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ABSTRACT

Stochastic kriging (SK) has been studied as an effective metamodeling technique for approximating the mean
response surface implied by a stochastic simulation. Until recently, it has only been applied to simulation
experiments with continuous decision variables or factors. In this paper, we propose a new method called
stochastic kriging with qualitative factors (SKQ) that extends stochastic kriging to a broader scope of
applicability. SKQ is able to build metamodels for stochastic simulations that have both quantitative
(continuous) and qualitative (categorical) factors. To make this extension, we introduce basic steps of
constructing valid spatial correlation functions for handling correlations across levels of qualitative factors.
Two examples are used to demonstrate the advantages of SKQ in aggregating information from related
response surfaces and metamodeling them simultaneously, in addition to maintaining SK’s ability of
effectively tackling the impact of simulation errors.

1 INTRODUCTION

In applications of operations research and management sciences, simulation models with both qualitative
and quantitative decision variables or factors are frequently used to solve real-world problems. For instance,
in production planning of semiconductor manufacturing systems, simulation is commonly employed to
determine the appropriate release rate of raw materials (a continuous variable) and dispatch rules (a qualitative
variable), in an effort to optimize the system performance, which is typically measured in terms of the system
throughput and products’ cycle time. For some complicated simulation tasks, it may take days or even
weeks to complete a single simulation run, which potentially limits the usefulness of simulation in providing
support for real-time decision making. To mitigate this deficiency, carefully designed simulation experiments
can be employed to build metamodels to approximate some aspects of system performance without running
extensive simulations. Stochastic kriging is one of the tools proposed recently for representing stochastic
simulation response surfaces. Despite its success achieved so far, stochastic kriging assumes that all
the decision variables or inputs to simulation experiments are continuous. Therefore, an important yet
underdeveloped topic is how to construct stochastic kriging metamodels for stochastic simulations with
both quantitative and qualitative decision variables. The purpose of this paper is to make the first attempt
to extend the standard stochastic kriging metamodels to address the question above.

Methods for building Gaussian process (GP) based metamodels with quantitative and qualitative factors
have been developed for deterministic computer experiments. We give a brief summary of the recent
literature and refer the interested reader to references therein. The key to any development is to construct
valid correlation functions for GP models with both types of factors. Qian et al. (2008) established a
general approach for constructing unrestrictive and restrictive correlation functions and also developed
a corresponding iterative procedure for model parameter estimation. Zhou et al. (2011) proposed to
use the unrestrictive correlation structure with the hypersphere decomposition which helps simplify the
parameter estimation procedure used by Qian et al. (2008). Han et al. (2009) introduced a hierarchical
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Bayesian model with conditional Gaussian stochastic process components for computer experiments having
quantitative and qualitative inputs. It seems natural and straightforward for us to take advantage of the
aforementioned advances and apply them to generalize the stochastic kriging metamodeling framework.
However, some unique features enjoyed by a stochastic simulation may disguise important problems worth
further investigation. One of such problems absent in deterministic computer experiments is the impact of
stochastic simulation errors on the performance of resulting metamodels. In this paper we take the first
few steps in seeking and further investigating interesting questions arisen in the process of extending the
stochastic kriging framework.

The remainder of the paper is organized as follows. Section 2 outlines the standard stochastic kriging
framework. Section 3 introduces the main ingredient for building SKQ metamodels—constructing valid
correlation functions with both quantitative and qualitative factors based on Qian et al. (2008) and Zhou
et al. (2011). Section 4 presents two examples to demonstrate the competitive performance of the SKQ
metamodels subject to varying levels of stochastic simulation errors, and their advantage of incorporating
output information from relevant response surfaces that have “similar” functional behavior to do prediction.
Section 5 concludes the paper.

