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ABSTRACT

We consider the solution of a stochastic convex optimization problem E[ f (x;θ ∗,ξ )] in x over a closed and
convex set X in a regime where θ ∗ is unavailable. Instead, θ ∗ may be learnt by minimizing a suitable
metric E[g(θ ;η)] in θ over a closed and convex set Θ. We present a coupled stochastic approximation
scheme for the associated stochastic optimization problem with imperfect information. The schemes are
shown to be equipped with almost sure convergence properties in regimes where the function f is both
strongly convex as well as merely convex. Rate estimates are provided in both a strongly convex as well
as a merely convex regime, where the use of averaging facilitates the development of a bound.

1 INTRODUCTION

Increasingly, optimization problems need to be solved in uncertain networked regimes. A challenge in
developing the associated distributed protocols lies in ensuring that all agents have access to system
parameters, particularly when such parameters are essential for evaluating agent-specific cost functions.
However, such parameters may be unavailable and require learning through a separate process. Historically,
this question has been addressed via a two-step, and in effect, a serial approach. The first step requires the
learning of such parameters by possibly fitting a model to a set of samples collected off-line, a problem that
falls within the purview of statistical learning (Hastie, Tibshirani, and Friedman 2001). Given an estimate
of such parameters, optimization algorithms can be subsequently applied. Unfortunately, in many dynamic
settings complicated by streaming data and the need for online decision-making, one cannot impose such
a separation in these processes and both optimization and learning need to be carried out simultaneously.

In contrast with a serial approach, we consider an avenue where the learning and optimization problem
are jointly resolved and consider a more general class of coupled stochastic optimization problems. Of
these, the primary problem is the following parameterized stochastic optimization problem:

min
x∈X

f (x;θ
∗), E[ f (x;θ

∗,ξ )], (Px(θ
∗))

where X ⊆Rn is a closed and convex set, ξ : Ω→Rd is a d−dimensional random variable, f : X×Rd×Rm→
R is a real-valued function. Suppose the associated probability space is denoted by (Ω,Fx,Px) and θ ∗ is
an unknown parameter vector that may be learnt through the solution of a second stochastic optimization
problem using a collection of already collected samples as given by the following:

min
θ∈Θ

g(θ), E[g(θ ;η)], (Pθ )

where Θ ⊆ Rm is a closed and convex set, η : Λ→ Rp is a random variable on a probability space
(Λ,Fθ ,Pθ ). Furthermore, g : Θ×Rp→ R is a real-valued function. Given the generality of the model, a
range of applications emerge, a subset of which we describe next.
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(i) Stochastic optimization problems with imperfect information: As mentioned earlier, a key
motivation for studying the proposed problem emerges from imperfect information stochastic
optimization problems. In such settings, the decision-maker may not have access to specific
system-level parameters; such parameters may take the form of specific structural or thermal
characteristics or may represent market-level characteristics such as demand, prices or elasticities.
The prescribed model assumes relevance when such parameters can be “learnt” by solving a suitably
defined problem.

(ii) Coupled stochastic optimization problems: In many networked settings, a collection of agents
may be motivated by prescribed protocols. However, agent-specific decisions may rely on the
outcome of a distinct consensus or optimization process over a related network, not unlike the
interactions in a layered or hierarchical networked multiagent system. An instance of such a problem
arises in the context of a smart grid where macro and micro grids interact. Here, θ ∗ may take the
form of demand response or distributed energy resource supplied by the microgrid.

(iii) Static stochastic Nash games: A rather different motivation arises from considering a two-person
stochastic Nash game of a rather special form. In such a game, the first agent is faced by a problem
(Px(θ)) while the second agent faces a problem (Pθ ) which is independent of the first agent’s
decisions.

While we are unaware of the availability of general purpose mathematical tools that can resolve such
problems, questions of a similar flavor have arisen in control-theoretic regimes. For instance, in adaptive
control problems (Astrom and Wittenmark 1994), the true parameters may vary in time, and the control
laws adapt to the changing parameters. Iterative learning control (Moore 1993) is a form of tracking control
employed for repetitive control problems, instances being chemical batch processes, robot arm manipulators,
and reliability testing rigs. Related questions also been studied in revenue management where Cooper,
Homem-de Mello, and Kleywegt (2006) examined the devastating effect of learning with an incorrect
model while maximizing revenue. Of note is also work on multi-armed bandit problems where resource
allocation is considered in a problem whose parameters may be better understood with time (Gittins 1989).
In related work by Jiang, Shanbhag, and Meyn (2011), the authors examine joint schemes for learning
(misspecified) price function parameters and equilibrium computation in noise-corrupted Nash-Cournot
games. In contrast with the current work, this approach accumulates observations while carrying out the
computation. However, convergence guarantees are provided only in the mean-squared sense, rather than
in a desirable almost-sure sense and no rate estimates are provided. In this paper, we develop coupled
stochastic approximation schemes that produce sequences {xk} and {θ k} such that

lim
k→∞

xk = x∗ and lim
k→∞

θ
k = θ

∗, almost surely.

Additionally, rate estimates for such schemes are provided, both in a standard and in an averaging regime.
Before proceeding, it is worth commenting on why this problem is challenging. Under the assumption

that f (•;θ) is convex in (•) for every θ ∈Θ and g(•) is convex in (•), the following holds:

x∗ solves(Px(θ
∗)) and θ

∗ solves (Pθ ),

if and only if (x∗,θ ∗) is a solution to the (stochastic) variational inequality problem VI (Z,F) where

K , X×Θ and F(z,θ),
(

∇xE[ f (x;θ ,ξ )]
∇θ [g(θ ,η)]

)
.

