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ABSTRACT

ARD is an automated replication-deletion procedure for computing point and confidence interval (CI)
estimators for the steady-state mean of a simulation-generated output process. The CI can have user-
specified values for its absolute or relative precision and its coverage probability. To compensate for
skewness in the truncated sample mean for each replication, the CI incorporates a skewness adjustment.
With increasingly stringent precision requirements, ARD’s sampling plan increases the run length and
number of runs so as to minimize a weighted average of the mean squared errors of the following: (i)
the grand mean of the truncated sample means for all runs; and (ii) the conventional replication-deletion
estimator of the standard error of (i). We explain the operation of ARD, and we summarize an experimental
performance evaluation of ARD. Although ARD’s CIs closely conformed to given coverage and precision
requirements, ARD generally required a larger computing budget than single-run procedures.

1 INTRODUCTION

In a nonterminating simulation, we are often interested in long-run (steady-state) average performance
measures. Let {Xi, j : j = 1,2, ...,ni} denote a stochastic process representing the sequence of outputs
generated by the ith run of a nonterminating probabilistic simulation of length ni for i = 1, . . . ,q. If the
simulation is in steady-state operation, then the random variables {Xi, j} will have the same steady-state
cumulative distribution function (c.d.f.) FX(x) = Pr{Xi, j ≤ x} for i = 1, . . . ,q, for j = 1, . . . ,ni, and for all
real x.

Usually in a nonterminating simulation, we are interested in constructing point and confidence interval
(CI) estimators for some parameter of the steady-state c.d.f. FX(·). In this work, we are primarily interested in
estimating the steady-state mean, µX = E[X ] =

∫
∞

−∞
xdFX(x); and we limit the discussion to output processes

for which E[X2
i, j]< ∞ so that the process mean µX and process variance σ2

X = Var[Xi, j] = E[(Xi, j−µX)
2]

are well defined. In terms of the sample mean Xi = n−1
i ∑

ni
j=1 Xi, j computed on run i, we also assume that

the steady-state variance parameter γX = limni→∞ niVar
[

Xi
]

is nonzero and finite.
One fundamental problem associated with analyzing stochastic output from a nonterminating simulation

is that we usually do not possess sufficient information to start a simulation in steady-state operation; and
thus it is necessary to determine an adequate length for the initial “warm-up” period so that for each
simulation output generated after the end of the warm-up period, the corresponding expected value is
sufficiently close to the steady-state mean. If observations generated prior to the end of the warm-up period
are included in the analysis, then the resulting point estimator of the steady-state mean may be biased.
This phenomenon is known as the start-up (or initialization-bias) problem, and any steady-state analysis
method should include steps for determining a suitable data truncation point to eliminate bias in the point
estimator that is due to the simulation’s initial condition.
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A number of methods for steady-state analysis have been developed that are based on a single simulation
replication (so that q = 1). One class of these single-run methods includes procedures that are based on the
use of nonoverlapping batch means (NBM), where the sequence of outputs from a single simulation run
is divided into adjacent nonoverlapping batches of sufficiently large size so that the resulting batch means
are approximately independent and identically distributed (i.i.d.) observations from a normal distribution
centered on the steady-state mean µX . A CI for µX can then be based on the classical Student t-ratio
involving the grand average and sample variance of the batch means. Some of the more recent single-run
methods that are based on NBM include ASAP3 (Steiger et al. 2005), SBatch (Lada, Steiger, and Wilson
2008), and Skart (Tafazzoli and Wilson 2011). All three of these sequential methods are completely
automatable, include steps to determine a suitable truncation point to address the start-up problem, and
ultimately return a CI estimator for the steady-state mean µX .

Another class of single-run methods for steady-state simulation analysis include those procedures based
on a spectral approach, in which we seek to estimate the power spectrum of a given output process as
well as the steady-state mean. The resulting estimator of the power spectrum at zero frequency provides
an estimator of the steady-state variance parameter γX ; and from the latter statistic, a CI for the steady-
state mean can be computed. The WASSP algorithm (Lada and Wilson 2006) is a completely automated
sequential spectral method that addresses the warm-up problem and returns a CI for the steady-state mean
as well as a wavelet-based estimator of the entire power spectrum of a given output process.