2 STANDARD STOCHASTIC KRIGING

This section gives a brief review on stochastic kriging which was first introduced by Ankenman et al.
(2010). In stochastic kriging the simulation’s output on the jth replication at design point x is represented
as

Y j(x) = Y(x)+ ε j(x) = f(x)>β +M(x)+ ε j(x) (1)

In (1) Y(x) represents the underlying true response surface at design point x, a vector of input or decision
variables in Rd . The p× 1 vector of functions f(x) is typically assumed to be known, whereas the
corresponding vector of coefficients β often needs to be estimated. The constant mean model f(x)>β = β0
has been widely adopted in the kriging literature since it has been reported performing sufficiently well
for most applications in practice. The term M represents a realization of a mean zero stationary Gaussian
random field; that is, we can think of M as being randomly sampled from a space of functions mapping
Rd → R, and the functions in that space exhibit spatial correlations. Finally, ε1(x),ε2(x), . . . are the
independent and identically distributed mean zero simulation errors incurred on each replication at design
point x. As in Ankenman et al. (2010), we sometimes refer to M(x) and ε j(x) as the extrinsic and intrinsic
uncertainties at design point x.

An experiment for building a stochastic kriging metamodel consists of running ni simulation replications
at xi, i = 1,2, . . . ,k, assuming that there are in total k design points. Notice that ni’s can differ at distinct
design points. Following (1), we can express the sample average simulation output at xi across replications
as

Ȳ (xi) =
1
ni

ni

∑
j=1

Y j(xi) = f(xi)
>

β +M(xi)+
1
ni

ni

∑
j=1

ε j(xi);

and use Ȳ =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)> to denote the k× 1 vector of averaged simulation outputs
at all k design points; correspondingly, we can represent the vector of averaged simulation errors by
ε̄ = (ε̄(x1), ε̄(x2), . . . , ε̄(xk))

>, where ε̄(xi) = n−1
i ∑

ni
j=1 ε j(xi), i = 1,2, . . . ,k.

2.1 The Extrinsic and Intrinsic Variance Structures

Define ΣM(x,x′) = Cov[M(x),M(x′)] = Cov[Y(x),Y(x′)] to be the spatial covariance of points x and x′
implied by the extrinsic spatial correlation model; and let the k×k matrix ΣM represent the extrinsic spatial
variance-covariance matrix of the k design points such that the i jth entry of ΣM gives the spatial covariance
of the ith and jth design points, i, j = 1,2, . . . ,k. Finally, let x0 be the prediction point, and define ΣM(x0, ·)
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to be the k×1 vector that contains the extrinsic spatial covariances between x0 and each of the k design
points; that is, ΣM(x0, ·) = (Cov[M(x0),M(x1)],Cov[M(x0),M(x2)], . . . ,Cov[M(x0),M(xk)])

> . Given that
M is stationary, ΣM and ΣM(x0, ·) are assumed to take the following forms:

ΣM = τ
2R = τ

2


1 r12 . . . r1k

r21 1 . . . r2k
...

...
. . .

...
rk1 rk2 . . . 1

 and ΣM(x0, ·) = τ
2r0 = τ

2


r1
r2
...

rk

 (2)

where τ2 > 0 denotes the extrinsic spatial variance. The k× k matrix R contains the pairwise spatial
correlations of the k design points. The k×1 vector r0 gives respective spatial correlations between the k
design points and the prediction point x0. To do metamodel estimation and prediction we need to impose
structure on the form of the spatial correlation function. There are several choices of the spatial correlation
functions available, see, for instance, Santner et al. (2003) and Qian et al. (2008). One particular choice
that is quite popular in practice is the exponential correlation function

K(xi,xh) = exp

{
d

∑
`=1
−θ`|xi`− xh`|p

}
, (3)

where θ` ≥ 0 controls the roughness of the response surface and θ`, `= 1,2, . . . ,d for different coordinates
are not necessarily identical. The parameter p is in (0,2]. In particular, the sample paths of a spatial process
M are infinitely differentiable if the popular Gaussian correlation function (correspondingly, p = 2) is used.
In this case, the spatial correlation between design point xi and prediction point x0 becomes ri = K(xi,x0),
and the spatial correlation between two design points xh and xi follows as rih = K(xi,xh) with p = 2.

What distinguishes stochastic kriging from kriging for deterministic computer experiments (e.g., Sacks
et al. 1989; Santner et al. 2003) is that the former accounts for the sampling variability inherent in a
stochastic simulation. Let Σε be the k× k intrinsic variance-covariance matrix for ε̄ . If common random
numbers are not used in driving a simulation experiment, then Σε takes a diagonal matrix, which can be
specified as

Σε = diag{σ2
1 /n1,σ

2
2 /n2, . . . ,σ

2
k /nk},

where σ2
i = Var[ε j(xi)] is the intrinsic variance at design point xi, i = 1,2, . . . ,k.

