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ABSTRACT

The traditional estimator x̂p,n for the p-quantile xp of a random variable X , given n observations from the
distribution of X , is obtained by inverting the empirical cumulative distribution function (cdf) constructed
from the obtained observations. The estimator x̂p,n requires O(n) storage, and it is well known that the
mean squared error of x̂p,n (with respect to xp) decays as O(n−1). In this article, we present an alternative to
x̂p,n that seems to require dramatically less storage with negligible loss in convergence rate. The proposed
estimator, x̃p,n, relies on an alternative cdf that is constructed by accumulating the observed random variates
into variable-sized bins that progressively become finer around the quantile. The size of the bins are
strategically adjusted to ensure that the increased bias due to binning does not adversely affect the resulting
convergence rate. We present an “online” version of the estimator x̃p,n, along with a discussion of results on
its consistency, convergence rates, and storage requirements. We also discuss analogous ideas for density
estimation. We limit ourselves to heuristic arguments in support of the theoretical assertions we make,
reserving more detailed proofs to a forthcoming paper.

1 INTRODUCTION

For a random variable X with cumulative distribution function (cdf) F , the p-quantile xp is defined as
xp = argmin

x
{F(x) ≥ p}. This is also the definition of the general inverse of F , and so xp = F−1(p).

Estimation of quantiles is of natural interest in numerous contexts: financial applications often require
estimation of the “Value-at-Risk” of a financial instrument (Duffie and Pan 1997); service systems such as
call-centers often provide quality-of-service guarantees in terms of the 95-th percentile of the response time
being within specified bounds (Goldenberg, Qiuy, Xie, Yang, and Zhang 2004, Ghosh and Ghosh 2012);
the service metric of an information technology service provider may be tied to the 95-th percentile of
specific measurable quantities such as network latency (Goldenberg, Qiuy, Xie, Yang, and Zhang 2004),
or CPU latency for cloud service providers (Ghosh and Ghosh 2012); and in a simulation context, “sys-
tems” however defined, may be compared based on their performance expressed in terms of a quan-
tile (Bekki, Fowler, Mackulak, and Nelson 2007, Pasupathy, Szechtman, and Yücesan 2010).

Our primary interest in this paper is that of estimating the p-quantile of a random variable X , given
independent and identically distributed (iid) random variates Xi, i = 1,2, . . . from the distribution F(·) of X .
The data Xi, i = 1,2, . . . used to construct the quantile estimator are “observed” sequentially, that is, they
are made available not simultaneously, but one at a time. Furthermore, the estimation contexts of interest
are “online” implying that the storage and the computational complexity of the quantile estimator are of
particular importance.

To illustrate the latter issue of storage and computational complexity, consider estimating the mean
m = E[X ] of the random variable X . The traditional estimator in this case is the simple sample mean
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X(n) = n−1 ån
i=1 Xi which can be recursively estimated as

X(n) =
n−1

n
X(n−1)+

1
n

Xn, n = 2,3, . . . .

It is clear from the above recursion that, irrespective of the value of n, X(n) can obtained through a
manipulation of only the previous estimator X(n−1) and the most recent observation Xn, implying O(1)
storage and computational complexities.

What are the corresponding complexities for the traditional estimator x̂p for the p-quantile xp = F−1
X (p)

of X , obtained by inverting the empirical cdf constructed from the iid observations {Xi, i = 1,2, . . . ,n}?
Suppose the set {Xi, i = 1,2, . . . ,n} is sorted in ascending order to form the list {X(1), X(2), . . . , X(n)}. Then,
assuming no ties, the inverse of the empirical cdf F̂n at p is the same as ⌈np⌉-th value in the sorted
list, that is, F̂n = X(⌈np⌉). This estimator requires that the entire sorted list be available, and so storage
required is O(n). The best algorithms available to maintain a list of values in ascending sorted order incur
O(logn) computational complexity for each step that updates the sorted list with the next sample Xn and
retrieves the latest estimate x̂p,n as the ⌈np⌉-th order-statistic (Bayer 1972). Thus, the complexity of the
traditional quantile estimator as an “online” context is O(n) for storage and O(logn) for the estimate update
computation.