Although steady-state analysis methods based on a single simulation replication are convenient and
efficient in the sense that data from only one warm-up period must be eliminated, there are typically
pronounced stochastic dependencies between successive responses generated within a single simulation
run. This phenomenon, sometimes called the correlation problem, complicates the construction of a CI
for the steady-state mean in single-run methods because standard statistical methods require i.i.d. normal
observations to yield a valid CI. The ASAP3, SBatch, Skart, and WASSP algorithms do incorporate steps
to address the correlation problem; and comprehensize experimental results indicate that all four methods
are effective in delivering approximately valid CIs for a steady-state mean.

As an alternative to single-run methods for simulation analysis, the replication/deletion method is
popular with many pracitioners for the reasons elaborated in Section 9.5.2 of Law (2007). This is especially
true when excessive sample sizes are required to attenuate the correlation between successive responses
within a single run; moreover, in simulation-generated processes exhibiting long-range dependence, the
classical single-run methods are generally inapplicable. In the replication/deletion method of simulation
analysis, q independent replications of length ni are executed, and generally q ≥ 3. For each run i, the
observations {Xi, j : j = 1, . . . ,ni} are first analyzed to determine a suitable truncation point wi for eliminating
initialization bias; and then the remaining observations {Xi, j : j = wi+1, . . . ,ni} beyond the truncation point
are used to compute a truncated sample mean Xi = (ni−wi)

−1
∑

ni
j=wi+1 Xi, j for that replication. The mean

and variance of the set of truncated sample means {Xi : i = 1, . . . ,q} over all replications are then computed
and used to construct a CI for the steady-state mean. Because the set of truncated sample means {Xi}
are generated from independent replications of the simulation, they are not correlated; and consequently,
methods based on this type of replication/deletion approach do not have to be concerned with the correlation
problem.

In this paper we describe a sequential method for steady-state simulation analysis that is based on the
replication/deletion approach. Called ARD, our automated replication/deletion procedure includes steps
for eliminating initialization bias that are based on the warm-up algorithm first used in WASSP; and
ARD returns a skewness-adjusted CI for the steady-state mean, similar to that in Skart. Based on our
experimentation with a variety of test processes, we have concluded that ARD performs reasonably well
in terms of delivering CIs that conform closely to the desired coverage probability and level of precision.
However, we also found during the development of ARD that applying a replication/deletion approach in
practice is complicated and not nearly as straightforward as is often implied in the simulation literature.
Moreover, the total sample sizes required by ARD are larger than those require by efficient single-run
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procedures such as Skart. We believe that much of ARD’s sampling inefficiency is due to the warm-up
period that must be deleted on each replication of the simulation.

The rest of this paper is organized as follows. In Section 2 we provide a high-level overview of ARD,
and in Section 3 we explain the steps of ARD in more detail. Section 4 contains a summary of the results
of applying ARD to test problems that are specifically designed to provide a “stress test” for the procedure.
Conclusions and recommendations for follow-up work are given in Section 5.

2 OVERVIEW OF ARD

Figure 1 depicts a high-level flowchart of the ARD algorithm. The following user-supplied inputs are
required:

1. The desired CI coverage probability 1−α , where 0 < α < 1; and
2. An absolute or relative precision requirement specifying the final CI half-length in terms of a

maximum acceptable half-length h∗ (for an absolute precision requirement) or a maximum acceptable
fraction r∗ of the magnitude of the CI midpoint (for a relative precision requirement).

To construct point and CI estimators for µX , ARD begins by performing q0 = 8 pilot runs (replications) of
the simulation each with a run length of 2048 observations. For each run i, the simulation-generated output
process of size ni = 2048 observations is first divided into k = 256 adjacent batches of size mi = 8, with
a spacer of initial size si = 0 observations preceding each batch. The randomness test of von Neumann
(1941) is then applied to the initial set of batch means calculated for each batch within run i. The primary
purpose of the randomness test is to determine an appropriate data-truncation point for each replication in
the pilot study beyond which all computed batch means are approximately independent of the simulation
model’s initial conditions.