Recall that z∗ is a solution to VI (K,F) if (z− z∗)T F(z)≥ 0 for all z ∈ K. Furthermore, if x∗ and θ ∗ denote
solutions to (Px(θ

∗) and (Pθ ), respectively, then an oft-used avenue in obtaining a solution (x∗,θ ∗) entails
obtaining a solution to VI(K,F). However, unless rather strong assumptions are imposed, the map F is
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not necessarily monotone; recall that a map F(z) is monotone over a set K if (F(x)−F(y))T (x− y)≥ 0
for all x,y ∈ K. Unfortunately, monotonicity of F(z) is difficult to claim and this precludes the use of
recently developed regularized stochastic approximation schemes for solving monotone stochastic variational
inequality problems (Koshal, Nedic, and Shanbhag 2013).

The paper makes the following contributions: (i) In Section 2, we show that under suitable convexity and
Lipschitz assumptions, our prescribed stochastic approximation schemes produce sequences that converge
almost surely to a solution of the joint system. (ii) In Section 3, we develop rate estimates that rely on the
usage of constant steplength schemes for the joint schemes in strongly convex and merely convex regimes, of
which the latter leverages averaging techniques. The paper concludes with a brief set of remarks in Section 4.
Finally, throughout the paper, we use ‖x‖ to denote the Euclidean norm of a vector x, i.e., ‖x‖ =

√
xT x

and ΠK to denote the Euclidean projection operator onto a set K, i.e., ΠK(x), argminy∈K ‖x− y‖.

2 COUPLED STOCHASTIC APPROXIMATION SCHEMES

As mentioned in the previous section, we propose a set of coupled stochastic approximation schemes for
computing x∗ and θ ∗. Given x0 ∈ X and θ 0 ∈Θ, the coupled SA schemes can be stated as follows:

Algorithm 1

xk+1 := ΠX

(
xk− γk,x(∇x f (xk;θ

k)+wk)
)
, k ≥ 0

θ
k+1 := ΠΘ

(
θ

k− γk,θ (∇θ g(θ k)+ vk)
)
, k ≥ 0

where wk , ∇x f (xk;θ k,ξ k)−∇x f (xk;θ k) and vk , ∇θ g(θ k;ηk)−∇θ g(θ k).
In this section, we develop the convergence theory for Algorithm 1 for settings where the function f

is both strongly convex and merely convex in x for every θ ∈ Θ. We begin by stating an assumption on
the functions f and g.

Assumption 1 (A1) Suppose the following hold:

(i) For every θ ∈Θ, f (x;θ) is strongly convex and continuously differentiable with Lipschitz continuous
gradients in x with convexity constant µx and Lipschitz constant Lx, respectively.

(ii) For every x ∈ X , the gradient ∇x f (x;θ) is Lipschitz continuous in θ with constant Lθ .
(iii) The function g(θ) is strongly convex and continuously differentiable with Lipschitz continuous

gradients in θ with convexity constant µθ and Lipschitz constant Cθ , respectively.

Additionally, we make the following assumptions on the steplength sequences employed in the algorithm.
Assumption 2 (A2) Let {γk,x} and {γk,θ} be chosen such that:

(i) ∑
∞
k=0 γk,x = ∞, ∑

∞
k=0 γ2

k,x < ∞.
(ii) γk,θ = γk,xL2

θ
/(µxµθ ).

We define a new probability space (Z,F ,P), where Z ,Ω×Λ, F ,Fx×Fθ and P, Px×Pθ . We use
Fk to denote the sigma-field generated by the initial points (x0,θ 0) and errors (wl,vl) for l = 0,1, · · · ,k−1,
i.e., F0 =

{
(x0,θ 0)

}
and Fk =

{
(x0,θ 0),

(
(wl,vl), l = 0,1, · · · ,k−1

)}
for k≥ 1.The following assumptions

on the filtration and errors are made.
Assumption 3 (A3) Let the following hold:

(i) E[wk |Fk] = 0 and E[vk |Fk] = 0 a.s. for all k.
(ii) E[‖wk‖2 |Fk]≤ ν2

x and E[‖vk‖2 |Fk]≤ ν2
θ

a.s. for all k.
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We begin by providing a contraction result (without proof) which will be subsequently employed in
developing our convergence statements.

Lemma 1 Let H : K → Rn be a mapping that is strongly monotone over K with constant µ , and
Lipschitz continuous over K with constant L. If q ,

√
1−2µγ + γ2L2, then for any γ > 0, we have the

following:

‖ΠK(x− γH(x))−ΠK(y− γH(y))‖ ≤ q‖x− y‖, (1)

In our analysis, we also use some well-known results on supermartingale convergence,
Lemma 2 (Polyak 1987, Lemma 10, Pg. 49) Let Vk be a sequence of nonnegative random variables

adapted to σ -algebra Fk and such that

E[Vk+1|Fk]≤ (1−uk)Vk +βk for all k ≥ 0 almost surely,

where 0≤ uk ≤ 1, βk ≥ 0, and ∑
∞
k=0 uk = ∞, ∑

∞
k=0 βk < ∞ and limk→∞

βk
uk

= 0. Then, Vk→ 0 a.s.

Lemma 3 (Polyak 1987, Lemma 11, Pg. 50) Let Vk, uk, βk and δk be nonnegative random variables
adapted to σ -algebra Fk. If ∑

∞
k=0 uk < ∞, ∑

∞
k=0 βk < ∞ and

E[Vk+1|Fk]≤ (1+uk)Vk−δk +βk for all k ≥ 0 almost surely.

Then, {Vk} is convergent and ∑
∞
k=0 δk < ∞ almost surely.