2.2 Prediction by Stochastic Kriging

Chen et al. (2012) show that when β is unknown but Σε and the spatial parameters are known, the
MSE-optimal predictor provided by stochastic kriging takes the following form

Ŷ(x0) = f(x0)
>

β̂ +ΣM(x0, ·)>Σ
−1(Ȳ −Fβ̂ ) ,

where the rows of k× p matrix F are, respectively, f(x1)
>, f(x2)

>, . . . , f(xk)
>, Σ = ΣM + Σε and β̂ =(

F>Σ−1F
)−1 F>Σ−1Ȳ is the generalized least squares estimator of β . The corresponding mean squared

error (MSE) of Ŷ(x0) follows as

MSE(Ŷ(x0)) = ΣM(x0,x0)−ΣM(x0, ·)>Σ
−1

ΣM(x0, ·)+η
>(F>Σ

−1F)−1
η , (4)

where η = f(x0)−F>Σ−1ΣM(x0, ·). For an actual implementation of stochastic kriging for prediction, one
needs to estimate the necessary spatial parameters as well as Σε . The standard approach is first to estimate
the intrinsic variance-covariance matrix Σε using the sample covariance matrix Σ̂ε whose diagonal entries
are

Σ̂εi,i :=
1

ni(ni−1)

ni

∑
j=1

(
Y j(xi)− Ȳ (xi)

)2
, i = 1,2, . . . ,k . (5)
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Then by substituting Σ̂ε for Σε , we can estimate the spatial parameters (θ and τ2, if the Gaussian spatial
correlation function is used) and β through maximizing the resulting log-likelihood function.

3 STOCHASTIC KRIGING WITH QUALITATIVE FACTORS

In this section, we extend the standard stochastic kriging to incorporate qualitative factors into the design
space. We adopt the notation established in Qian et al. (2008) and Zhou et al. (2011) whenever possible.
Recall (1), in which the vector of decision variables x is assumed to be in Rd . Now let us denote the
vector of decision variables by w = (x>,z>)>, in which x ∈ Rd represents the continuous factors and
z = (z1,z2, . . . ,zJ)

> are qualitative factors with z j having m j levels, j = 1,2, . . . ,J. Similar to (1), the
simulation’s output at design point w on the `th simulation replication can be modeled as

Y`(w) = Y(w)+ ε`(w) = f(w)>β +M(w)+ ε`(w), (6)

where as before f(w) is a p× 1 vector of known functions and β is a vector of unknown parameters
of appropriate dimension. As for M, we assume that the values corresponding to different levels of a
qualitative factor are drawn from Gaussian random processes with “similar” spatial correlation structures
and magnitudes of variation. Everything discussed in Section 2.1 regarding stochastic simulation errors
applies to the ε`(w)’s. Furthermore, the intrinsic variance-covariance matrix Σε can still be estimated by the
sample covariance matrix Σ̂ε given in (5). The key to extend stochastic kriging to incorporate qualitative
factors lies in constructing valid spatial correlation functions for M, on which we are to elaborate next.

3.1 Spatial Correlation Functions for Stochastic Kriging with Qualitative Factors

Consider the general case with J qualitative factors z=(z1,z2, . . . ,zJ)
>with z j having m j levels, j = 1,2, . . . ,J.

Following the discussion in Qian et al. (2008), we propose to use a spatial correlation function for M
constructed as follows. For a pair of design points wi and wh, i,h = 1,2, . . . ,k,

Corr[M(wi),M(wh)] =

[
J

∏
j=1

τ j,zi j,zh j

]
·K(xi,xh) . (7)

In particular, we observe that the correlation function above consists of two parts, respectively, dedicated to
modeling the spatial correlations regarding the qualitative and quantitative (continuous) decision variables.
More specifically, the second term on the right-hand side of (7) is just K(xi,xh) as given in (3); while the
first term is the new ingredient added for handling spatial correlations across different levels of qualitative
factors. As noted in Qian et al. (2008), the following interpretations can help us develop intuition about the
proposed correlation function: The parameter τ j,zi j,zh j measures the similarity at any two design points wi
and wh that differ only on the values of qualitative factors z j; the correlation parameters θ`, `= 1,2, . . . ,d
in K(·, ·), on the other hand, assess the roughness of the sample path of the Gaussian process M given the
same values of z for the qualitative factors.