Each time the randomness test is failed for replication i, an additional batch is added to each spacer
(up to a limit of 3 batches), and the randomness test is reperformed on the new reduced set of spaced
batch means (SBMs). If the randomness test is failed with spacers each consisting of 3 batches so that
only 64 spaced batch means are used in the randomness test, then the spacer size si is reset to zero and
both the batch size mi and the total sample size ni are increased by the factor

√
2; the required additional

observations are obtained; the augmented sample is rebatched into k = 256 nonspaced batches of the new
batch size mi; and a new set of k batch means is computed and tested for randomness with a spacer of size
si = 0. This process of testing the SBMs for randomness with increasing sizes for si or mi continues until
the randomness test is finally passed so that acceptable values for the spacer size si and the batch size mi
have finally been determined for run i.

Once the randomness test has been passed for all q0 replications, we compute the maximum final spacer
size s∗, the maximum final sample size n∗, and the maximum final batch size m∗ over all q0 pilot runs.
These values are then used to compute the final number of spaced batch means k∗. The q0 pilot runs are
then re-executed using the run length n∗. For each run i (where 1≤ i≤ q0), the first w∗ = s∗ observations
{Xi, j : j = 1, . . . ,w∗} are discarded to eliminate any warm-up effects and the truncated sample mean Xi is
computed using the remaining observations {Xi, j : j = w∗+1, . . .n∗},

Xi =
1

n∗ −w∗
n∗

∑
u=w∗+1

Xi,u for i = 1, . . . ,q0. (1)

A point estimator X of µX is computed as the grand mean of the truncated sample means over all q0 runs
in the pilot study,

X =
1
q0

q0

∑
i=1

Xi. (2)
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Figure 1: Flow chart of ARD

In terms of the sample variance of the truncated sample means,

S2
X =

1
q0−1

q0

∑
i=1

(
Xi−X

)2
, (3)

we see that the “ordinary” (conventional) replication-deletion estimator of the standard error of X has the
form

ŜEORD

[
X
]
=

SX√
q0

. (4)

ARD also makes extensive use of the SBMs {Yi, j : j = 1, . . .k∗} with warm-up period w∗, spacer size
s∗, and batch size m∗ for each run in the pilot study,

Yi, j =
1

m∗
m∗

∑
u=1

Xi,( j−1)(s∗+m∗)+w∗+u for j = 1, . . . ,k∗. (5)

(Note that we distinguish the warm-up period length w∗ from the spacer size s∗ because these two quantities
will grow at different rates with progressively more stringent precision requirements on the final CI estimator
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for µX as specified in Equation (15) below.) In terms of the grand average Y and the sample variance S2
Y

of the SBMs {Yi, j} over all q0 runs,

Y =
1

q0k∗

q0

∑
i=1

k∗

∑
j=1

Yi, j and (6)

S2
Y =

1
q0k∗ −1

q0

∑
i=1

k∗

∑
j=1

(
Yi, j−Y

)2
, (7)

we see that the SBM-based estimator of the steady-state variance parameter is γ̂X =m∗S2
Y and the SBM-based

estimator of the standard error of X has the form

ŜESBM

[
X
]
=

√
m∗S2

Y
q0(n∗ −w∗)

. (8)

To compute a CI estimator for µX , ARD estimates the standard error of X according to

ŜE
[

X
]
= max

{
ŜEORD

[
X
]
, ŜESBM

[
X
]}

. (9)

Then ARD computes the approximate 100(1−α)% skewness-adjusted CI for µX as follows,[
X−G(t1−α/2,q0−1)ŜE

[
X
]
, X−G(tα/2,q0−1)ŜE

[
X
]]
, (10)

where the skewness adjustment G(·) is defined in terms of the function

G(ζ )≡

{ [
3
√

1+6β (ζ −β )−1
]/
(2β ) , if β 6= 0 ,

ζ , if β = 0,

}
with β =

B̂Y

6
√

q0k∗
, (11)

and B̂Y is the sample skewness of the SBMs taken over all q0 pilot runs. A further explanation of equations
(8)–(11) is given in Section 3.

