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ABSTRACT

We all know how to estimate a confidence interval for the mean based on a random sample. The interval is
centered on the sample mean, with the half-width proportional to the sample standard error. We know also
that terminating simulations generate independent observations. What simulators appear to have overlooked
is that independence alone is insufficient to guarantee a valid random sample—the observations must also be
identically distributed. This is a good assumption if the outcome of each replication is a single observation,
but it is demonstrably incorrect if the outcome is an aggregate value and the replications have differing
numbers of observations. In this paper we explore the implications of this oversight when within-replication
observations are independent. We then derive analytic results showing that although the impact on interval
estimates can sometimes be negligible, there also are circumstances where the variance of our estimates
is significantly increased. We finish with a simple example which demonstrates the potential impact for
practitioners.

1 INTRODUCTION

Analysis of terminating simulations, i.e., models that halt when they reach some clearly defined state,
seems straightforward (Banks et al. 2000; Bratley, Fox, and Schrage 1983; Hoover and Perry 1989; Law
and Kelton 2000). If each run is seeded independently of the others, then the output measures from each
run will be independent and we can just apply classical statistics, right? It turns out that the answer to that
question may be “wrong!” The “identically distributed” requirement of classical statistics can be called
into question when the output measure is an aggregate such as a sum or sample mean.

Performance measures of a simulation will always be some function of the simulation state. In the case
of terminating simulations, the performance measure is reported upon termination. Each replication will
produce one observation of the performance measure. If that observation directly represents an end state
such as the number of failed components after a week’s operation, or the number of patients processed
in 24 hours of emergency room operations, there’s no problem—the set of values obtained by replication
represent a random sample from the distribution of possible end states, and classical statistics applies.
However, we can run into trouble if the performance measure is an aggregate measure, such as an average,
and the number of observations contributing to the aggregate varies from replication to replication.

2 BACKGROUND AND NOTATION

Let Yi j be the jth raw observation from the ith replication of our model, with common mean µY and variance
σ2

Y . For this paper we will assume that we are performing r independently seeded replications of our model,
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the ith replication of our terminating simulation produces a single aggregate measure

Ȳi =
1
ni

ni

∑
j=1

Yi j

for i = 1 . . .r based on ni observations. Note that ni is explicitly allowed to vary from replication to
replication. We will denote the total number of observations as N = ∑

r
i=1 ni. The Yi j’s are independent

across i by virtue of independent seeding, and in this paper we will assume that they are also independent
within a replication to emphasize the effect of varying the sample sizes. Given these assumptions, it should
be clear that E[Ȳi] = µY and Var(Ȳi) = σ2

Y /ni. They are not identically distributed, because the variance
varies from run to run.

We needn’t worry about initial bias in a terminating scenario. The traditional wisdom at this point
would be to calculate a grand sample mean and estimate the variance across the replications:

¯̄Y =
1
r

r

∑
i=1

Ȳi (1)

s2
Ȳ =

1
r−1

r

∑
i=1

(
Ȳi− ¯̄Y

)2
. (2)

and use them to construct a 100(1−α)% confidence interval of the form

¯̄Y ± tα/2;r−1

√
s2
Ȳ
r

where tα/2;r−1 is the critical value from Student’s T distribution with r−1 degrees of freedom and probability
α/2 in each tail.

3 IMPACT OF UNEQUAL SAMPLE SIZES

So what is the impact on ¯̄Y of using Ȳi’s with different sample sizes? It’s easy to see that ¯̄Y is unbiased:

E[ ¯̄Y ] = E

[
1
r

r

∑
i=1

Ȳi

]
=

1
r

r

∑
i=1

E [Ȳi]

=
1
r

r

∑
i=1

E

[
1
ni

ni

∑
i=1

Yi j

]
=

1
r

r

∑
i=1

1
ni

ni

∑
i=1

E [Yi j]

=
1
r

r

∑
i=1

1
ni

niµY =
1
r

r

∑
i=1

µY = µY .

(3)

The variance of ¯̄Y is similarly easy to derive.

Var( ¯̄Y ) = Var

(
1
r

r

∑
i=1

Ȳi

)
=

1
r2

r

∑
i=1

Var (Ȳi)

=
1
r2

r

∑
i=1

σ2
Y

ni
=

σ 2
Y

r2

r

∑
i=1

1
ni

(4)

Note that when sample sizes are identical equation (4) yields the familiar minimum variance unbiased
estimate (MVUE) result. With equal sample sizes ni = N/r ∀i, and thus

Var( ¯̄Y ) =
σ 2

Y

r2

r

∑
i=1

1
ni

=
σ 2

Y

r2

r

∑
i=1

r
N

=
σ 2

Y

r2
r2

N
=

σ 2
Y

N
.
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Var( ¯̄Y ) is minimized when the sample sizes are all equal, and maximized when r− 1 of the Ȳi’s have a
single observation and the one remaining Ȳi has the remaining N− (r−1) observations.