Several correlation functions for the qualitative factors have been proposed in the literature. We briefly
introduce some of them below and refer the interested reader to Qian et al. (2008) and Zhou et al. (2011)
for full details.

• Isotropic (or exchangeable) correlation functions (EC): For qualitative factor j = 1,2, . . . ,J, with
φ j > 0,

τ j,zi j,zh j = exp{−φ jI[zi j 6= zh j]} ,

where I[A] is an indicator function that takes 1 if event A is true and 0 otherwise. The isotropic
correlation function assumes that the m j levels of z j are of isotropic nature; that is, τ j,zi j,zh j = c j
for all zi j 6= zh j.
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• Multiplicative correlation functions (MC): For qualitative factor j = 1,2, . . . ,J, the following τ j,zi j,zh j

allows different pairs of z j levels to have different correlations

τ j,zi j,zh j = exp
{
− (φi j +φh j)I[zi j 6= zh j]

}
.

• Group correlation functions and correlation functions for ordinal qualitative factors. The latter
correlation function is particularly suitable for dealing with ordinal qualitative factors; The interested
reader is referred to Section 4.4 of Qian et al. (2008) for details. We note that in this paper attention
is restricted to qualitative factors that are nominal but not ordinal.

Zhou et al. (2011) propose to use a new type of correlation functions for the qualitative factors which are
nominal but not ordinal, namely, the unrestrictive correlation functions (UC). UC functions are constructed
through the hypersphere decomposition. Recall that a (d+J)×1 vector of decision variables w = (x>,z>)>
has z = (z1,z2, . . . ,zJ)

> consisting of all the qualitative factors, with z j having m j levels, j = 1,2, . . . ,J.

• The general format of UC. Let m = ∏
J
j=1 m j and let c1,c2, . . . ,cm denote the m categories, corre-

sponding to all level combinations of the qualitative factors in z. Hence, we can rewrite w as a
(d+1)×1 vector w = (x>,cq)

>,q = 1,2, . . . ,m to denote all the factors involved. Then following
(7) we have the spatial correlation between two design points wi and wh can be given as

Corr[M(xi),M(xh)] = τci,chK(xi,xh) ,

where τci,ch = τch,ci gives the cross-correlation between categories ci and ch. If we adopt the Gaussian
correlation function for the quantitative factors as we will do in the forthcoming numerical examples
in Section 4, the above correlation equation turns into

Corr[M(xi),M(xh)] = τci,ch exp

{
d

∑
`=1
−θ`|xi`− xh`|2

}
. (8)

We are ready to construct a correlation matrix T = [τr,s]m×m by the hypersphere decomposition
through two steps as prescribed in Zhou et al. (2011). Notice that the following construction
guarantees us a positive definite matrix T with unit diagonal elements.
Step 1. Apply a Cholesky decomposition to the matrix T and obtain the lower triangular matrix

with strictly positive diagonal entries L such that T = LL>.
Step 2. Each row vector (lr,1, lr,2, . . . , lr,r) in L is modeled as the coordinates of a surface point

on an r-dimensional unit hypersphere described as follows. For r = 1, let l1,1 = 1 and for
r = 2, . . . ,m, the row elements are specified through the following spherical coordinate system

lr,1 = cos(φr,1),
lr,s = sin(φr,1) . . .sin(φr,s−1)cos(φr,s), s = 2, . . . ,r−1,
lr,r = sin(φr,1) . . .sin(φr,r−1)sin(φr,r−1),

where φr,s is in the parameter set Φ = {φr,s ∈ (0,π),s = 1,2, . . . ,r−1;r = 1,2, . . . ,m}.
One advantage among several of the hypersphere decomposition that distinguishes this method
is that given φr,s ∈ (0,π), the entries τr,s in T can take both positive and negative values. This
feature enables us to flexibly model different correlations across the categories (i.e., all levels of
all the qualitative factors). The general format of UC as described above, however, does have
a drawback. We observe that the cardinality of the parameter set Φ, |Φ|, equals m(m−1)/2
for the general format of UC; and this number can get considerably large if there are multiple
qualitative factors in the design space, each of which having a number of levels. This drawback
can be alleviated by using the product format of UC as specified below.
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• The product format of UC. If multiple qualitative factors are under consideration, i.e., J > 1, one
can use the following product form of the correlation function in place of the one in (8),