We present a competing quantile estimator x̃p that appears to require much less storage and computational
complexity (provably O(logn) and O(log logn), respectively) than the traditional estimator x̂p. Furthermore,
such gains in storage and computation appear to come at little cost in terms of convergence characteristics.
Specifically, it is well-known that the traditional quantile estimator x̂p is a consistent estimator whose
mean-squared error converges to zero as O(n−1) (Serfling 1980). The alternative estimator x̃p that we
propose, while enjoying reduced storage and computational complexity, retains the convergence rate of
the traditional estimator. The main idea underlying the alternative estimator x̃p is the construction of an
alternative empirical cdf F̃n(·) that is sensitive to data storage and computation. The cdf F̃n(·) is constructed
using bins that progressively become finer around the location of the quantile. This essentially implies
that all observations except those that lie close to the quantile are grouped, thereby reducing storage. The
challenge lies in deciding how to strategically reduce the bin sizes around the quantile, so as to reduce
storage and computational complexity but to maintain the increased bias at a level that does not affect the
convergence rate of the resulting estimator.

We also show that an analogous “online” estimator can be constructed for the context of estimating
densities. Using ideas akin to those discussed for constructing low-storage quantile estimation, we out-
line a method by which the traditional kernel density estimators can be modified to achieve less storage
and computation while retaining the traditional kernel density estimator’s convergence rate. Our treat-
ment of online density estimators is cursory because much of the ideas we present follow from results
in Hall and Wand (1996).

The following is an organization of the rest of the paper. Section 2.1 provides an overview of the
traditional quantile estimator, its properties and the variations that have been developed to address certain
shortcomings. Section 2.2 presents the proposed low-storage online estimator, with the main algorithm
being defined in Section 2.2.1, and its key properties in Section 2.2.2. Other related quantities that can be
speedily estimated in a similar fashion are described in Section 2.2.4. For densities, Section 3 provides a
brief overview of traditional density estimation and Section 3.1 briefly describes the low-storage version
of the estimator, along with its key properties.

2 QUANTILE ESTIMATION

In this section, we start with a brief overview of the traditional quantile estimator. The literature on quantile
estimation is enormous and we limit ourselves to listing the bare minimum that is needed understand the
online estimator that we describe in Section 2.2. As noted earlier, while we provide a detailed algorithm
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listing and numerical performance for the estimator we propose, we support the theoretical assertions we
make using only heuristic arguments. Detailed proofs for these assertions are reserved for a forthcoming
paper.

2.1 Standard Estimators

The traditional quantile estimator or the crude Monte Carlo estimator (henceforth CMC estimator) for the
p-quantile of the random variable X with cdf F rank-orders n observations {Xi, i = 1, . . . ,n} of X from
the cdf F and returns the ⌈p⌉-th order statistic. This is equivalent to constructing the empirical cdf

F̂n(x) = å
n

I(Xn ≤ x), (1)

and then estimating the quantile xp as the inverse of the empirical cdf: x̂n,p = F̂−1
n (p). The statis-

tical properties of x̂n,p are well-understood and derived from the famous Bahadur representation of
x̂n,p (Chu and Nakayama 2012), given as

x̂p,n = xp −
Fn(xp)− p

f (xp)
+Rn, (2)

where Rn = O(n−3/4(log logn)3/4). To see why this relationship may hold, consider the following heuristic
argument. For a large enough sample size n, and assuming the density f = ¶F/¶x exists, one can expect

p ≈ F(x̂p,n)≈ F(xp)+ f (xp)(x̂p,n −xp)≈ F̂n(xp)+ f (xp)(x̂p,n −xp),

where the first approximation uses a first-order Taylor series expansion and the second is implied by the
convergence of F̂n to F . Now rearrange terms to arrive at an expression that resembles (2).