If the user has not specified a precision requirement to be satisfied by the final CI estimator of µX ,
then ARD delivers the CI (10) and stops. Otherwise, the CI (10) is tested to determine if it satisfies the
user-specified absolute or relative precision requirement. Between the left- and right-hand subintervals of
(10) for which X is their respective upper and lower endpoint, let H̃ denote the larger subinterval length.
If the user has specified a relative precision requirement r∗, then we set

H∗ = r∗
∣∣X ∣∣; (12)

and if the user has specified an absolute precision requirement h∗, then we set

H∗ = h∗. (13)

If H̃ ≤H∗, then ARD delivers the CI (10) and stops; otherwise ARD computes the overall budget-inflation
factor

f = mid
{

1.05,
(
H̃/H∗

)2
,2
}

(14)
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required to satisfy the precision requirement. Then the warm-up period length w∗, the spacer size s∗, the
batch size m∗, and the run length n∗ are increased as follows:

w∗ ← d f 1/6w∗e
s∗ ← d f 2/3s∗e

m∗ ← d f 2/3m∗e
n∗ ← (w∗+m∗)+(k∗ −1)(s∗+m∗)

 ; (15)

and the number of runs is increased according to

q0← d f 1/3q0e. (16)

A postpilot experiment is executed consisting of q0 runs, each with updated run length n∗. The CI (10)
is recomputed and the precision requirement is retested. Successive iterations of Equations (1)–(16) are
repeated until the precision requirement is finally satisfied and the final CI of the form (10) can be delivered.

3 DETAILED OPERATIONAL STEPS OF ARD

3.1 Eliminating Initialization Bias

As described briefly in Section 2, ARD’s procedure for identifying the end of the warm-up period is based
on a pilot study consisting of q0 = 8 independent runs each of length 2048 observations. For i = 1, . . . ,q0,
run i is initially subdivided into k = 256 adjacent (nonspaced) batches of size mi = 8. Using initial spacers
of size si = 0, we computed the “spaced” batch means

Yi, j =
1
mi

jmi

∑
u=( j−1)(si+mi)+1

Xi,u for j = 1, . . . ,k. (17)

If the SBMs with the current spacer size si pass the von Neumann randomness test at the level of significance
αran = 0.25, then we set the warm-up length wi = si and proceed to the computation of the skewness-adjusted
CI. Otherwise, we update the spacer size and number of (remaining) batches of size mi according to

si = si +mi and k =
⌊

ni

mi + si

⌋
. (18)

If k ≥ 64 (so that si ≤ 3mi), then the current set of SBMs is tested for randomness; and if the randomness
test is passed, then we set wi = si as the length of the warm-up period on run i. Otherwise, the SBMs are
updated according to (18) and retested for randomness until the randomness test is passed or k < 64. If
the condition k < 64 is satisfied, then the batch size mi, the batch count k, the overall sample size ni, and
the spacer size si are updated according to

mi←
⌊
mi
√

2
⌋
, k← 256, ni← kmi, and si← 0, (19)

respectively; the required additional observations are obtained for run i (by restarting the simulation if
necessary) to complete the overall sample {Xi, j : j = 1, . . . ,ni} and then k adjacent (nonspaced) batch means
are computed from the overall sample according to (17).

If the step (19) is reached, then ARD reperforms the entire randomness-testing procedure, starting with
the current set of k = 256 adjacent batch means of the current batch size mi with spacer size si = 0. The
steps outlined in the preceding two paragraphs are repeated until the randomness test is passed for run i.
Once the randomness test is passed, we set the warm-up truncation length for run i to the final spacer size,
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wi = si. The entire randomness test is then repeated for the remaining runs in the pilot study to obtain a
final warm-up length wi, a final sample size ni, and a final batch size mi for each run i where i = 1, . . . ,q0.