Corr[M(xi),M(xh)] =

[
J

∏
j=1

τ j,zi j,zh j

]
exp

{
d

∑
`=1
−θ`|xi`− xh`|2

}
, (9)

where separate correlation matrices T j, j = 1,2, . . . ,J are created for each of the J qualitative factors.
The matrix T j = [τ j,r,s],r,s = 1,2, . . . ,m j is modeled by using the parameterization given for the
general format of UC. It is easy to tell that although the product format given in (9)) is not as
flexible as the general format given in (8), it can reduce |Φ| to ∑

J
j=1 m j(m j−1)/2, which could be

a substantial saving if each qualitative factor has multiple levels and J is large.

Given design points {wi}k
i=1, by using the aforementioned approaches, i.e., EC, MC and UC, etc., we

are able to construct the spatial covariance matrix ΣM = τ2R and the vector ΣM(x0, ·) = τ2r0 specified in
(2) correspondingly.

3.2 Maximum Likelihood Estimation and Prediction for Stochastic Kriging with Qualitative Factors

We first estimate the intrinsic variance-covariance Σε by (5) and substitute Σ̂ε into the likelihood function L

to obtain MLEs for τ2,θ ,Φ and β . Given a choice of τ2,θ ,Φ and a given Σ̂ε , the value of β̂ (τ2,θ ,Φ) that

maximizes L (τ2,θ ,Φ) is given by β̂ (τ2,θ ,Φ) =
(

F>Σ̂−1F
)−1

F>Σ̂−1Ȳ with Σ̂ = ΣM(τ2,θ ,Φ)+ Σ̂ε ; it

follows that the MLEs τ̂2, θ̂ = (θ̂1, θ̂2, . . . , θ̂d)
>, Φ̂ = {φ̂} can be obtained by maximizing the log-likelihood

function specified below subject to θ > 0 and τ2 > 0:

lnL (τ2,θ ,Φ) =−1
2

(
k ln(2π)+ ln(|Σ̂|)+ Ỹ >

Σ̂
−1Ỹ

)
∝−1

2

(
ln(|Σ̂|)+ Ỹ >

Σ̂
−1Ỹ

)
,

where Ỹ = Ȳ −Fβ̂ (τ2,θ ,Φ) and |Σ̂| denotes the determinant of Σ̂. In fact, we optimize through minimizing
− lnL using the Matlab’s nonlinear optimization function fmincon. Notice that the parameter p (p > 0)
should also be included in the log-likelihood function if an exponential correlation function is used, other
than the Gaussian correlation function, in which case p = 2.

Prediction through stochastic kriging with qualitative factors (SKQ) can be achieved readily following
the lines developed in Section 2.2. Since Zhou et al. (2011) demonstrate the advantage of UC over EC
and MC for modeling deterministic computer experiments through numerical comparisons, for the sake of
brevity, we only consider implementing SKQ with UC (the product format) in the numerical examples in
the next section.

4 NUMERICAL EXAMPLES

In this section, we demonstrate the potential of stochastic kriging with qualitative factors (SKQ) in exploiting
information from correlated response surfaces and its ability of providing adequate approximations to multiple
response surfaces simultaneously.

4.1 Example 1: An Example with Both Positive and Negative Cross-Correlations

The example in this section is constructed from the example given in Section 5.1 of Zhou et al. (2011).
Consider the following experiment with one quantitative factor x and one qualitative factor z with three
levels. At design point w, we have w = (x,z)> with x ∈ [0,1] and z ∈ {1,2,3} and the true response surface
takes the following form:

Y(w) =


5cos(6.8πx/2) if z = 1,
−5cos(7πx/2) if z = 2,
5cos(7.2πx/2) if z = 3.
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The three true response surfaces corresponding to z = 1,2,3 are shown in Figure 1.
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Figure 1: The true response surfaces correspond to z = 1,2,3 for example 1.