The expression in (2) tells us that the bias in the estimator x̂p,n is of the same order as the bias in the
empirical cdf F̂n, which in great generality is known to be O(n−1) (Serfling 1980). The representation in
(2) can also be used to establish a CLT for x̂p,n:

√
n(x̂p,n −xp)

d→N(0,
p(1− p)
f 2(xp)

), (3)

where
d→ denotes convergence in distribution, N(m ,s 2) denotes the Gaussian distribution with mean m

and variance s 2, and f is the density corresponding to the cdf F , assumed to obey f (xp)> 0. Thus, the
variance of the CMC estimator, just like its bias, decays as O(n−1).

Remark 1 The expression p(1− p) appearing in the variance constant of the CLT in (3) implies that as
p approaches either boundary of the domain (0,1), the CMC estimator has a diverging variance. This
issue has inspired alternate estimators that use variance reduction techniques from the rare-event mean
or moment estimation literature to more efficiently estimate the cdf F as p approaches 0 or 1; examples
include control variates (Hsu and Nelson 1990), importance sampling (Glynn 1996) and stratified sampling
(Avramidis and Wilson 1995). Chu and Nakayama (2012) provide a unified theoretical framework for the
asymptotic convergence of the variance constant for such estimators.

Two simple ideas, batching and sectioning, are worthy of mention due to their connection with the
estimator we propose. Note that the CLT in (3) cannot be directly used in constructing a confidence interval
on x̂p,n because the term f (xp) appearing as part of the variance constant is unknown. Batching and
sectioning are ideas to circumvent this issue (Nakayama 2012). Both batching and sectioning essentially
divide the n available observations into M non-overlapping sub-sets of s = n/M observations. Empirical
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cdf’s F̂(m)
s and quantile estimates x̂ (m)

p,s = (F̂ (m)
s )−1(p) are then constructed from each of the M subsets.

The batching procedure then constructs the variance estimate as

s 2
n,batch =

M

å
m=1

(

x̂ (m)
p,s − ¯̂xp,s

)2
,

where ¯̂xp,s = åm x̂ (m)
p,s /M is the average of the M quantiles from the M batches. The sectioning procedure

constructs the slightly different variance estimate

s 2
n,section =

M

å
m=1

(

x̂ (m)
p,s − x̂p,n

)2
,

where x̂p,n is the quantile estimate from the empirical cdf F̂n constructed with the entire sample set of size
n. Nakayama (2012) finds that the s 2

n,section provides a better estimate of the variance constant for a variety
of quantile estimators, including the crude Monte Carlo and variance reducing estimators.

2.2 Low-Storage Online Estimator

The fundamental idea underlying the estimator we propose stems from a single important fact: the squared
bias of the CMC estimator discussed in the previous section decays as O(n−2) while its variance decays
as O(n−1). Since the mean squared error is the sum of the squared bias and the variance, alternative
estimators that can trade-off increased bias in return for less total storage and computational complexity
will be superior as long as the new bias does not exceed O(n−1/2).

The procedure we propose groups data into appropriately sized bins, from which an empirical cdf is
constructed and inverted to obtain the alternative quantile estimator. The grouping of observations causes
increased bias, but since the bins are strategically sized to ensure that the resulting bias does not exceed
O(n−1/2), the canonical rate O(n−1) is retained while dramatically reducing the storage and computational
requirements. In what follows, we provide complete details of the proposed estimator.

2.2.1 Algorithm

The proposed estimator achieves a balance of the asymptotic rate of drop in estimator bias and variance by
replacing the empirical cdf F̂n in the CMC estimator with an empirical cdf F̃n constructed from a binned
histogram. The histogram is created over a partition P = {a0, . . . ,ak+1} of the support of the cdf F , where
the end points may be ±¥. The mass p̃l,n assigned to the l-th histogram bin Bl = (al−1,al] is calculated
as p̃l,n = ån

i=1 I(Xi ∈ Bl). The binned empirical cdf F̃n is calculated by interpolating the mass pl uniformly
throughout the l-th bin. Thus, F̃n(x) = ål−1

i=1 p̃i,n + gl(x)p̃l,n, where x ∈ Bl. The interpolation function
gl(x) = (x−al−1)/(al −al−1) is linear for all finite bins Bl . An appropriate tail interpolation gl will have
to be used for the right- and left-end bins if the end-points are ±¥ such that it satifies

∫

Bl,n
gl(x)dx < ¥.