This approach to handling the simulation start-up problem is very similar to the approach first used
in WASSP and later in SBatch and Skart, all of which are single-run methods for computing point and
CI-estimators for the steady-state mean. Through extensive experimentation with the WASSP, SBatch, and
Skart algorithms, we found this approach to be effective in determining an appropriate spacer size si so
that the observations {Xi, j : j = 1, . . . ,si} constituting the first spacer in run i can be regarded as containing
the warm-up period because the spaced batch means beyond the first spacer do not exhibit significant
departures from randomness—that is, they do not exhibit a deterministic trend or any type of stochastic
dependence on the simulation’s initial conditions.

There are a few key differences between the original method used in WASSP and the method used in
ARD for eliminating initialization bias. WASSP requires an initial sample of size n = 4096 observations,
an initial batch size of m = 16 observations, a significance level αran = 0.2, and allows a maximum of 9
batches per spacer, resulting in a final spaced batch count in the range 25≤ k′ ≤ 256. By contrast, ARD
requires an initial sample of size ni = 2048 observations, an initial batch size of mi = 8 observations, a
significance level of αran = 0.25, and allows up to 3 batches per spacer, resulting in a final spaced batch
count in the range 64≤ k′ ≤ 256. The choice to start the ARD algorithm with ni = 2048 observations for
each run is designed so that the initial total sample size required for the algorithm is reasonable. As a result
of decreasing the initial sample size, it is therefore also necessary to decrease the starting batch size used
in ARD so that the initial randomness test has 256 observations (batch means). Furthermore, increasing
the significance level αran from 0.2 to 0.25 and the minimum batch count from k = 25 to k = 64 are both
choices designed to increase the sensitivity of the randomness test, which is critical to the effectiveness
of ARD since the algorithm uses multiple runs, each of which contains initialization bias. The WASSP
algorithm, however, is less sensitive to initialization bias since it is a single run method and as the run length
increases, the effect of the warm-up bias on the final point estimate of the steady-state mean decreases.

3.2 Computing the Skewness-Adjusted Confidence Interval

Once the randomness test has been passed for each replication i : i = 1, . . . ,q0 in the pilot phase, the ARD
algorithm proceeds by computing the following maximum values over all q0 pilot runs,

w∗ = max{wi : 1≤ i≤ q0}, m∗ = max{mi : 1≤ i≤ q0}, n∗ = max{ni : 1≤ i≤ q0}. (20)

To ensure the warm-up period always consists of at least one batch, we update the final size w∗ of the
warm-up period and the final spacer size s∗ for the pilot study according to the relations

w∗ ←max{w∗,m∗} and s∗ ← w∗ (21)

so that the final number of spaced batch means k∗ and the updated run length n∗ are updated according to
the relation

k∗ ←
⌈ n∗

w∗+m∗

⌉
and n∗ ← k∗(w∗+m∗). (22)

At this point, we reperform the pilot study of q0 = 8 runs having length n∗ observations and truncate the
first w∗ observations from each run so that the truncated sample mean on run i can be computed according
to (1). A skewness-adjusted 100(1−α)% CI for µX is then computed according to (5)–(11), where the
skewness-adjustment (11) is defined in terms of the sample skewness of the spaced batch means,

B̂Y = τY
/

S3
Y , (23)

where τY is an approximately unbiased estimator of the third central moment of the SBMs taken over all
q0 runs,

τY =
q0k∗

(q0k∗ −1)(q0k∗ −2)

q0

∑
i=1

k∗

∑
j=1

(
Yi, j−Y

)3
. (24)
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The rationale for the skewness adjustment (11) parallels that of the skewness adjustment in the single-run
CIs delivered by Skart (Tafazzoli and Wilson 2011). In many applications, the truncated sample means
{Xi : i = 1, . . . ,q0} exhibit substantial skewness; and this skewness can seriously degrade the coverage of
conventional CIs for µX based merely on the grand mean (2) and the sample variance (3) of the {Xi}.

ARD’s estimator (9) of the standard error of the grand mean (2) is based on our observation that in
many applications with relatively loose precision requirements, there is some loss of coverage in skewness-
adjusted CIs for µX that are based on the conventional standard error estimator (4). Furthermore, this loss
of coverage seems to be effectively counteracted by the supplemental use of the SBM-based standard error
estimator (8).