Experiment design. For each level of z, we use a 10-point design for the continuous factor that is composed
of a Latin-hypercube sample (LHS) of 8 points in [0,1] plus the two endpoints 0 and 1; hence there are 30
design points in total. At the ith design point, the simulation output at wi on the jth replication is generated
according to the following model:

Y j(wi) = Y(wi)+ ε j(wi) , i = 1,2, . . . ,30,

where ε j(wi), j = 1,2, . . . ,n are i.i.d. N(0,γ), and n denotes the common number of simulation replications
applied to all design points. We fix n = 100 in this experiment. To see the impact of stochastic simulation
errors, we control the magnitude of the intrinsic variance by varying the value of γ in {1,25,50,100},
which corresponds γ/n in {0.01,0.25,0.5,1}. We are interested in the performance of SKQ in comparison
to two other alternative methods, respectively, the standard stochastic kriging applied to fitting response
surfaces for z = 1,2,3 separately (SK) and UC proposed by Zhou et al. (2011) for deterministic computer
experiments. To this end, we select 50 check-points {wz

`}50
`=1 with their continuous factor equally spaced in

[0,1] for each level of z, that is, wz
` = (x`,z)> with x` = (`−1)/49, `= 1,2, . . . ,50 for z= 1,2,3, respectively.

For evaluation of the predictive performance regarding approximating individual surface that corresponds
to z = i, we use the estimated root mean squared error (ERMSEi),

ERMSEi =

√
1
50

50

∑
`=1

(
ŷ(wi

`)−Y(wi
`)
)2

,

where wi
` = (x`, i)>, i = 1,2,3; the predicted value is denoted by ŷ(·), and Y(·) stands for the true response.

The overall predictive performance across the three surfaces is examined through ERMSE defined as
follows:

ERMSE =

√
1

150

3

∑
i=1

50

∑
`=1

(
ŷ(wi

`)−Y(wi
`)
)2

.

Results. The entire experiment is repeated for 100 macro-replications and the results are summarized in
Table 1. Table 1 shows the ERMSEs averaged over 100 macro-replications; the values in parentheses are
the corresponding standard errors. We observe that at any given level of intrinsic variability (i.e., any
value of γ), SKQ dominates the other two methods whereas UC performs the worst, in terms of predicting
individual response surfaces corresponding to z = 1,2,3 and the overall predictive performance. This
is not surprising since UC is designed for deterministic computer experiments and hence its predictive
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Table 1: Summary of the average ERMSEs and standard errors for example 1.

γ = 1 γ = 25

SKQ SK UC SKQ SK UC

ERMSE1
0.100
(0.003)

0.117
(0.004)

0.29
(0.03)

0.42
(0.01)

0.50
(0.02)

6.7
(5.9)

ERMSE2
0.081
(0.002)

0.131
(0.008)

0.4
(0.1)

0.36
(0.01)

0.53
(0.02)

1.1
(0.2)

ERMSE3
0.100
(0.003)

0.13
(0.01)

7.015
(0.010)

0.44
(0.01)

0.53
(0.02)

7.09
(0.10)

ERMSE 0.096
(0.002)

0.132
(0.007)

0.37
(0.07)

0.416
(0.008)

0.54
(0.01)

4.4
(3.4)

γ = 50 γ = 100

SKQ SK UC SKQ SK UC

ERMSE1
0.55
(0.02)

0.63
(0.02)

2.2
(0.7)

0.74
(0.02)

0.97
(0.05)

2.4
(0.7)

ERMSE2
0.49
(0.01)

0.71
(0.02)

1.9
(0.5)

0.64
(0.02)

1.06
(0.06)

2.2
(0.4)

ERMSE3
0.57
(0.01)

0.71
(0.02)

7.6
(0.3)

0.74
(0.02)

1.14
(0.07)

7.22
(0.07)

ERMSE 0.55
(0.01)

0.70
(0.01)

2.3
(0.5)

0.72
(0.01)

1.13
(0.05)

2.4
(0.4)

performance is expected to be more susceptible to the impact of stochastic simulation errors. The value of γ

controls the impact of stochastic simulation errors. We see that the resulting ERMSEs for all three methods
increase as γ increases; in particular, the performance of UC deteriorates considerably as γ increases from
1 to 25. On the other hand, on top of the comparable abilities of SKQ and of SK in handling the impact
of stochastic simulation errors, it is worthwhile pointing out that the advantage of SKQ is achieved by
employing the correlation structure for qualitative factors which makes it possible to capture information
across the three closely related response surfaces— even the negative correlations (i.e., Y(x,1),Y(x,3) vs.
Y(x,2)) are handled appropriately and used effectively—to build metamodels for all three response surfaces
simultaneously for prediction.