The quantile xp is then estimated as x̃p,n = F̃−1
n (p).

Algorithm 1 describes the online procedure used by the proposed estimator to maintain the binned
empirical cdf F̃n as the sample size n grows. The cdf F̃n has a support set Pk(n) with a total number

of bins k(n) that is dynamically updated based on the statistical properties of the quantile estimate x̃p,n.
The procedure need only store O(k(n)) amount of data to represent F̃n. The size of the histogram k(n) is
adjusted according to the bias and variance of the estimator x̃p,n.

Let l(n) represent the index of the bin in the support Pk(n) of the empirical cdf F̃n that contains

the estimate x̃p,n, that is x̃p,n ∈ Bl(n). The bias in the estimate x̃p,n is bounded above by the size bn of

the bin Bl(n),n; see Claim 1 in Section 2.2.2. Algorithm 1 estimates the variance of the estimate x̃p,n by
implementing an online version of the sectioning concept described by Nakayama (2012): the incoming
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Algorithm 1 Online Low-Storage Quantile Estimation Procedure
Problem Parameters: probability p ∈ (0,1) for which quantile xp is to be estimated; an oracle to sample
from cdf F
Algorithm Parameters: an initial k0-partition P0 = {a0, . . . ,ak0+1} for empirical cdf construction; values
for parameters M (number of sections for variance computation), g (variance-bias comparison)

Initialization

1: Set n = 0 ⊲ total sample counter
2: Set s = 0 ⊲ section sample counter
3: Set k = 0 ⊲ additional points in P

4: Initialize set of M + 1 empirical cdfs {F̃n, F̃
(1)

s , . . . , F̃(M)
s } using an initial sample size to calculate

appropriate probability masses p̃l,n over the initial partition P0.

Estimation

5: while further estimation is required do
6: Gather the next set of M samples {Xi, i = sM+1, . . . ,(s+1)M}.
7: Update empirical cdf F̃n with the M new values.
8: Re-calculate the estimate x̃p,n.
9: Let n = n+M.

10: For each m = 1, . . . ,M, add XsM+m to F̃(m)
s

⊲ Update each of the M variance-calculation cdfs F̃(m)
s with one value each.

11: Set s = s+1.
12: Re-calculate the section estimates x̃ (m)

p,s .
13: Update the variance estimate

s 2
n,section =

1
M−1

M

å
m=1

(x̃ (m)
p,s − x̃p,n)

2.

14: Set l(n) as the index of the bin Bl that contains x̃p,n.
15: Set bl(n) = al(n)−al(n)−1. ⊲ length of the bin Bl(n).
16: if s 2

n,section < g b2
l(n) , then

17: Set a(k+1) = al(n)−1,n +(al(n),n −al(n)−1,n)/2.
18: Set Pk+1 = Pk ∪{a(k+1)}. ⊲ Introduce a new support point to all the M+1 empirical cdfs.

19: Set probability mass p̃l,n of F̃n for newly created bins as pl(n)/2, and similarly for each F̃(m)
s .

20: Set k = k+1.
21: end if
22: Report {x̃p,n,s 2

n,section} as the current estimate of quantile and its variance.
⊲ These can be used to calculate an appropriate confidence interval.

23: end while
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samples Xi are partitioned into M sub-streams and a set of quantile estimates {x̃ (m)
p,s , m = 1, . . . ,M} are

developed from the sub-streams that each use the same bin-support as the overall estimator x̃p,n, where
s = n/M. Algorithm 1 monitors the variance s 2

n,section thus calculated for the estimate x̃p,n. Once variance
is of the same order of the square of the bias (where, again, bias is represented by the size bn of the bin
Bl(n)), the procedure divides the bin Bl(n),n into two new bins of half the size bn by introducing a new

separation point a(k) = al(n)−1 +(al(n)−al(n)−1)/2.