We now leverage these results in examining the convergence properties of Algorithm 1.
Theorem 4 (Almost-sure convergence under strong convexity of f ) Suppose (A1), (A2) and (A3)

hold. Let {xk,θ k} be computed via Algorithm 1. Then, xk→ x∗ and θ k→ θ ∗ a.s. as k→ ∞, where x∗ is
the unique solution to (Px(θ

∗)).
Proof: Note that x∗=ΠX(x∗−γk,x∇x f (x∗;θ ∗)). Then, by the nonexpansivity of the Euclidean projector,

‖xk+1− x∗‖2 may be bounded as follows:

‖xk+1− x∗‖2 = ‖ΠX(xk− γk,x(∇x f (xk;θ
k)+wk))−ΠX(x∗ − γk,x∇x f (x∗;θ

∗))‖2

≤ ‖(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

∗))− γk,xwk‖2.

By adding and subtracting γk,x∇x f (x∗,θ k), this expression can be further expanded as follows:

‖(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))− γk,x(∇x f (x∗;θ
k)−∇x f (x∗;θ

∗))− γk,xwk‖2

= ‖(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))‖2 + γ
2
k,x‖∇x f (x∗;θ

k)−∇x f (x∗;θ
∗)‖2 + γ

2
k,x‖wk‖2

−2γk,x[(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))]T (∇x f (x∗;θ
k)−∇x f (x∗;θ

∗))

−2γk,x[(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))]T wk

+2γ
2
k,x(∇x f (x∗;θ

k)−∇x f (x∗;θ
∗))T wk. (2)

By leveraging the fact that E[wk |Fk] = 0 and E[‖wk‖2 |Fk]≤ ν2
x , we have

E[‖xk+1− x∗‖2 |Fk]≤ Term 1+Term 2+Term 3+ γ
2
k,xν

2
x , (3)

where Terms 1 – 3 are defined as follows:

Term 1 , ‖(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))‖2,Term 2 , γ
2
k,x‖∇x f (x∗;θ

k)−∇x f (x∗;θ
∗)‖2,

and Term 3 ,−2γk,x[(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))]T (∇x f (x∗;θ
k)−∇x f (x∗;θ

∗)).
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By Lemma 1 and (A1), it follows that

Term 1≤ (1−2γk,xµx + γ
2
k,xL2

x)‖xk− x∗‖2. (4)

Furthermore, the Lipschitz continuity of ∇x f (x∗;θ) in θ (A1) allows for deriving the following bound:

Term 2≤ γ
2
k,xL2

θ‖θ k−θ
∗‖2. (5)

Finally, Term 3 can be bounded by invoking the Cauchy-Schwarz inequality, Lemma 1, (A1) and the
triangle inequality, we obtain

2γk,x‖(xk− x∗)− γk,x(∇x f (xk;θ
k)−∇x f (x∗;θ

k))‖‖∇x f (x∗;θ
k)−∇x f (x∗;θ

∗)‖

≤ 2γk,x

√
1−2γk,xµx + γ2

k,xL2
x‖xk− x∗‖ ·Lθ‖θ k−θ

∗‖ ≤ 2γk,xLθ‖xk− x∗‖‖θ k−θ
∗‖

≤ γk,xµx‖xk− x∗‖2 + γk,x(L2
θ/µx)‖θ k−θ

∗‖2. (6)

The first inequality follows from the strong monotonicity and Lipschitz continuity of ∇x f (x;θ) in x and
Lemma 1, and the Lipschitz continuity of ∇x f (x;θ) in θ . The last inequality follows from 2aT b ≤
‖a‖2 +‖b‖2. Combining (3), (4), (5) and (6), we get

E[‖xk+1− x∗‖2 |Fk]≤ (1− γk,xµx + γ
2
k,xL2

x)‖xk− x∗‖2 +(γk,xL2
θ/µx + γ

2
k,xL2

θ )‖θ k−θ
∗‖2 + γ

2
k,xν

2
x . (7)

Recall that θ ∗ satisfies the fixed point relationship θ ∗ = ΠΘ(θ
∗− γθ ,k∇θ gθ (θ

∗)), which, together with
non-expansivity of the Euclidean projector, allows for deriving the following bound on ‖θ k+1−θ ∗‖2:

‖θ k+1−θ
∗‖2 = ‖ΠΘ(θ

k− γθ ,k(∇θ g(θ k)+ vk))−ΠΘ(θ
∗ − γθ ,k∇θ gθ (θ

∗))‖2

≤ ‖θ k−θ
∗ − γθ ,k(∇θ gθ (θ

k)−∇θ gθ (θ
∗))− γθ ,kvk‖2

= ‖θ k−θ
∗ − γθ ,k(∇θ gθ (θ

k)−∇θ gθ (θ
∗))‖2 + γ

2
θ ,k‖vk‖2

−2(θ k−θ
∗ − γθ ,k(∇θ gθ (θ

k)−∇θ gθ (θ
∗)))T vk. (8)

By taking conditional expectations and by recalling that E[vk |Fk] = 0 and E[‖vk‖2 |Fk]≤ ν2
θ

, we obtain
the following:

E[‖θ k+1−θ
∗‖2 |Fk]≤ ‖θ k−θ

∗ − γk,θ (∇θ gθ (θ
k)−∇θ gθ (θ

∗))‖2 + γ
2
k,θE[‖vk‖2 |Fk]

≤ q2
k,θ‖θ k−θ

∗‖2 + γ
2
k,θ ν

2
θ , (9)

where qk,θ ,
√

1−2γk,θ µθ + γ2
k,θC2

θ
. Next, by adding (7) and (9) and using the assumption γk,θ =

γk,xL2
θ
/(µxµθ ) (A2 (ii)), we obtain the following bound.

