Note that p(θ̂n) converges to p(θ0) and θ0 is an interior point of Θ0, then if n is large enough, p(θ̂n) will
go into the range of bn(·) for sure.
Lemma 2 Under Assumptions 3 and 4, we have E(θ̂n(X(θ))) converges to h(θ) uniformly on Θ0.

Due to limit of space, all of the proof in this paper is skipped. Lemma 2 implies that E
[
p
(
θ̂n(X(θ))

)]
converges to p(h(θ)) uniformly on Θ0. Indeed,

sup
θ∈Θ0

E
∣∣p(θ̂n(X(θ)))− p(h(θ))

∣∣≤ sup
θ∈Θ0

E
∣∣Γ(θ̂n(X(θ))−h(θ))

∣∣→ 0

where the first inequality comes from the Lipschitz continuity of p(·). The result actually means bn(θ)
converges to p(h(θ)) uniformly on Θ0.
Theorem 1 Suppose Assumptions 1 to 4 are satisfied and p(θ̂n) lies in the range of bn(·), then estimator
from SBIE θ̃n will converge to the true value θ0, and p(θ̃n) will converge to p(θ0).

If the expectation of the right hand side of the equation (3) is approximated by Sample Average
Approximation(SAA)(?), the consistency of the θ̃n can also be guaranteed.
Corollary 2 Under the condition of Theorem 1, if θ̃n is the unique solution of the equation

p(θ̂n(X(θ0))) =
1
K

K

∑
k=1

[
p(θ̂n(Xk(θ)))

]
where Xk(θ) is the sample simulated in the kth run, then θ̃n will converge to the true value θ0, and

p(θ̃n) will converge to p(θ0) in probability for any integer K.

3.2 Bias Reduction

First introduce two notations Op and op for the sake of denoting the order of some remainders or errors.
One writes f (n) = Op(g(n)) as n goes to infinity if

0 < limsup
n→∞

∣∣∣∣ f (n)
g(n)

∣∣∣∣< ∞, in probability

and writes f (n) = op(g(n)) as n goes to infinity if

limsup
n→∞

∣∣∣∣ f (n)
g(n)

∣∣∣∣= 0, in probability

We use O and o instead if there is no randomness within f (n) and g(n).
Next we will introduce an expansion of θ̂n(X(θ)) such that we can deduce the order of bias of θ̃n and

p(θ̃n) and compare them with the order of bias of θ̂n and p(θ̂n).
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Assumption 5 The estimator θ̂n(X(θ)) admits the following Edgeworth Expansion:

θ̂n(X(θ)) = h(θ)+
A(v,θ)

nα
+op(n−α)

where α ∈ (0,+∞), and A(v,θ) is a random term depending on a random variable v, and is infinitely
differentiable with respect to θ , and has finite moments at θ0.

The above assumption, just as ?, is valid under some regularity conditions, mostly about sufficiently
many finite moments conditions and smoothness conditions on the sampling distribution. If θ̂n has asymptotic
normality property, then α = 1

2 . Details of the expansion can be found from ? and ?. It is not very difficult
to verify assumption 5 in real cases. For instance, if θ̂n(X(θ)) is a MLE, then θ̂n(X(θ)) can be expanded
as

θ̂n(X(θ)) = θ +
sv√

n
+op(n−1/2)

where s is a constant that stands for the asymptotic standard deviation of
√

nθ̂n(X(θ)) and v is a
random variable follows standard normal distribution. In this case, A(v,θ) = sv. In specific, if θ̂n(X(θ))
is the MLE of rate of an exponential distribution Exp(θ), then A(v,θ) = θv, and if θ̂n(X(θ)) is the MLE
of mean of an normal distribution N(µ,σ 2), then A(v,θ) = σv. In the above cases, the differentiability of
A(v,θ) can also be verified. Submitting the two-stage estimator directly to the model, we get p(θ̂n). If
p(·) is differentiable, then we can apply Taylor expansion to p(·) at h(θ0)

p(θ̂n) = p(h(θ0))+(θ̂n−h(θ0))p′(h(θ0))+op(n−α)