The preferred approach, which is well known in classical statistics (Kutner et al. 2005) but has been
ignored or overlooked in simulation other than by Sánchez and White (2011), is to use a weighted average
estimator of the form

¯̄Y w =
r

∑
i=1

wiȲi s.t.
r

∑
i=1

wi = 1, wi ≥ 0 ∀i (5)

and the corresponding unbiased variance estimator is

s2
Ȳ =

(
∑wi

(∑wi)2−∑w2
i

) r

∑
i=1

wi(Ȳi− ¯̄Y )2. (6)

Using a convex weighting scheme like this results in an unbiased estimator, but the choice of weights
affects the variance of the estimate of the sample mean. The set of weights which minimizes the variance
of ¯̄Y w is {wi = ni/N}, in which case

Var( ¯̄Y w) =Var(
r

∑
i=1

wiȲi)

=
r

∑
i=1

w2
i Var(Ȳi) =

r

∑
i=1

(ni

N

)2 σ2
Y

ni

=
σ2

Y

N2

r

∑
i=1

ni =
σ 2

Y

N2 N =
σ 2

Y

N
.

(7)

In other words, with the recommended weights the weighted estimator is MVUE regardless of the varying
sample sizes, while the naive estimator is only MVUE when the sample sizes are equal.

3.1 Worst Case Behavior

We can assess the relative impact (RI) of using the naive estimator by looking at the ratio of the variance
of ¯̄Y to that of ¯̄Y w:

RI =

(
σ2

Y

r2

r

∑
i=1

1
ni

)
/

(
σ2

Y

N

)
=

N
r2

r

∑
i=1

1
ni
. (8)

Another way of looking at this is to recall that N is the sum of the ni’s, yielding

RI =

(
1
r

r

∑
i=1

ni

)(
1
r

r

∑
j=1

1
n j

)
. (9)

Thus the relative impact is simply the average sample size per replication times the average of the inverse
sample sizes.

It’s easy to confirm that RI is 1 when the ni’s are equal, and increases for any other combination of
sample sizes. The maximum variance sampling scenario yields

RImax =
N
r2

[
r−1+

1
N− (r−1)

]
. (10)

For example, if you have ten observations total and five replications, the worst case scenario is that four
of the replications produce averages based on a single observation while the remaining replicate produces
an average of six observations. In that case the naive average of the averages would have 5

3 the variance
of the weighted estimator.
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3.2 An Interesting Alternative Measure

The maximum variance scenario is unlikely to occur in practice, so arguably doesn’t give much insight
other than by bounding RI. At this point we have no idea of whether that’s a loose bound or a tight one.
Consider the following alternative measure. Suppose the number of replications is even and that half of
the replicates have the same sample size nlow while the other half have sample size nhi. The total sample
size is then N = (r/2)(nlow +nhi). Substituting this into equation (8), we get

RII =

(
1
r2

)( r
2

)
(nlow +nhi)

(
r/2

∑
i=1

1
nlow

+
r/2

∑
j=1

1
nhi

)

=

(
1
2r

)
(nlow +nhi)

(
r
2

[
1

nlow
+

1
nhi

])
=

(
1
4

)
(nlow +nhi)

(
1

nlow
+

1
nhi

)
=

(
1
4

)(
2+

nhi

nlow
+

nlow

nhi

)
.

(11)

Note that this measure is invariant in both N and r, hence the subscript I. If we describe the observed sample
sizes as a set {n1,n2, . . . ,nr}, this says that experiments with {1,4}, {25,100}, and {1,1,1,1,1,4,4,4,4,4}
all have the same sample-size ratio nhi/nlow = 4, and therefore all have the same relative impact RI = 1.5626.
The estimated variance of the mean will be more than 50% larger when using ¯̄Y rather than ¯̄Y w.

Relative Impact vs. ratio of max/min

R
el

at
iv

e 
Im

p
ac

t

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 3 4 5 6 7
ratio of max/min

Figure 1: Invariant relative impact vs. the ratio of maximum sample size to minimum sample size.
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Figure 1 shows the variance inflation on the vertical axis as a function of the sample-size ratio along
the horizontal axis. As an example, a 5:1 sampling ratio inflates variance by a factor of 1.8 when the naive
estimator is used. Note that the relative impact is non-linear for sample-size ratios below 2 but becomes
very nearly linear for higher ratios.