3.3 Fulfilling the Precision Requirement

The way in which q0, w∗, and n∗ increase as functions of the budget-inflation factor f is specifically designed
to minimize a weighted average of the mean squared errors of X and ŜEORD

[
X
]

as estimators of µX and√
γX/[q0(n∗ −w∗)], respectively, where the variance parameter γX is defined in the second paragraph of

Section 1. This objective ultimately leads to the conclusion that we should take

n∗∝ f 2/3 and q0 ∝ f 1/3. (25)

Combining the sampling plan (25) with Theorem 3, part (i) of Glynn and Heidelberger (1991), we took

m∗∝ f 2/3, s∗∝ f 2/3, and w∗∝ f 1/6. (26)

Notice that with the sampling plan specified by (25) and (26), the number of SBMs k∗ remains fixed on
each iteration of ARD.

4 EXPERIMENTAL RESULTS

To evaluate the performance ARD, we selected a suite of test problems that includes some output processes
typically used to stress-test steady-state simulation analysis procedures and some output processes whose
main characteristics more closely resemble those of real-world applications. Because of space constraints,
we limit the present discussion to the four test processes described below; but complete experimental results
are provided in Lada, Mokashi, and Wilson (2013). We conducted 1,000 independent replications of ARD
for each test process to construct nominal 90% and 95% CIs that satisfied certain precision requirements.
For each test process, we include results in the case of no precision requirement, wherein ARD merely
delivers the CI computed after the initial pilot study.

The first test process is the queue-waiting-time process for an M/M/1 queueing system with a first-in-
first-out (FIFO) queueing discipline, an empty-and-idle initial condition, an arrival rate of 0.9, and a service
rate of 1.0. In this system the steady-state server utilization is 0.9, and the steady-state expected waiting time
in the queue is 9. This process has a relatively short warm-up period; however its autocorrelation function
decays slowly with increasing lags. Also, the marginal distribution of the waiting times has a nonzero
probability mass at zero and an exponential tail and is therefore markedly nonnormal. These characteristics
result in slow convergence to the classical requirement that the truncated sample means

{
Xi : i = 1, . . . ,q0

}
are i.i.d. normal random variables. ARD’s performance in this test process is summarized in Table 1.

The second test process is the queue-waiting-time process for an M/M/1 queueing system with a
first-in-first-out (FIFO) queueing discipline, an initial condition of 113 customers in the queue, an arrival
rate of 0.9, and a service rate of 1.0. The steady-state expected waiting time in the queue is 9, where
waiting times are only accumulated for arrivals after time 0. This system has a pronounced warm-up period
and tests ARD’s ability to remove severe initialization bias. ARD’s performance in this test process is
summarized in Table 2.

The third test process, referred to as the Central Server Model 3 (Law and Carson 1979), consists of
a central processing unit (CPU or workcenter 1) and M−1 peripheral units, referred to as workcenters 2
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Table 1: M/M/1 FIFO queue-waiting-time process with 90% server utilization, empty-and-idle
initial condition, and µX = 9.

Rel. Prec. Reqmt. NONE 7.5% 3.75%
Nominal CI Cov. Prob. 90% 95% 90% 95% 90% 95%

CI Coverage 88.8% 94.8% 87.8% 94.3% 87.7% 94.1%
Avg. CI Half-length H̃ 0.632466 0.804820 0.531849 0.566327 0.298526 0.301212

Var. CI Half-length 0.044199 0.072068 0.009478 0.005236 0.000695 0.000684
Avg. warm-up length w∗ 479 479 489 507 568 606

Avg. # of runs q0 8 8 9 10 14 16
Avg. sample size/run n∗ 47907 47907 52418 60439 96784 124579

Mean Estimator X 8.953485 8.953485 8.958279 8.964682 8.984336 8.988620
Abs. Avg. Bias 0.046515 0.046515 0.041721 0.035318 0.015663 0.011380

Var. of Mean Estimator 0.107834 0.107834 0.089951 0.070791 0.032412 0.021817
Mean Squared Error (MSE) 0.109997 0.109997 0.091691 0.072038 0.032657 0.021947

Table 2: M/M/1 FIFO queue-waiting-time process with 90% server utilization, 113 initial
customers, and µX = 9.