4.2 Example 2: An (s,S) Inventory System with Holding Cost and Shortage Cost Constraints

In this section, through a simple example of a periodic review (s,S) inventory system, we emphasize
the significance of exploiting information from related response surfaces to build a metamodel for better
prediction. This example also demonstrates the potential of employing stochastic kriging with qualitative
factors to do constrained optimization based on the predicted response surfaces over the design space.

The inventory system is assumed to have random demands, random lead times, full backlogging, and
linear ordering, holding and shortage costs. The scenario considered here is the same as discussed in
Section 3.1 of Biles et al. (2007), from which much of this example is constructed. The goal is to find
the optimal ordering policy x = (s,S)> (in units) that minimizes the expected total costs per day over a
simulation period of 120 days subject to constraints on the shortage costs and inventory holding costs per
day. Specifically, let y1(x), y2(x), y3(x) denote the expected total cost, the expected holding cost and the
expected shortage cost, respectively. Then the problem under consideration can be written as

min
x=(s,S)>

y1(x) (10)

subject to y2(x)≤ 25
y3(x)≤ 10
x≥ 0 .

Let Wi be the inventory position (on-hand inventory plus outstanding orders minus backlogs on day i). The
(s,S) inventory system works as follows. Upon a daily inventory review, if Wi is found below s units, an
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order of (S−Wi) units will be made and a fixed ordering cost $32 per order plus $3 per unit purchasing
cost will be incurred. The order lead time is uniformly distributed between one-half day and one day. The
inventory holding cost is $1 per unit per day and the shortage cost is $5 per unit per day. The demands arrive
as a Poisson process at a rate of 10 customers per day, and the number of units demanded per customer
follows a discrete distribution between 1 unit to 4 units whose c.d.f. follows as {0.17,1;0.5,2;0.83,3;1,4}.

Experiment design. Our approach to solving this constrained optimization problem is by building metamodels
for the three underlying response surfaces, namely, y1, y2 and y3. The design space for x> = (s,S) is
s∈ [10,40] and S ∈ [40,90]. Simulations are conducted at the same set of 20 LHS design points as was used
by Biles et al. (2007); and n simulation replications are conducted at each pair of (s,S) with n ∈ {5,50}.
We are interested in comparing SKQ against SK and the kriging method used in Biles et al. (2007) (denoted
by K), in terms of their prediction performances at selected check-points and their abilities of using the
resulting predicted response surfaces to do optimization. Notice that the latter two methods SK and K build
metamodels for the three surfaces separately without considering the interplay; moreover, K does not take
into account the intrinsic variability due to simulation errors through metamodel estimation to prediction.

In applying SKQ, we use an extra three-level qualitative factor z to denote which response surface
is under consideration. Specifically, at design point w for SKQ, i.e., w = (x>,z)> with x> = (s,S), the
simulation outputs on the jth replication are modeled as follows,

Y j(w) =


estimated total cost at (s,S) on jth replication, if z = 1,

estimated holding cost at (s,S) on jth replication, if z = 2,

estimated shortage cost at (s,S) on jth replication, if z = 3.

A grid of 25 equally spaced check-points (s,S) in [20,40]× [40,80] are used to evaluate the performances
of SKQ and SK in predicting y1,y2,y3. True values of the responses at the 25 check-points are approximated
by simulating an Arena-based model for 3000 replications, with which the absolute relative prediction error
(ARPE) at each check-point is calculated. We examine the quartiles of the ARPEs over the 25 check-points,
i.e., the 25th, 50th, and 75th percentiles of the resulting ARPEs.

Results. The predicted response surfaces of y1, y2 and y3 by SKQ and SK based on 5 simulation replications
at the design points are shown in Figures 2–4, respectively. We find that the surfaces given by these two
methods differ considerably; to quantify the differences, the resulting ARPE quartiles in accordance with
n = 5 and 50 simulation replications applied at each design point are summarized in Table 2. For both SKQ
and SK, we observe that increasing the number of replications from 5 to 50 reduces ARPEs. Comparisons
of the resulting ARPEs indicate that the response surface for the expected shortage cost is the most difficult
to predict well. This manifests one of the challenges facing researchers and practitioners when applying
metamodeling techniques to do constrained optimization, a crucial step if not more important than obtaining
a good predicted response surface for the objective, is to approximate response surfaces for constraints
sufficiently well. Furthermore, it is clear from Table 2 that SKQ outperforms SK in predicting all three
surfaces. For this particular example, since the surface of expected total cost, and the surfaces for the
expected holding and shortage costs must be closely related to one another, it is not surprising to see that
SKQ performs better than SK by exploiting the information available for all three surfaces.