E[‖xk+1− x∗‖2 |Fk]+E[‖θ k+1−θ
∗‖2 |Fk]≤ (1− γk,xµx + γ

2
k,xL2

x)‖xk− x∗‖2

+(q2
k,θ + γk,xL2

θ/µx + γ
2
k,xL2

θ )‖θ k−θ
∗‖2 + γ

2
k,xν

2
x + γ

2
k,θ ν

2
θ

= (1− γk,xµx + γ
2
k,xL2

x)‖xk− x∗‖2 +(1− γk,xL2
θ/µx + γ

2
k,x(L

2
θ +L4

θC2
θ/(µ

2
x µ

2
θ )))‖θ k−θ

∗‖2

+ γ
2
k,xν

2
x + γ

2
k,xν

2
θ L4

θ/(µ
2
x µ

2
θ )

≤ (1−αγk,x +βγ
2
k,x)(‖xk− x∗‖2 +‖θ k−θ

∗‖2)+δγ
2
k,x, (10)

where α = min{µx,L2
θ
/µx}, β = max{L2

x ,L
2
θ
+L4

θ
C2

θ
/(µ2

x µ2
θ
)} and δ = ν2

x +ν2
θ

L4
θ
/(µ2

x µ2
θ
). From (A2),

we have that ∑
∞
k=0(αγk,x−βγ2

k,x) = ∞, ∑
∞
k=0 δγ2

k,x < ∞ and limk→∞

δγ2
k,x

αγk,x−βγ2
k,x

= 0. Then, by invoking the

super-martingale convergence theorem (Lemma 2), we have that ‖xk−x∗‖2+‖θ k−θ ∗‖2→ 0 a.s. as k→∞,
which implies that xk→ x∗ and θ k→ θ ∗ a.s. as k→ ∞.

Next we weaken the strong convexity requirement on the function f through the following assumption.
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Assumption 4 (A4) Suppose the following holds in addition to (A1 (ii)) and (A1 (iii)).

(i) For every θ ∈ Θ, f (x;θ) is convex and continuously differentiable with Lipschitz continuous
gradients in x with Lipschitz constant Lx.

We make the following assumptions on the steplength sequences employed in the algorithm.
Assumption 5 (A5) Let {γk,x}, {γk,θ} and some constant τ ∈ (0,1) be chosen such that:

(i) ∑
∞
k=0 γ

2−τ

k,x < ∞ and ∑
∞
k=0 γ2

k,θ < ∞,
(iii) ∑

∞
k=0 γk,x = ∞ and ∑

∞
k=0 γk,θ = ∞,

(iii) βk =
γτ

k,x
2γk,θ µθ

↓ 0 as k→ ∞.

The convergence result for Algorithm 1 can be stated as follows.
Theorem 5 (Almost-sure convergence under convexity of f ) Suppose (A3), (A4) and (A5) hold.

Suppose X is bounded and the solution set X∗ of (Px(θ
∗)) is nonempty. Let {xk,θ k} be computed via

Algorithm 1. Then, θ k→ θ ∗ a.s. as k→ ∞, and xk converges to a random point in X∗ a.s. as k→ ∞.
Proof: By the nonexpansivity of the Euclidean projector, we have for any x∗ ∈ X∗ that

‖xk+1− x∗‖2 = ‖ΠX(xk− γk,x(∇x f (xk;θ
k)+wk))−ΠX(x∗)‖2 ≤ ‖(xk− x∗)− γk,x∇x f (xk;θ

k)− γk,xwk‖2.

By adding and subtracting γk,x∇x f (x∗,θ k), this expression can be further expanded as follows:

‖(xk− x∗)− γk,x∇x f (xk;θ
∗)− γk,x(∇x f (xk;θ

k)−∇x f (xk;θ
∗))− γk,xwk‖2

= ‖(xk− x∗)− γk,x∇x f (xk;θ
∗)‖2 + γ

2
k,x‖∇x f (xk;θ

k)−∇x f (xk;θ
∗)‖2 + γ

2
k,x‖wk‖2

−2γk,x[(xk− x∗)− γk,x∇x f (xk;θ
∗)]T (∇x f (xk;θ

k)−∇x f (xk;θ
∗))

−2γk,x[(xk− x∗)− γk,x∇x f (xk;θ
∗)]T wk +2γ

2
k,x(∇x f (xk;θ

k)−∇x f (xk;θ
∗))T wk. (11)

Noting that E[wk |Fk] = 0 and E[‖wk‖2 |Fk]≤ ν2
x , we have

E[‖xk+1− x∗‖2 |Fk]≤ Term 1+Term 2+Term 3+ γ
2
k,xν

2
x , (12)

where Terms 1 – 3 are defined as follows:

Term 1 , ‖(xk− x∗)− γk,x∇x f (xk;θ
∗)‖2,Term 2 , γ

2
k,x‖∇x f (xk;θ

k)−∇x f (xk;θ
∗)‖2,

and Term 3 ,−2γk,x[(xk− x∗)− γk,x∇x f (xk;θ
∗)]T (∇x f (xk;θ

k)−∇x f (xk;θ
∗)).

By invoking the convexity of f (x;θ) in x and the gradient inequality (see A4), we have that

Term 1 = ‖xk− x∗‖2 + γ
2
k,x‖∇x f (xk;θ

∗)‖2−2γk,x(xk− x∗)T
∇x f (xk;θ

∗)

≤ ‖xk− x∗‖2 + γ
2
k,x‖∇x f (xk;θ

∗)‖2−2γk,x( f (xk;θ
∗)− f (x∗;θ

∗))

≤ ‖xk− x∗‖2 +2γ
2
k,x‖∇x f (xk;θ

∗)−∇x f (x∗;θ
∗)‖2 +2γ

2
k,x‖∇x f (x∗;θ

∗)‖2 −2γk,x( f (xk;θ
∗)− f (x∗;θ

∗)),

where the last inequality follows from the identity ‖(a−b)+b‖2 ≤ 2‖a−b‖2+2‖b‖2. From the Lipschitz
continuity of ∇x f (x;θ) in x, the right hand side can be bounded as follows:

‖xk− x∗‖2 +2γ
2
k,x‖∇x f (xk;θ

∗)−∇x f (x∗;θ
∗)‖2 +2γ

2
k,x‖∇x f (x∗;θ

∗)‖2 −2γk,x( f (xk;θ
∗)− f (x∗;θ

∗))

≤ (1+2γ
2
k,xL2

x)‖xk− x∗‖2 +2γ
2
k,x‖∇x f (x∗;θ

∗)‖2−2γk,x( f (xk;θ
∗)− f (x∗;θ

∗)). (13)
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By the Lipschitz continuity of ∇x f (x;θ) in θ (A4),

Term 2≤ γ
2
k,xL2

θ‖θ k−θ
∗‖2. (14)

By adding and subtracting ∇x f (x∗;θ ∗), and by invoking the Lipschitz continuity of ∇x f (x;θ) in x, (A4)
and the triangle inequality, we may derive a bound for Term 3 as follows:

Term 3≤ 2γk,x‖(xk− x∗)− γk,x∇x f (xk;θ
∗)‖‖∇x f (xk;θ

k)−∇x f (xk;θ
∗)‖ (15)

≤ 2γk,x‖(xk− x∗)− γk,x(∇x f (xk;θ
∗)−∇x f (x∗;θ

∗))− γk,x∇x f (x∗;θ
∗)‖ ·Lθ‖θ k−θ

∗‖

≤ 2γk,x

(
(1+ γk,xLx)‖xk− x∗‖+ γk,x‖∇x f (x∗;θ

∗)‖
)

Lθ‖θ k−θ
∗‖

= 2γk,xLθ‖xk− x∗‖‖θ k−θ
∗‖+2γ

2
k,xLθ Lx‖xk− x∗‖‖θ k−θ

∗‖+2γ
2
k,xLθ‖∇x f (x∗;θ

∗)‖‖θ k−θ
∗‖.

By using the fact that 2ab≤ a2 +b2, we further have the following:

Term 3≤ γ
2−τ

k,x L2
θ‖xk− x∗‖2 + γ

τ
k,x‖θ k−θ

∗‖2 + γ
2
k,xLθ Lx‖xk− x∗‖2 + γ

2
k,xLθ Lx‖θ k−θ

∗‖2

+ γ
2
k,xL2

θ‖θ k−θ
∗‖2 + γ

2
k,x‖∇x f (x∗;θ

∗)‖2, (16)

where τ ∈ (0,1) is chosen to satisfy (A5). Combining (12), (13), (14) and (16), we obtain the following
bound on the conditional error.

E[‖xk+1− x∗‖2 |Fk]≤ (1+ γ
2−τ

k,x L2
θ + γ

2
k,x(2L2

x +Lθ Lx))‖xk− x∗‖2 +(γτ
k,x + γ

2
k,x(2L2

θ +Lθ Lx))‖θ k−θ
∗‖2

+3γ
2
k,x‖∇x f (x∗;θ

∗)‖2−2γk,x( f (xk;θ
∗)− f (x∗;θ

∗))+γ
2
k,xν

2
x . (17)

From (9), we have that

E[‖θ k+1−θ
∗‖2 |Fk]≤ q2

k,θ‖θ k−θ
∗‖2 + γ

2
k,θ ν

2
θ , (18)

where qk,θ ,
√

1−2γk,θ µθ + γ2
k,θC2

θ
. Choose βk =

γτ
k,x

2γk,θ µθ
by (A5). Note that by assumption βk+1 ≤ βk.

By multiplying the left hand side of (18) by βk+1 and adding to the left hand side of (17), we get

E[‖xk+1− yk‖2 |Fk]+βk+1E[‖θ k+1−θ
∗‖2 |Fk]≤ E[‖xk+1− yk‖2 |Fk]+βkE[‖θ k+1−θ

∗‖2 |Fk]

≤ (1+ γ
2−τ

k,x L2
θ + γ

2
k,x(2L2

x +Lθ Lx))‖xk− x∗‖2 +(βkq2
k,θ + γ

τ
k,x + γ

2
k,x(2L2

θ +Lθ Lx))‖θ k−θ
∗‖2

+3γ
2
k,x‖∇x f (x∗;θ

∗)‖2 +βkγ
2
k,θ ν

2
θ+γ

2
k,xν

2
x −2γk,x( f (xk;θ

∗)− f (x∗;θ
∗))

≤ (1+ γ
2−τ

k,x L2
θ + γ

2
k,x(2L2

x +Lθ Lx))‖xk− x∗‖2 +
βkq2

k,θ + γτ
k,x + γ2

k,x(2L2
θ
+Lθ Lx)

βk︸ ︷︷ ︸
Term 4

·βk‖θ k−θ
∗‖2

+3γ
2
k,x‖∇x f (x∗;θ

∗)‖2 +βkγ
2
k,θ ν

2
θ+γ

2
k,xν

2
x −2γk,x( f (xk;θ

∗)− f (x∗;θ
∗)). (19)

Term 4 on the right hand side of (19) can be further expanded as

βkq2
k,θ + γτ

k,x + γ2
k,x(2L2

θ
+Lθ Lx)

βk
= q2

k,θ +
γτ

k,x + γ2
k,x(2L2

θ
+Lθ Lx)

βk

= 1−2γk,θ µθ + γ
2
k,θC2

θ +
γτ

k,x

βk
+

γ2
k,x(2L2

θ
+Lθ Lx)

βk
= 1+ γ

2
k,θC2

θ +2γk,θ γ
2−τ

k,x µθ (2L2
θ +Lθ Lx). (20)
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Combining (19) and (20), we get