Rel. Prec. Reqmt. NONE 3.75% 1.875%
Nominal CI Cov. Prob. 90% 95% 90% 95% 90% 95%

CI Coverage 92.7% 96.6% 89.8% 95.9% 92.7% 96.4%
Avg. CI Half-length H̃ 0.412994 0.527723 0.293640 0.299334 0.154096 0.154918

Var. CI Half-length 0.014386 0.023808 0.001027 0.000760 0.000129 0.000119
Avg. warm-up length w∗ 1342 1342 1419 1500 1712 1825

Avg. # of runs q0 8 8 10 12 16 18
Avg. sample size/run n∗ 129084 129084 163779 204376 345311 444507

Mean Estimator X 9.018339 9.018339 9.005641 9.002196 8.998361 8.998238
Abs. Avg. Bias 0.018339 0.018339 0.005641 0.002196 0.001639 0.001762

Var. of Mean Estimator 0.039210 0.039210 0.024694 0.016849 0.006955 0.004710
Mean Squared Error (MSE) 0.039546 0.039546 0.024725 0.016854 0.006957 0.004713

through M. The system has a fixed number of jobs J that cycle through it; and when a job is finished at
the CPU, it leaves the system with probability p1 and is replaced immediately with another job from the
CPU queue. If the job does not leave the system, then it is routed to peripheral unit ` with probability p`
for ` = 2, . . . ,M. After receiving service at one of the peripheral units, the job leaves the system and is
immediately replaced by a job joining the CPU queue. The output process being monitored is each job’s
response time, which is the time between the job’s arrival at the CPU queue and its departure from the
system. Specifically, we take J = 8 jobs and M = 3 workcenters with respective service rates 1.0, 0.45, and
0.05. Initially there are five jobs at the CPU, one job at peripheral unit 2, and two jobs at peripheral unit 3. In
this system the steady-state utilizations at the three workcenters are 0.44, 0.88, and 0.88, respectively; and
the steady-state expected response time for each job is 18.279. Although this test process has a relatively
short warm-up period, it exhibits pronounced positive skewness that is often encountered in real-world
applications. As a result, this system serves as a challenging test for ARD’s skewness-adjusted CIs. ARD’s
performance in this test process is summarized in Table 3.

The fourth test process is a single-server queueing system with a last-in-first-out (LIFO) queueing
discipline, an empty-and-idle initial condition, a mean interarrival time of 1.0, and a mean service time of
0.8. The steady-state server utilization in this system is 0.8, and the steady-state mean queue waiting time
is µX = 3.20. Although this test process has a relatively short warm-up period, it has highly nonnormal
marginals. Moreover, unlike all the other test processes we studied, the queue-waiting-time process in the
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Table 3: Central Server 3 Model with µX = 18.279.

Rel. Prec. Reqmt. NONE 1.875% 0.9375%
Nominal CI Cov. Prob. 90% 95% 90% 95% 90% 95%

CI Coverage 90.2% 95.9% 86.6% 93.3% 89.7% 95.8%
Avg. CI Half-length H̃ 0.624197 0.790914 0.305990 0.307637 0.157993 0.159004

Var. CI Half-length 0.027016 0.043905 0.000649 0.000601 0.000101 0.000078
Avg. warm-up length w∗ 22 22 26 28 33 36

Avg. # of runs q0 8 8 13 15 20 23
Avg. sample size/run n∗ 2399 2399 4892 6301 11485 14683

Mean Estimator X 18.202970 18.202970 18.225377 18.239819 18.260944 18.268874
Abs. Avg. Bias 0.076030 0.076030 0.053623 0.039181 0.018056 0.010125

Var. of Mean Estimator 0.104032 0.104032 0.033975 0.023250 0.009081 0.005650
Mean Squared Error (MSE) 0.109812 0.109812 0.036850 0.024785 0.009407 0.005753

M/M/1/LIFO queueing system has an autocorrelation function that does not decay geometrically fast with
increasing lags. As a consequence of these anomalous properties, some single-run procedures deliver CIs
for µX with substantially degraded coverage probabilities (Tafazzoli et al. 2011, §4.6). ARD’s performance
in this test process is summarized in Table 4.