2.2.2 Properties

The empirical cdf F̃n that provides the quantile estimate in Algorithm 1 is a generalized histogram with a
support set Pk that implies unequal sized bins. Specifically, the bins closest to the local region around the
quantile estimate x̃p,n dynamically adjust themselves as the sample size n grows in order to give a finer
approximation of the empirical cdf. Thus, the binned empirical cdf F̃n is an approximation of the regular
empirical cdf F̂n tailored to approximate the function well only in the neighbourhood of the quantile xp.
We will now examine why this estimator can be expected to have the same asymptotic properties as the
standard quantile estimators, and also estimate the order of the information stored by this estimator as
sample size n grows. We provide only a heuristic sketch of proofs for the results presented here.

Define as n(k) the total number of observations when the k-th additional o is adbservation Pk−1 and
let Dn(k) = n(k)− n(k − 1). For a fixed support set Pk, let F̃ represent the cdf constructed by linear
interpolation of the true cdf values F(al) at the support points al ∈ Pk. Further, let x̃p be the p-quantile
of this interpolated cdf.

Consider first the estimate F̃n of the true cdf F for a fixed support Pk.

Claim 1 Let F̃n be a binned empirical cdf defined over the support set Pk and let x̃p,n = F̃−1
n (p). Further,

assume that the set Pk is sufficiently fine that the length bn of the bin indexed l(n) that contains x̃p,n is
finite. Then, E[x̃p,n −xp] = O(bn).

Claim 1 asserts that the bias in estimating the quantile from a binned empirical cdf over the (fixed)
support Pk is of the order of the size of the bin that contains the estimate x̃p,n. To see why this can be
expected, note that as n gets large, the estimate of the F̃n(al)≈ F(al) for all the support points al ∈ Pk.
Thus, the inverses of these functions also coincide at these support points, and the error in estimating the
inverse of the cdf between these support points is induced by the linear interpolation of the cdf over the finite
interval (al(n)−1,al(n)] that contains x̃p,n. This is in turn bounded above by the length bn = (al(n)−al(n)−1)
of the interval.

Algorithm 1 maintains the support set Pk(n) of the binned empirical cdf until a sample size n that yields
a sample variance estimate s 2

n,section of the quantile estimator that is of the same order as the squared bias

b2
l(n) of the estimation. For a fixed support Pk, there exists a CLT of the form

√
n|x̃p,n − x̄p| → sN(0,1),

where x̄p is the inverse of F̃ , the interpolated cdf derived from the true cdf F at the support points of Pk.
The sectioning estimator s 2

n,section provides an estimate for this CLT’s variance constant s 2.
Step 16 ensures that the support set is not modified till s 2

n,section ∼ b2
l(n), which implies that the number

of additional samples Dn(k) used before the support set is updated is O(b−4
l(n)). Thus, the total number of

observations n(k+1) when the (k+1)th observation is collected is O(åk
i=1 b−4

l(n(i))). In the worst case, the
algorithm may keep bisecting the same interval successively in Step 16. Thus,

n(k+1) = å
i

Dn(i) = O(
k+1

å
i=1

b024(i−1)).
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Claim 2 The sample size n(k+1) when the (k+1)th support point is added to the support set Pk satisfies

n(k+1) =
k+1

å
i=1

24(i−1) = O(24k).

Claim 2 asserts that the series 24k is growing so fast that the summation is essentially the same order
of magnitude as the last term.

Thus, the binned estimator x̃p,n balances the variance and squared bias before its storage needs
grow. When sample sizes warrant a change in the support, that is n = n(k), the mean squared error is
O(b2

k) = O(Dn(k)−1) = O(2−4k). On the other hand, the mean squared error of a standard quantile estimator
at the end of n = O(24k) samples is the same as the rate of drop in the variance term of the estimator,
which is as per the canonical rate of convergence of O(n−1) = O(2−4k). These heuristic arguments lead to
Claim 3.