= p(h(θ0))+
A(v,θ0)

nα
p′(h(θ0))+op(n−α)

If h(θ) 6= θ , then the bias of p(θ̂n) is of order O(1), as the bias will not converge to 0 when n goes to
infinity. Even when the two-stage estimator is consistent, which means that h(θ) = θ , the bias of p(θ̂n) is

E
[
p(θ̂n)− p(θ0)

]
= E [A(v,θ0)]

p′(θ0)

nα
+o(n−α)

When E [A(v,θ0)] and p′(θ0) do not equal to 0, the bias of p(θ̂n) is of order O(n−α).
Theorem 3 If θ̂n is inconsistent, then under the condition of Theorem 1 and Assumption 5 and p(·) is
differentiable, we have

E
[
p(θ̃n)− p(θ0)

]
= o(n−α)

Note that in the above theorem, we consider the case that the two-step estimator is inconsistent. Later,
we will show that when the two-step estimator is consistent itself, which means h(θ) = θ , we have a
stronger result about the bias order. We first need expand θ̂n to a higher order.
Assumption 6 When θ̂n is consistent, it admits the following Edgeworth Expansion:

θ̂n(X(θ)) = θ +
A(v,θ)

nα
+

B(v,θ)
n2α

+op(n−2α)

Then by the same argument as that in theorem 3, we can show that θ̃n has the following forms:

θ̃n = θ0 +
A∗

nα
+

B∗

n2α
+op(n−α)
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Proposition 1 If θ̂n is consistent, then under the condition of Theorem 1 and Assumption 6, and p(·) is
twice differentiable, then p(θ̃n) admits the following expansion:

p(θ̃) = p(θ0)+
1

nα
A∗p′(θ0)+

1
n2α

(
B∗p′(θ0)+

1
2
(A∗)2 p′′(θ0)

)
+op(n−2α)

where the coefficients of order n−α and n−2α satisfy

A∗p′(θ0) = A(v0,θ0)p′(θ0)−Ev
[
A(v,θ0)p′(θ0)

]
B∗p′(θ0)+

1
2
(A∗)2 p′′(θ0) =−Ev

[
∂A(v,θ0)

∂θ
p′(θ0)A∗

]
−Ev

[
A(v,θ0)p′′(θ0)A∗

]
+B(v0,θ0)p′(θ0)+

1
2

A(v0,θ0)
2 p′′(θ0)−Ev

[
B(v,θ0)p′(θ0)

]
− 1

2
Ev
[
A(v,θ0)

2 p′′(θ0)
]

where v0, v are i.i.d. random variables and Ev means the expectation is taken with respect to v. Note A∗

contains randomness, while A∗ is independent of v.
Proposition 2 The coefficient of the term of order n−α and n−2α of p(θ̃n) satisfy:

E[A∗p′(θ0)] = 0

If p′(θ0) 6= 0, then

E
[

B∗p′(θ0)+
1
2
(A∗)2 p′′(θ0)

]
= 0

Theorem 4 Under the condition of Propositions 1 and 2, we have

E
[
p(θ̃n)− p(θ0)

]
= o(n−2α)

Theorem 4 is a direct result of proposition 1 and 2.
Corollary 5 Under the condition of Theorem 4, if p is convex and increasing or concave and decreasing,
then θ̃n is biased low in n−2α order and if p is concave and increasing or convex and decreasing, then θ̃n
is biased high in n−2α order.

3.3 Variance

Generally, there exists a tradeoff between bias and variance. It is hard to improve both bias and variance
simultaneously. For example, Jackknife can reduce the bias order while variance will increase (?). For
SBIE, though bias is reduced, the variance may not increase. The analysis is quite similar as that of ?