4 AN EXAMPLE: TURNING LEMONS INTO LEMONADE

Consider a system that processes items serially, one at a time. Each item is inspected after processing.
If the item fails inspection, it is reprocessed and inspected once again. The reprocessing/inspection cycle
continues indefinitely until the item finally passes inspection. Items failing inspection are “lemons”, and
the probability that a lemon passes subsequent inspections after any reprocessing/inspection cycle is far
less than the initial probability that the item is a lemon.

For this example, the total processing-and-inspection time on any cycle is random variable P distributed
T RI(25,30,35) minutes with E[P] = 30. The probability that an item is not a lemon (and passes on its first
inspection) is p1 = 0.95. The probability that a lemon passes inspection after any reprocessing/inspection
cycle is pr = 0.10. The simulation terminates after at least 480 minutes have expired and any item still in
process passes inspection. That is, the system will work overtime beyond a normal 8-hour day if any item
is still in process. The system begins with a new item immediately available and ready for processing. That
is, the system regenerates after the terminating condition is achieved and there is no initialization bias.

The objective is to estimate the average processing time for all items. We can compute this average
analytically. If the item is a lemon, the number of reprocessing/inspection cycles incurred before the final
cycle which results in the item passing inspection has a GEOM(pr) distribution. The expected processing
time is therefore

E[T ] = E[P]
(

p1 +(1− p1)

(
1
pr

))
= 30

(
0.95+0.05

(
1

0.1

))
= 30(1.45) = 43.5.

(12)

We ran 100 simulation replications for this system and divided the results into 5 sequential experiments
of 20 replications each. The resulting 95% confidence intervals for each 20-replicate experiment, as well for
the single combined 100-replicate experiment, are shown in Figure 2. These intervals are computed using
both the traditional approach (displayed as lighter-colored bars to the left) and the optimal weighting scheme
(displayed as darker bars to the right). The true mean derived in equation 12 is plotted as a horizontal red
line. Note that while all of the point estimates are greater than the true mean—an artifact of the terminating
condition which we have not corrected—all but one of the intervals cover. The exception is the combined
experiment using the traditional approach. This is noteworthy because without prior knowledge of the
correct answer most analysts would probably consider the combined estimator to be more reliable because
of its larger sample size. Note also that the weighted estimators provided both greater accuracy and greater
precision in all cases.

Figure 3 is a scatter plot of the number of observations versus the estimated mean for each of the
100 replications. Note that the weights applied are proportional to the number of observations for each
replication. The power trendline illustrates that larger numbers of observations are associated with smaller
estimated average processing times. The beneficial effect of the weighting scheme is clear—larger weights
are given to the more common outcomes where large reprocessing delays are unusual, since lemons represent
only 5% of all items in the general population.

Note that this example was not difficult to construct. It is representative of regenerative processes
subject to conditions that tend to correlate the magnitude of an aggregate output measure with the number
of observations obtained during any regenerative cycle. In this example, the events are “disruptive” and
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Figure 2: 95% confidence intervals on the mean processing time computed using both the traditional
approach (lighter bars to the left) and the recommended weighting scheme (darker bars to the right) for
the 20-replication experiments and the combined 100-replication experiment.

Figure 3: Scatter plot illustrating negative correlation between the number of items completed and the
estimated mean processing time for each of 100 replications.
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the correlation is negative, as might be the case in systems with random failures or vacations. One can
also think of events that are “benign” and induce a positive correlation, such as unusually long stretches
of good weather and/or instances of unusually low absenteeism on crews for construction projects.

5 CONCLUSIONS

Using the naive ¯̄Y estimator rather than ¯̄Y w will often make little or no difference. This is the case when
the terminating simulation produces 1) single-observation measures as its output; 2) aggregate measures
where the terminating rule guarantees identical sample sizes; or 3) the sample sizes can vary from run to
run but are strongly consistent, i.e., the ratio of max to min sample size is relatively close to one. In cases
1) and 2), the naive estimator and the weighted estimator are mathematically identical. In case 3) the two
estimators should produce results that are very close to each other, but to the extent that the estimates differ
the weighted estimator is the better one. When none of the three cases applies, the weighted estimator can
significantly outperform the naive estimator. Given that the weighted estimator is simple to compute, we
recommend that it should always be used.
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