Claim 3 The mean squared error of the binned estimator x̃p,n decays to zero as O(n−1).

Now consider the amount of data that needs to be stored by each estimator. The standard quantile
estimator x̂p,n needs all of the n observations in order to perform its calculations. On the other hand,
the binned estimator x̃p,n introduces only one extra bin every n(k) observations. So, if n were the total
number of observations, the corresponding number of bins k can be obtained by solving n = 22k, to give
k = O(logn).

Claim 4 The storage complexity of the binned estimator x̃p,n is O(log n).

Remark 2 Algorithm 1 is described in this article as an analog of the CMC estimator x̂p,n, in that the binned
empirical cdf is an approximation of the canonical empirical cdf. We expect that the same approach can be
employed to approximate the empirical cdf constructed in conjunction with variance reduction techniques
(for instance those described in Chu and Nakayama (2012)).

2.2.3 NUMERICAL RESULTS

This section tests the efficacy of the proposed low-storage estimator over a range of input values, focusing
on the online aspect of quantile estimation. To recap, the standard estimator (Section 2.1) uses the ⌈p⌉-th
order statistic as the estimate for the p-quantile. In order to provide an online estimator for this value,
the available set of observations Xi, i = 1,2, . . . needs to be constantly re-sorted. The proposed low-storage
estimator (Section 2.2), on the other hand, only maintains a small data-structure to provide the estimate of
the quantile.

Figure 1 establishes the statistical convergence properties of the two methods by plotting each method’s
mean squared error as a function of the number of collected observations. The standard estimator and the
proposed low-storage estimator were both required to estimate the 0.95-quantile xp = 1.81246112281168
of the Student’s T distribution with 10 degrees of freedom. Under both cases, the mean squared error was
calculated using 100 independent replications of the quantile estimation procedure.

As Figure 1 illustrates, the graph for the CMC estimator could be obtained only for a maximum
n = 1.75 × 105 due to storage and computational issues. The corresponding graph for the proposed
estimator could be obtained for a maximum n = 1×108. The tests were conducted on a desktop machine
with 3GHz Intel Xeon processors and 4Gb of memory per core. Executing the CMC estimator for n up
to 1.75×105 took about 30 minutes of computation time per replication. In comparison, for the proposed
estimator, the computation time required for the entire set of 100 replications, each of which executed to
n = 1×108, was about an hour.

Figure 1 illustrates the O(n−1) decay of the mean squared error, and the O(logn) storage requirement
for the proposed estimator. As an example of the latter complexity, only 42 bins are required on average
with n = 1× 108. Figure 2 plots a single sample-path of the number of bins required by the proposed
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Figure 1: The left ordinate is the mean squared error plotted as a function of the number of observations.
The mean squared error was calculated over 100 realizations of the traditional and the proposed quantile
estimator. The quantile is for p = 0.95 for the Student’s T distribution with 10 degrees of freedom. The
right ordinate is the number of bins used by the proposed estimator as a function of the number of collected
observations.

algorithm for a variety of distributions and p-values. Under all such combinations of settings, the method
shows a robust O(logn) growth in the number of bins.

2.2.4 Estimating CVAR

The problem of estimating the quantile xp underlies the estimation of some important performance measures.
One such important measure is the mean-excess hp = E[X |X > xp], also known as the Conditional Value-
at-Risk (CVAR) in financial applications (Glasserman 2004). Estimating hp from simulation outputs poses
the same storage/memory issues as estimating xp does, since one needs to simultaneously estimate the two
quantities xp,hp. Our approach for a low-storage online estimator readily extends to estimating measures
such as hp. For the specific case of hp, an additional set of data is recorded for each bin:

h̃l,n =
n

å
i=1

XiI(Xi > al), ∀al ∈ Pk(n).