E[‖xk+1− yk‖2 |Fk]+βk+1E[‖θ k+1−θ
∗‖2 |Fk]≤ (1+ γ

2−τ

k,x L2
θ + γ

2
k,x(2L2

x +Lθ Lx))‖xk− x∗‖2

+(1+ γ
2
k,θC2

θ +2γk,θ γ
2−τ

k,x µθ (2L2
θ +Lθ Lx))βk‖θ k−θ

∗‖2

+3γ
2
k,x‖∇x f (x∗;θ

∗)‖2 +βkγ
2
k,θ ν

2
θ+γ

2
k,xν

2
x −2γk,x( f (xk;θ

∗)− f (x∗;θ
∗))

≤ (1+ γ
2
k,θC2

θ +2γk,θ γ
2−τ

k,x µθ (2L2
θ +Lθ Lx))(‖xk− x∗‖2 +βk‖θ k−θ

∗‖2)

+(γ2−τ

k,x L2
θ + γ

2
k,x(2L2

x +Lθ Lx)−γ
2
k,θC2

θ −2γk,θ γ
2−τ

k,x µθ (2L2
θ +Lθ Lx))‖xk− x∗‖2

+3γ
2
k,x‖∇x f (x∗;θ

∗)‖2 +βkγ
2
k,θ ν

2
θ+γ

2
k,xν

2
x −2γk,x( f (xk;θ

∗)− f (x∗;θ
∗)).

Let uk , γ2
k,θC2

θ
+2γk,θ γ

2−τ

k,x µθ (2L2
θ
+Lθ Lx),

ρk , (γ2−τ

k,x L2
θ + γ

2
k,x(2L2

x +Lθ Lx)−γ
2
k,θC2

θ −2γk,θ γ
2−τ

k,x µθ (2L2
θ +Lθ Lx))‖xk− x∗‖2

+3γ
2
k,x‖∇x f (x∗;θ

∗)‖2 +βkγ
2
k,θ ν

2
θ+γ

2
k,xν

2
x ,

and σk = 2γk,x( f (xk;θ ∗)− f (x∗;θ ∗)). Then, we have

E[‖xk+1− yk‖2 |Fk]+βk+1E[‖θ k+1−θ
∗‖2 |Fk]≤ (1+uk)(‖xk− x∗‖2 +βk‖θ k−θ

∗‖2)+ρk−σk.

By boundedness of X and (A5), we have that ∑
∞
k=0 uk < ∞ and ∑

∞
k=0 ρk < ∞. By Lemma 3, we obtain that

there exists a random variable V such that

‖xk− x∗‖2 +βk‖θ k−θ
∗‖2→V a.s. as k→ ∞.

and ∑
∞
k=0 σk = ∑

∞
k=0 2γk,x( f (xk;θ ∗)− f (x∗;θ ∗))< ∞.

By (A5), Lemma 2 and (18), we may conclude that ‖θ k−θ ∗‖→ 0 a.s. as k→∞. Thus, it follows that
‖xk− x∗‖ →V a.s. as k→ ∞. Since ∑

∞
k=0 γk,x = ∞, we get liminfk→∞ f (xk;θ ∗) = f (x∗;θ ∗) a.s. as k→ ∞.

Since the set X is closed, all accumulation points of {xk} lie in X . Furthermore, since f (xk;θ ∗)→ f (x∗;θ ∗)
along a subsequence a.s. by continuity of f it follows that {xk} has a sequence converging to some random
point in X∗ a.s. Moreover, since ‖xk− x∗‖ is convergent for any x∗ ∈ X∗ a.s., the entire sequence {xk}
converges to some random point in X∗ a.s.

3 RATE ANALYSIS

While the previous section focused on the almost sure convergence of the prescribed SA schemes, a natural
question is whether a rate estimate is available. In this section, we show that O(1/K) rate estimate is
derived for an upper bound on the mean squared error in the solution xK when f (•;θ ∗) is strongly convex in
(•) and K represents the number of steps, consistent with the result obtained for stochastic approximation
(cf. (Shapiro, Dentcheva, and Ruszczyński 2009)). In addition, it is seen that when the function f (•;θ ∗)
loses strong convexity, an analogous rate estimate is available by using averaging, akin to an approach
first employed by Polyak and Juditsky (1992), where longer stepsizes were suggested with consequent
averaging of the obtained iterates. Throughout this section, we employ the following notation:

Theorem 6 (Rate estimate for strongly convex f ) Suppose (A1) and (A3) hold. Suppose γx,k = λx/k and
γθ ,k = λθ/k with λx > 1/µx and λθ > 1/(2µθ ). LetE[‖∇ f (xk;θ k)+wk‖2]≤M2 andE[‖∇g(θ k)+vk‖2]≤M2

θ

for all xk ∈ X and θ k ∈Θ. Let {xk,θ k} be computed via Algorithm 1. Then, the following hold:

E[‖θ k−θ
∗‖2]≤ Qθ (λθ )

k
and E[‖xk− x∗‖2]≤ Qx(λx)

k
,

where Qθ (λθ ),max
{

λ 2
θ

M2
θ
(2µθ λθ −1)−1,E[‖θ 1−θ ∗‖2]

}
, Qx(λx),max

{
λ 2

x M̃2(µxλx−1)−1,E[‖x1− x∗‖2]
}
,

and M̃ ,
√

M2 +
L2

θ
Qθ (λθ )

µxλx
.
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Proof: Suppose Ak ,
1
2‖x

k− x∗‖2 and ak , E[Ak]. Then,

Ak+1 =
1
2
‖xk+1− x∗‖2 =

1
2

∥∥∥ΠX

(
xk− γx,k(∇ f (xk;θ

k)+wk)
)
−ΠX(x∗)

∥∥∥2

≤ 1
2
‖xk− x∗ − γx,k(∇ f (xk;θ

k)+wk)‖2

= Ak +
1
2

γ
2
x,k‖∇ f (xk;θ

k)+wk‖2− γx,k(xk− x∗)T (∇ f (xk;θ
k)+wk). (21)