As to optimization, we face the same challenges as Biles et al. (2007) did, that is, to get an approximated
optimal solution from the predicted response surface of the objective and at the same time check its feasibility
through the predicted surfaces of the two constraints; in addition, an optimal solution (s∗,S∗) is assumed
to be integer-valued and so a localized search is necessary. Biles et al. (2007) claim that the true optimal
solution found by Excel Solver is (s,S) = (25,63) with a total cost of $118.47; and the two constraints
in (10) are not binding at that solution. We did a localized simulation search for s ∈ {24,25,26} and
S ∈ {62,63,64} to approximate the true values of y1,y2,y3 at each pair of (s,S) through simulating 3000
replications with Arena. Our approximated optimal solution with Arena is (s,S) = (25,62) leading to a
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Figure 2: The predicted surfaces of expected total cost by SK (left) and SKQ (right).
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Figure 3: The predicted surfaces of expected holding cost by SK (left) and SKQ (right).

Table 2: Summary of the ARPE quartiles obtained with 5 and 50 simulation replications for example 2.

y1 y2 y3

n Percentiles 25th 50th 75th 25th 50th 75th 25th 50th 75th

5
SKQ 0.006 0.013 0.017 0.011 0.022 0.034 0.059 0.082 0.202

SK 0.012 0.015 0.018 0.015 0.022 0.036 0.064 0.106 0.367

50
SKQ 0.001 0.002 0.004 0.005 0.008 0.017 0.023 0.042 0.150

SK 0.001 0.003 0.006 0.005 0.011 0.029 0.023 0.046 0.175
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Figure 4: The predicted surfaces of shortage cost by SK (left) and SKQ (right).

total cost of $118.08. In fact, the local search with intensive simulations reveals that no constraints are
binding and the approximated total costs are very close on this 3×3 grid, that is, the surface of the objective
is flat in this neighborhood.

Having a sense of where the true optimal solution lies, we are ready to compare the competing methods
under the same conditions, i.e., use 5 replications at the same set of 20 LHS design points. The optimal
solution given by SK is (s,S) = (26,62) with an estimated total cost of $120.15; SKQ gives an estimated
total cost of $119.36 at (s,S) = (25,62), which coincides with the optimal solution found by Arena. We
see that both SK and SKQ give solutions that are very close to the approximated optimal solution, despite
that their predicted total costs are a little off. In sharp contrast, the optimal solution found by K in Biles
et al. (2007) is (s,S) = (27,60) with an estimated total cost of $118.56. This solution is neither close
to the optimal solution (s,S) = (25,63) suggested by Excel Solver, nor is it close to the optimal solution
(s,S) = (25,63) found by Arena. In this example, K, like SK, does not utilize the correlations existing
among the response surfaces of the objective and the two constraints. We remind ourselves that for the
purpose of optimization, it is more important to find a solution closer to the true optimal rather than to
obtain a more accurate objective value at a suboptimal solution. Therefore, we consider that SKQ has great
potentials to be explored as a useful tool for simulation optimization.

5 CONCLUSIONS

In this paper, we developed a new metamodeling method called stochastic kriging with qualitative factors
(SKQ) for stochastic simulations involving both qualitative and quantitative decision variables, as an
extension of the standard stochastic kriging methodology. We exhibited the main ingredients in SKQ
metamodel construction, estimation and prediction. In particular, the recipe for constructing valid spatial
correlation functions for handling correlations across levels of qualitative factors is examined. Two examples
are shown to demonstrate the potential of SKQ in exploiting information from correlated response surfaces
and its ability of providing adequate approximations to multiple response surfaces simultaneously, under the
influence of stochastic simulation errors. The impact of stochastic simulation errors and the joint modeling
of simulated response surfaces having varying noise levels on the performance of SKQ, as well as efficient
experimental designs for SKQ for prediction and simulation optimization are some of the potential research
topics await to be explored in the future.
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