If l(n) is the index of the bin that contains the quantile estimate x̃p,n, then the mean-excess hp can be
estimated as either of the values h̃l(n)−1,n or h̃l(n),n or a linear interpolation of both. In the CVAR context,
we expect similar storage and computational gains as the proposed quantile estimator.
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Figure 2: The curves plot the number of bins used by the proposed estimator as a function of the number
of collected observations (plotted in log-scale). Three distributions were tested for p = 0.7,0.9,0.99; the
distributions were N(0,1), LogNormal (mean = 1 and variance = 20) and the Student’s T distribution with
10 degrees of freedom. Note that only a single sample path is plotted for each setting.

3 DENSITY ESTIMATION

A context analogous to quantile estimation of a random variable X is density estimation. Here, the loosely
stated question is to estimate the density function f (·) of the random variable X (assuming it exists), given
only iid observations from the distribution of X . This problem has been studied exhaustively over the last
several decades. (See Silverman (1986), Hall and Wand (1996) for an account and for key entry points
into the literature.) One of the dominant methods for solving this problem is what has traditionally been
called kernel density estimation (henceforth KDE). KDE methods are easily understood. After obtaining n
iid random variates distributed according to the density f , construct the estimator of f as an n-equiprobable
mixture of kernels “placed” on each of the sampled variates Xi, i = 1,2, . . . ,n. Formally, the KDE estimator
is given as

f̂ (x) := n−1
n

å
i=1

1
h

K(
x−Xi

h
), (4)

where K(·) is the chosen kernel, and h(n) is the chosen “bandwidth parameter” that controls the amount of
“smoothing” present in the estimator. The multivariate analogue of (4) follows in a straightforward fashion.

The asymptotic and small-sample properties of the estimator in (4) have been studied extensively. For
instance, when the kernel K(·) is infinitely differentiable, the bias and variance of the estimator f̂ (·) (in
one dimension) are known to be

E[ f̂ (x)]− f (x) =
1
2

h2(n)

(

∫ b

a
u2K(u)du

)

f (2)(x)+o(h2(n)) (5)
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and

Var( f̂ (x)) = n−1h−1
∫ b

a
K2(u)du+o(n−1h−1) (6)

respectively. The expressions in (5) and (6) together determine the best achievable convergence rate for
KDE estimators. Specifically, it can be easily shown that the fastest achievable convergence rate of the mean
integrated squared error

∫ b
a E

[

( f̂ (x)− f (x))2
]

dx is n−4/5 achieved when when the bandwidth parameter
h(n) is chosen as

h =

{

∫ b

a
u2K(u)du

}−2/5{∫ b

a
K2(u)du

}1/5{∫ b

a
( f (2)(u))2 du

}−1/5

n−1/5. (7)

Analogous results are available for the multivariate contexts, and for settings where rough kernels K(·) are
used in the construction of the estimator f̂ (·).

In this section, our objective is somewhat modest. Following our treatment of online estimators for
quantiles, we wish to illustrate corresponding estimators for the context of estimating densities. Unlike
the quantile context, however, the theory for online density estimators follows in a rather straightforward
fashion from the results in Hall and Wand (1996). Accordingly, our treatment is cursory and limited to
one dimension.

3.1 An Online Density Estimator

To motivate online estimators for the context of density estimation, a crucial fact about the estimator in (4)
is noteworthy. The estimator f̂ requires O(n) storage and computation since it involves the manipulation
of all n observed random variates X1,X2, . . . ,Xn. Our interest is an alternate “online density estimator”
that retains the n−4/5 convergence rate of the traditional KDE estimator; however, in the same sense
as the online quantile estimator, we seek an online density estimator that requires much less storage
and computation. We accomplish this through two strategies: (i) binning, where instead of storing every
observation Xi, i= 1,2, . . . ,n, we accumulate frequencies of the observed random variates over a prespecified
grid; (ii) choosing the grid in (i) in such a way as to ensure that the increased bias due to binning does not
degrade the convergence rate of the resulting binned estimator. Towards detailing this estimator in more
rigorous terms, let