Table 4: M/M/1 LIFO queue-waiting-time process with 80% server utilization, empty-and-idle
initial condition, and µX = 3.2.

Rel. Prec. Reqmt. NONE 3.75% 1.875%
Nominal CI Cov. Prob. 90% 95% 90% 95% 90% 95%

CI Coverage 90.6% 94.9% 88.8% 95.0% 89.5% 96.2%
Avg. CI Half-length H̃ 0.636377 0.908514 0.108752 0.109162 0.055814 0.055985

Var. CI Half-length 0.232694 0.529745 0.000136 0.000128 0.000028 0.000026
Avg. warm-up length w∗ 26 26 42 45 53 56

Avg. # of runs q0 8 8 23 26 36 40
Avg. sample size/run n∗ 2531 2531 15164 19658 36480 46444

Mean Estimator X 3.188057 3.188057 3.195352 3.198762 3.198850 3.198891
Abs. Avg. Bias 0.011943 0.011943 0.004648 0.001238 0.001150 0.001109

Var. of Mean Estimator 0.067732 0.067732 0.004076 0.002723 0.000998 0.000674
Mean Squared Error (MSE) 0.067875 0.067875 0.004097 0.002724 0.000999 0.000675

From Tables 1–4 we see that for each of the four test processes in the no-precision case, ARD delivered a
skewness-adjusted CI with half-length between 2% and 20% of the magnitude of the steady-state mean and
the actual CI coverages were reasonably close to the nominal CI coverage probabilities. The no-precision
case also demonstrates ARD’s ability to determine the length of the warm-up period with a relatively small
initial sample size. From the reported point-estimator performance measures (namely, the absolute average
bias, variance, and mean squared error of the grand mean X), we concluded that ARD could successfully
remove the effects of initialization bias in each of the test processes. In particular, the absolute average
bias was in the range of 0.02%−0.5% of the steady-state mean for each test process. The warm-up period
length (w∗) was ≈ 1% of the average run length (n∗). Relatively larger average run lengths were observed
for processes with a substantial initial transient, thus resulting in a larger average overall simulation budget
(q0n∗).

The precision levels for each test process are chosen so as to stress-test ARD’s CI estimator, based on
its performance in the no-precision case. Subsequent higher precision levels chosen were half the original
chosen levels. This enabled us to observe the effects on the various performance statistics resulting from
a 50% reduction in the CI half-length. In particular, it would be desirable to investigate any drop in

811



Lada, Mokashi, and Wilson

CI coverages, or excessive inflation in the overall simulation budget requirement or the warm-up period
length resulting from more stringent precision requirements. From Tables 1–4 we observed a gradual
increase in q0 and a more rapid increase in n∗ with tighter precision requirements. The actual CI coverages
exhibited reasonably close conformance to the nominal coverage probabilities for all the test processes and
for all levels of precision that we studied. The point-estimator performance measures showed substantial
improvement with progressively tighter precision requirements. In particular, we saw order-of-magnitude
reductions in the values of the absolute average bias and the MSE of X with each successive halving of the
precision requirement. In many cases we observed that the total simulation budget required by ARD was
substantially larger than the final sample sizes required by some single-run procedures—namely, SBatch
(Lada, Steiger, and Wilson 2008) and Skart (Tafazzoli and Wilson 2011; Tafazzoli et al. 2011). We observed
that for test processes resulting in highly nonnormal SBMs (namely, the Central Server Model 3 and the
M/M/1 LIFO queueing system) ARD recommended running more replications with shorter run-lengths.

5 CONCLUSIONS AND RECOMMENDATIONS

As an approach to automating the replication-deletion method of steady-state simulation analysis, we believe
that ARD shows some promise. In particular, ARD delivers point and CI estimators of the steady-state
mean that are largely free of the undesirable effects of initialization bias, nonnormality, or correlation in the
associated output process. On the other hand, areas for improvement include ARD’s sampling efficiency
and the ease with which a procedure like ARD can be applied in large-scale practical applications. These
issues are the subject of ongoing work.
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