Combining Assumptions 1 and 2 and bn(·) is invertible, we have θ̃n = b−1
n (p(θ̂n)). Denote p(θ̂n) by

p̂n. Then

Var
[
p(θ̃n)

]
=Var

[
p(b−1

n (p̂n))
]

We can apply mean value theorem to the right hand side of the above formula. Denote p(h(θ0)) by g(θ0).

p(b−1
n (p̂n)) = p(b−1

n (g(θ0)))+
p′(b−1

n (p̄n))

b′n(b
−1
n (p̄n))

(p̂n−g(θ0))

where p̄n lies between p̂n and g(θ0). As n goes to infinity, p̂n converges to g(θ0) and therefore p̄n converges
to g(θ0). Moreover, b−1

n (·) converges to g−1(·) uniformly. We can approximate p(b−1
n (p̂n)) by

p(b−1
n (p̂n))≈ p(b−1

n (g(θ0)))+
p′(θ0)

b′n(θ0)
(p̂n−g(θ0))
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Take variance gives:

Var
[
p(b−1

n (p̂n))
]
≈
(

p′(θ0)

b′n(θ0)

)2

Var[p̂n]

provided that p(·) and bn(·) are differentiable and variance of p̂n exists. Thus if
(

p′(θ0)
b′n(θ0)

)2
> 1, then the

variance of SBIE may increase, compared with the referenced estimator. While if
(

p′(θ0)
b′n(θ0)

)2
< 1, the variance

of SBIE may decrease.

4 QUEUEING MODEL

We continue the M/M/1 queue example introduced in the introduction section, to see how SBIE will
work. Assume the arrival process of the queuing system is a time homogenous poisson process. The
input parameter of the queuing model is the arrival rate θ0, lying in an bounded set Θ0. We can infer
the parameter value in terms of observed inter arrival times X0 = {X1,X2, · · · ,Xn}. Then the Maximum
Likelihood Estimator(MLE) of θ can be calculated as

θ̂n =

(
1
n

n

∑
i=1

Xi

)−1

To make the example simple and clear, assume we already have some information about the system. The
service rate is assumed to be exponential with rate µ = 1 and the true value θ0 is known to be smaller
than µ . The objective performance is the average queue length of the steady state , which is p(θ) = θ

µ−θ

and p(θ̂n) is the MLE of the objective. It is possible that the estimate of θ0 is greater than or equal to µ ,
then the system will blow up. In particular, E

[
p(θ̂n)

]
does not exist. To deal with this problem, we set

a large buffer size J to approximate the infinite buffer size. That means, if θ̂n is greater than or equal to
µ = 1, we let the estimated average queue length be exactly the buffer size J. Set the true value θ0 = 0.8
and J = 999. The binding function can be calculated in terms of Sample Average Approximation as the
following:

bn(θ) =
1
K

K

∑
k=1

p
(
min(0.999, θ̂n(Xk(θ)))

)
where Xk(θ) is the sample generated in the kth run. Figure 1 plots the binding function bn(θ) and the
original function p(θ). Since p is convex, we can see that bn(θ) is always above p(θ). The expectation
of performance behavior is actually bn(θ0), which is biased high. The vertical distance between bn(θ) and
p(θ) is actually the bias of MLE when the true value is at θ . The SBE θ̃n will be smaller than θ̂n, as
illustrated in Figure 1. Thus p(θ̃n)< p(θ̂n). Intuitively, the bias of P(θ̂n) has sort of been erased.

In Table 1, the sample size is 500, true values are θ0 = 0.8 and p(θ0) = 4. MLE and Jackknife(JK)
methods are applied to estimate θ . MLE is used as the two-step estimator in the SBIE approach. Numerical
results in the table show that all of the estimates of θ0 from different methods are good. However, when
we consider estimates of p(θ0), MLE of p(θ0) is 4.2829, which is biased high for about 7%. JK method
can estimate θ0 very well, while estimates of p(θ0) does not obtain much improvement. On the contrary,
SBIE of θ0 has the largest bias, compared with other two methods, while SBIE can significantly reduce the
bias of performance. p(θ̃n) = 3.9575 is quite close to the true value and gets only about 1% bias. What’s
more, the variance of p(θ0) is also reduced.