Note that E[(xk− x∗)T wk] = E[E[(xk− x∗)T wk|Fk]] = E[(xk− x∗)TE[wk|Fk]] = 0. By taking expectations
on both sides of (21) and by invoking the bounds E[‖∇ f (xk;θ k)+wk‖2]≤M2 and E[‖∇g(θ k)+vk‖2]≤M2

θ
,

it follows that

ak+1 ≤ ak +
1
2

γ
2
x,kM2− γx,kE[(xk− x∗)T

∇ f (xk;θ
k)]. (22)

Note that f (x;θ) is strongly convex in x with constant µx for every θ ∈ Θ. Consequently, we have the
following expression:

E[(xk− x∗)T
∇x f (xk;θ

k)] = E[(xk− x∗)T (∇x f (xk;θ
k)−∇x f (x∗;θ

k))]

+E[(xk− x∗)T (∇x f (x∗;θ
k)−∇x f (x∗;θ

∗))]+E[(xk− x∗)T
∇x f (x∗;θ

∗)]

≥ µxE[‖xk− x∗‖2]+E[(xk− x∗)T (∇x f (x∗;θ
k)−∇x f (x∗;θ

∗))]. (23)

Combining (22) and (23), we get

ak+1 ≤ (1−2γx,kµx)ak +
1
2

γ
2
x,kM2− γx,kE[(xk− x∗)T (∇x f (x∗;θ

k)−∇x f (x∗;θ
∗))]

≤ (1−2γx,kµx)ak +
1
2

γ
2
x,kM2 +

1
2

γx,kµxE[‖xk− x∗‖2]+
1
2

γx,k

µx
E[‖∇x f (x∗;θ

k)−∇x f (x∗;θ
∗)‖2]

≤ (1− γx,kµx)ak +
1
2

γ
2
x,kM2 +

1
2

γx,k

µx
L2

θE[‖θ k−θ
∗‖2].

Suppose γθ ,k = λθ/k. Since the function g(θ) is strongly convex, we can use the standard rate estimate
(cf. inequality (5.292) in (Shapiro, Dentcheva, and Ruszczyński 2009)) to get the following

E[‖θ k−θ
∗‖2]≤ Qθ (λθ )

k
, (24)

where Qθ (λθ ) , max
{

λ 2
θ

M2
θ
(2µθ λθ −1)−1,E[‖θ 1−θ ∗‖2]

}
with λθ > 1/(2µθ ). Suppose γx,k = λx/k,

allowing us to claim the following:

ak+1 ≤
(

1− µxλx

k

)
ak +

1
2

λ 2
x M2

k2 +
1
2

λxL2
θ

Qθ (λθ )

µxk2 =

(
1− µxλx

k

)
ak +

1
2

λ 2
x M̃2

k2 ,

where M̃ =
√

M2 +
L2

θ
Qθ (λθ )

µxλx
. By assuming that λx > 1/µx, we obtain that

E[‖xk− x∗‖2]≤ Qx(λx)

k
,

where Qx(λx), max
{

λ 2
x M̃2(µxλx−1)−1,E[‖x1− x∗‖2]

}
.

A shortcoming of the previous result is the need for strong convexity of f (x,θ) in x for every θ ∈Θ.
In our next result, we weaken this requirement and allow for a merely convex f .
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Assumption 6 (A6) Suppose the following holds in addition to (A4).

(i) For every x ∈ X , f (x;θ) is Lipschitz continuous in θ with constant Dθ .

Theorem 7 (Rate estimates under convexity of f ) Suppose (A3) and (A6) hold. Suppose E[‖xk−
x∗‖2] ≤ M2

x , E[‖∇ f (xk;θ k)+wk‖2] ≤ M2 and E[‖∇g(θ k)+ vk‖2] ≤ M2
θ

for all xk ∈ X and θ k ∈ Θ. Let
{xk,θ k} be computed via Algorithm 1. For 1 ≤ i, t ≤ k, we define vt ,

γx,t

∑
k
s=i γx,s

, x̃i,k , ∑
k
t=i vtxt and

DX , maxx∈X ‖x− x1‖. Suppose, for 1≤ t ≤ k, γx is defined as

γx =

√
4D2

X +L2
θ

Qθ (λθ )(1+ lnk)
(M2 +M2

x )k
,

where Qθ (λθ ) , max
{

λ 2
θ

M2
θ
(2µθ λθ −1)−1,E[‖θ 1−θ ∗‖2]

}
, and γθ ,k = λθ/k with λθ > 1/(2µθ ). Then

the following holds for 1≤ i≤ k:

E[ f (x̃i,k;θ
k)− f (x∗;θ

∗)]≤
√

Qθ (λθ )Dθ +Ci,k
√

Bk√
k

,

where Ci,k =
k

k−i+1 and Bk = (4D2
X +L2

θ
Qθ (λθ )(1+ lnk))(M2 +M2

x ).
Proof: By using the same notation in Theorem 6, we have from (22) that

ak+1 ≤ ak +
1
2

γ
2
x,kM2− γx,kE[(xk− x∗)T

∇x f (xk;θ
k)]

≤ ak +
1
2

γ
2
x,kM2− γx,kE[(xk− x∗)T

∇x f (xk;θ
∗)]− γx,kE[(xk− x∗)T (∇x f (xk;θ

k)−∇x f (xk;θ
∗))]. (25)

Note that f (x;θ) is convex in x for every θ ∈Θ, allowing us to leverage the gradient inequality.

E[(xk− x∗)T
∇x f (xk;θ

∗)]≥ E[ f (xk;θ
∗)− f (x∗;θ

∗)]. (26)

Combining (25) and (26), we get

ak+1 ≤ ak +
1
2

γ
2
x,kM2− γx,kE[ f (xk;θ

∗)− f (x∗;θ
∗)]− γx,kE[(xk− x∗)T (∇x f (xk;θ

k)−∇x f (xk;θ
∗))].