P(n) :=

{

a,a+d (n),a+2d (n), . . . ,a+
⌊

b−a
d (n)

⌋

d (n)
}

denote a partition of the interval [a,b], and d (n) ∈ (0,¥) a chosen “window width” expressed as a function
of the number of observed random variates n. (Recall that [a,b] is the region where the density f is to
be estimated.) Also, let a j(n), j ∈ {1, . . . ,⌊ b−a

d (n)⌋} denote the fraction of random variates that lie closest to

a+ jd (n), that is, a j = n−1 ån
i=1 I{[Xi] = a+ jd (n)}, where [z] is the element in P(n) closest to z. Then,

the online density estimator f̃ (x) is given as

f̃ (x) := å
y∈P(n)

a j(n)
1
h

K(
x− y

h
). (8)

It is easily seen that the storage and computation for f̃ is O(d (n)) as opposed to O(n). To get a sense
of the mean integrated squared error of f̃ (x), we appeal to the results in Hall and Wand (1996). When the
chosen kernel K(·) is an infinitely differentiable probability density (e.g., K(·) is a Gaussian or Student’s
T distribution), it can be shown that the integrated squared bias of f̃ (·) is given as

∫ b

a

(

E
[

f̂ (x)
]

− f (x)
)2

dx =

(

1
576

d 4(n)+
1
4

h4(n)

(

∫ b

a
u2K(u)du

))(

∫ b

a
f (2) dx

)2

+

o(d 4(n)+h4(n))

(9)
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as h(n)→ 0 and assuming d (n)< h(n). Similarly, the integrated variance can be shown to be

∫ b

a
Var( f̃ (x))dx = n−1h−1(n)

(

∫ b

a
K2(u)du

)

+o
(

n−1h−1(n)
)

(10)

when d (n)< h(n).
Two observations about (9) and (10) are noteworthy. First, the window width d (n) has no effect on

the integrated variance, and only an additive effect on the integrated squared bias. Second, the integrated
mean-squared error of the estimator f̃ (·) can be estimated by neglecting the o(·) terms and substituting f (·)
with f̃ (·) in the expressions (9) and (10). These observations inspire an online estimation algorithm that has
a similar flavor to what was outlined for the case of estimating quantiles. The algorithm is characterized
by three repeating steps:

S.1 Obtain random variate(s).
S.2 Estimate the integrated squared bias and variance of the estimator f̃ (x) by neglecting o(·) terms,

and substituting f̃ (x) for f (x), in (9) and (10).
S.3 If the estimated integrated squared bias is less than the integrated variance, then reduce the window

width d (n) and the bandwidth h(n) by a constant factor and then go back to S.1. Otherwise, simply
go back to S.1.

As in the context of online quantile estimators, the step S.2 plays the crucial role of keeping the
integrated squared bias and variance in lock-step, thereby ensuring that the integrated mean-squared error
of f̃ (·) decreases at the fastest rate possible. The window size d (n) and the bandwidth h(n) are kept in
lock-step to ensure that the expressions in (9) and (10) are valid. Furthermore, the window size d (n) and
the bandwidth h(n) are changed only infrequently, whenever the integrated variance “catches up” with the
integrated bias. While such infrequent updates cause inefficiencies, they reduce total computation involved
in estimating f̃ (x) by changing the partition P(n) only infrequently.

It is easy to guess the rates at which d (n) and h(n) reduce to zero, and the corresponding rate at which
the integrated mean-squared error of f̃ tends to zero, under the proposed scheme. For instance, since the
integrated squared bias and variance are effectively equated, the expressions in (9) and (10) yield that
h(n)≈ d (n)≈ n−1/5. Plugging this back in (9) and (10), one finds since the integrated mean squared error
of f̃ is O(n−4/5). This is the same as traditional KDE under similar conditions, but with only fifth root of
the corresponding storage.
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