We explain how SBIE works in the above example. Nevertheless, in the above example, we have to
set an upper bound manually, since the expectation of the performance actually does not exist. In the real
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Figure 1: Mechanism of SBIE in M/M/1 queue example

Method Mean(θ) Std(θ) Se(θ) Mean(p(θ)) Std(p(θ)) Se(p(θ))
MLE 0.8024 0.0374 0.0375 4.2829 1.2624 1.2931
JK 0.8008 0.0374 0.0373 4.2351 1.2311 1.2527

SBIE 0.7926 0.0335 0.0342 3.9575 0.8648 0.8654

Table 1: Comparison of different approaches while θ0 = 0.8

world, a more practical queue system could be M/M/N+J, which has N servers and finite buffer size J.
The finite buffer size can ensure that the system will not blow up. The objective performance is chosen to
be the average queue length,which can be denoted by

p(θ) =
∑

J
i=1 i

(
θ/µ

N

)i
(θ/µ)N

N!

∑
N−1
i=0

(θ/µ)i

i! + (θ/µ)N

N! ∑
J
i=0

(
θ/µ

N

)i

where θ is the arrival rate that need to be estimated. In this numerical experiment, we choose service rate
µ = 1 server number N = 1 and buffer size J = 100. We draw the original function and binding function,
as illustrated in Figure 2. While the sample size n is small, the binding function lies away from the original
function, and the bias is large and the correction will be large as well, which means difference between
θ̂n and θ̃n will be large; while n increases, the binding function will be closer to the original function, and
bias is decreased and smaller correction of the input estimation is needed.

The true value of the arrival rate is θ0 = 0.9. Under this setting, the true value of average queue length
should be p(θ0) = 8.0978. To discover the relationship between sample size and bias, Table 2 reports the
results of MLE and SBIE methods when sample size n increases and the results are plotted in Figure 3.
SBIEs are calculated by using two approaches, SAA and Stochastic Approximation (SA)(?). Figure 3
shows both SAA and SA approaches work well in reducing the bias. When the sample size is 800, the
bias of MLE is about 19%, SBIEs already get very close to the true value.

5 CONCLUSION

In this paper, we propose an easily implementable approach that builds a bridge between parameter
estimations and models. The proposed SBIE provides us with an unbiased estimator of p(θ0). The bias
caused by either nonlinearity of the model p(·) or the inconsistency of the parameter estimator θ̂n can be
reduced to some orders related to the sample size n. The variance of SBIE can be approximated and it
shows that sacrifice of variance is not necessary while reducing the bias. Nevertheless, we only discuss the
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Figure 2: Binding functions with respect to different n

Table 2: Comparison of MLE and SBIE with n increasing

Sample size 500 650 800 1000 1200 1500 2000 2500 3000

mean(p)
MLE 10.8584 10.2342 9.6358 9.1548 8.9632 8.8428 8.6928 8.4547 8.4111
SA 8.7868 8.5816 8.2046 8.2343 8.1577 8.1463 8.1851 8.2186 8.1547

SAA 8.6708 8.4018 8.1381 8.0674 8.0110 8.0820 8.1377 8.0390 8.0706

std(p)
MLE 8.8739 6.9092 5.3275 4.3139 3.7476 3.1348 2.5770 2.1201 1.8593
SA 8.3551 6.6253 4.5740 3.9356 3.2168 2.8920 2.4591 2.1636 1.9235

SAA 8.3080 5.9533 4.3770 3.4436 3.0466 2.5766 2.2170 1.8666 1.6748

case when the parameter is one dimensional and the model is one dimensional and monotone, though the
SBIE approach is not subject to this simple case. The future work includes discussing multidimensional
cases, building confidence intervals for the estimator and so on.
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