This allows for constructing the following bounds:

γx,kE[ f (xk;θ
∗)− f (x∗;θ

∗)]≤ ak−ak+1 +
1
2

γ
2
x,kM2− γx,kE[(xk− x∗)T (∇x f (xk;θ

k)−∇x f (xk;θ
∗))]

≤ ak−ak+1 +
1
2

γ
2
x,kM2 +

1
2

γ
2
x,kE[‖xk− x∗‖2]+

1
2
E[‖∇x f (xk;θ

k)−∇x f (xk;θ
∗)‖2]

≤ ak−ak+1 +
1
2

γ
2
x,kM2 +

1
2

γ
2
x,kM2

x +
1
2

L2
θE[‖θ k−θ

∗‖2]

≤ ak−ak+1 +
1
2

γ
2
x,k(M

2 +M2
x )+

1
2

L2
θ

Qθ (λθ )

k
, (27)

where the second inequality follows from the fact that 2ab≤ a2 +b2, the third inequality follows from the
boundedness of E[‖xk− x∗‖2] and Lipschitz continuity of ∇x f (x;θ) in θ , and the last inequality follows
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from (24). As a result, for 1≤ i≤ k, we have the following:
k

∑
t=i

γx,tE[ f (xt ;θ
∗)− f (x∗;θ

∗)]≤
k

∑
t=i

(at −at+1)+
1
2

k

∑
t=i

γ
2
x,t(M

2 +M2
x )+

1
2

k

∑
t=i

L2
θ

Qθ (λθ )

t

≤ ai +
1
2

k

∑
t=i

γ
2
x,t(M

2 +M2
x )+

1
2

k

∑
t=i

L2
θ

Qθ (λθ )

t

≤ ai +
1
2

k

∑
t=i

γ
2
x,t(M

2 +M2
x )+

1
2

L2
θ Qθ (λθ )(1+ lnk). (28)

Next, we define vt ,
γx,t

∑
k
s=i γx,s

and DX , max
x∈X
‖x− x1‖. It follows from invoking these definitions, that

E

[
k

∑
t=i

vt f (xt ;θ
∗)− f (x∗;θ

∗)

]
≤

ai +
1
2 ∑

k
t=i γ2

x,t(M
2 +M2

x )+
1
2 L2

θ
Qθ (λθ )(1+ lnk)

∑
k
t=i γx,t

. (29)

Next, we consider points given by x̃i,k , ∑
k
t=i vtxt . By convexity of X , we have that x̃i,k ∈ X and by the

convexity of f (x;θ ∗) in x, we have f (x̃i,k;θ ∗)≤ ∑
k
t=i vt f (xt). From (29) and by noting that a1 ≤ 1

2 D2
X and

ai ≤ 2D2
X for i > 1, we obtain the following for 1≤ i≤ k

E[ f (x̃i,k;θ
∗)− f (x∗;θ

∗)]≤
4D2

X +∑
k
t=i γ2

x,t(M
2 +M2

x )+L2
θ

Qθ (λθ )(1+ lnk)

2∑
k
t=i γx,t

. (30)

Suppose γx,t = γx for t = 1, . . . ,k. Then, it follows that

E[ f (x̃1,k;θ
∗)− f (x∗;θ

∗)]≤
4D2

X + kγ2
x (M

2 +M2
x )+L2

θ
Qθ (λθ )(1+ lnk)

2kγx
. (31)

By minimizing the right hand side in γx > 0, we obtain that

γx =

√
4D2

X +L2
θ

Qθ (λθ )(1+ lnk)
(M2 +M2

x )k
.

This leads to the following

E[ f (x̃1,k;θ
∗)− f (x∗;θ

∗)]≤
√

Bk

k
, where Bk , (4D2

X +L2
θ Qθ (λθ )(1+ lnk))(M2 +M2

x ). (32)

Next, we can also claim that for 1≤ i≤ k,

E[ f (x̃i,k;θ
∗)− f (x∗;θ

∗)]≤Ci,k

√
Bk

k
, (33)

where Ci,k =
k

k−i+1 . Thus, by the Lipschitz continuity of f (x;θ) in θ , (24), and (33), we have

E[ f (x̃i,k;θ
k)− f (x∗;θ

∗)]≤ E[ f (x̃i,k;θ
k)− f (x̃i,k;θ

∗)]+E[ f (x̃i,k;θ
∗)− f (x∗;θ

∗)]

≤ DθE[‖θ k−θ
∗‖]+E[ f (x̃i,k;θ

∗)− f (x∗;θ
∗)]

≤
√

Qθ (λθ )Dθ√
k

+E[ f (x̃i,k;θ
∗)− f (x∗;θ

∗)]≤
√

Qθ (λθ )Dθ +Ci,k
√

Bk√
k

.

In effect, in the context of learning and optimization, the averaging approach leads to a complexity
bound given loosely by O

(
1/
√

k
ln(k)

)
, while the standard bound leads to O

(
1√
k

)
. While it is not surprising

that the requirement to learn θ ∗ imposes a degradation, it appears that this degradation is not severe.
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4 CONCLUDING REMARKS

We consider a problem of solving a stochastic optimization problem in which the objective is parameterized
by a vector that can be learnt by solving a distinct stochastic optimization problem. In both convex and
merely convex regimes, we develop a set of coupled stochastic approximation schemes which produces a
sequence of iterates that are shown to converge to the solution and unknown parameter in an almost sure
sense. Additionally, we provide rate estimates for the prescribed schemes in both strongly convex and
convex regimes. From a rate standpoint, it is seen that the additional learning component does not affect
the rate for strongly convex problems but does so for merely convex problems. Future research is expected
to develop along multiple directions, including an extension to variational regimes, the examination of the
relationship to regret-based online optimization, and the development of a set of supporting numerics.
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