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ABSTRACT

R-SPLINE is a recently proposed competitor to the popular COMPASS algorithm for solving local integer-
ordered simulation optimization problems that have either an unconstrained or a deterministically-constrained
feasible region. R-SPLINE is a refined sample-average approximation algorithm with a structure that is
particularly conducive to the inclusion of stochastic constraints. In this paper we consider one such trivial
adaptation of R-SPLINE. Our aim is narrow in that we wish only to investigate the asymptotic behavior
of the resulting iterates. Accordingly, we demonstrate sufficient conditions under which the proposed
adaptation’s iterates match the consistency and convergence rate qualities of the iterates from the originally
proposed R-SPLINE. Ongoing numerical experiments show much promise but raise important questions
about the choice of algorithm parameters when the adaptation is executed on problems where one or more
of the constraints are binding.

1 INTRODUCTION

We consider the context of simulation optimization (SO) problems over a set of discrete decision variables,
where both the objective function and constraint functions can be observed implicitly via a simulation
model. Such integer-ordered SO problems seem quite prevalent, as evidenced by entries in the SO library
www.simopt.org (Pasupathy and Henderson 2006, Pasupathy and Henderson 2011). Despite this seeming
popularity, there has been relatively little in the literature in terms of methods for solution. The main
available algorithms for this context are COMPASS (Xu, Hong, and Nelson 2010, Hong and Nelson 2006),
R-SPLINE (Wang, Pasupathy, and Schmeiser 2013), and more recently, Discrete Stochastic Approxima-
tion (Lim 2013). While COMPASS and R-SPLINE have been shown to perform competitively, they
are explicitly designed for contexts where the feasible region is integer-ordered and unconstrained or
deterministically constrained.

In this paper, we ask whether R-SPLINE can be adapted to contexts where the local integer-ordered
SO problem includes stochastic constraints. We believe that this is a useful question to ask for two reasons:
(i) R-SPLINE, being “gradient based,” has the ingredients to be successful in the context of problems
requiring local solutions, and is hence a natural candidate to consider for extensions to include stochastic
constraints; and (ii) R-SPLINE, due to the use of a sample-path framework, lends itself to the incorporation
of constraints that can be estimated. The latter point makes R-SPLINE’s adaptation to include stochastic
constraints almost trivial, although consequent questions about the asymptotic behavior of the resulting
iterates, and the choice of algorithm parameters to guarantee good finite-time performance, are challenging.

Our goal in this paper is narrow. We consider the asymptotic behavior of the iterates that result
from incorporating estimated constraints into R-SPLINE’s algorithmic framework. Specifically, we wish
to investigate if the iterates from the adapted version of R-SPLINE are consistent from the standpoint of
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returning a locally optimal solution. For instance, we demonstrate sufficient conditions that ensure that
the adapted R-SPLINE’s iterates converge with probability one (wp1) to a locally optimal solution, when
the feasible region of the underlying problem is bounded or unbounded. Furthermore, we demonstrate
that the original R-SPLINE’s results on the exponential decay rate (of selecting a suboptimal solution)
transfer over to the adapted version modulo certain restrictions on sampling and structure. Of course, the
results that we present, while reassuring to some degree, say little about whether the adapted version of
R-SPLINE performs well in finite-time. Unfortunately, such finite-time performance is still a subject of
ongoing investigation, particularly in terms of how certain algorithmic parameters should be chosen.

The work that is closest in spirit to what we propose here is Lim (2013) and Luo and Lim (2013),
where the stochastic approximation (Kushner and Yin 2003) recursion is extended to work on discrete sets
and in the presence of stochastic constraints. The current paper should be seen as an analogous adaptation
of a sample-average approximation (Shapiro, Dentcheva, and Ruszczynski 2009) method to solve local
integer-ordered SO problems with constraints. It is also worth mentioning that methods to solve more
generic SO problems obviously apply to the problem class under consideration in this paper. For example,
Li, Sava, and Xie (2009) and Park and Kim (2011) consider SO problems having stochastic constraints on
discrete sets. Likewise, the entire recent literature on ranking and selection in the presence of stochas-
tic constraints (Andradóttir and Kim 2010, Andradóttir, Goldsman, and Kim 2005, Batur and Kim 2005,
Hunter and Pasupathy 2013, Hunter, Pujowidianto, Lee, Chen, and Pasupathy 2011) applies to the class of
integer-ordered SO problems as long as the feasible set is finite. However, we believe that such methods
are disadvantaged because they do not have access to the immense structure that is usually present in
integer-ordered SO problems. Furthermore, such generic methods tend to seek globally optimal solutions
due to the lack of an assumed neighborhood structure.

In what follows, we present a formal problem statement and detail a simple adaptation of the R-SPLINE
method to include stochastic constraints. This is followed by a section that lists and proves the main results
characterizing the behavior of the iterates generated by the proposed adaptation. We then conclude the
paper with some final remarks.

2 PROBLEM STATEMENT AND SOLUTION METHOD

Given a neighborhood definition N, our goal is to find an N-local minimum of the real-valued function
g : X→�, where X ⊆ �d and the feasible region is defined in terms of inequalities involving real-valued
functions hi : X→ �, i = 1, · · · , c. For each x ∈ X, g(x) and hi(x) are unknown functions whose point
estimators are observed via a given simulation oracle. The optimization problem is stated as follows.

P̃1 : minimize g(x)

subject to hi(x) 6 0, i = 1, · · · , c,

x ∈X.

The point estimators ĝm(x) and ĥi,m(x), 1 6 i 6 c, of the unknown functions g(x) and hi(x) are “observed
simultaneously” via a computer simulation, where m is some measure of simulation effort. Also, for each
x ∈ X we assume that limm→∞ ĝm(x) = g(x) wp1 and limm→∞ ĥi,m(x) = hi(x) wp1, 1 6 i 6 c. Let F denote
the feasible region of P̃1, that is, F = {x ∈ X : hi(x) 6 0, i = 1, · · · , c}. Also, we define F c = X\F and the
interior F ◦ = {x ∈X : hi(x) < 0, i = 1, · · · , c}. Given a neighborhood definition N, let M∗(N) denote the set
of N-local minimizers of g(x) over F :

M∗(N) = {x∗ ∈ F : g(x∗) 6 g(x), ∀x ∈ N(x∗)∩F }.

Instead of P̃1, consider the following problem.

P̃2 : minimize g̃(x)

subject to x ∈ X
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where g̃ : X→�∪{∞} is defined as

g̃(x) =



















g(x) if x ∈ F ,

∞ otherwise.

Problems P̃1 and P̃2 are not equivalent, but it is intuitively clear that they have the same solution. As stated, the
problem in P̃2 is unconstrained. However, the local SO algorithms COMPASS (Xu, Hong, and Nelson 2010,
Hong and Nelson 2006) and R-SPLINE (Wang, Pasupathy, and Schmeiser 2013) cannot be used on P̃2
directly because of the nature of the feasible region X. Specifically, since X is defined through functions
that can only be observed using a simulation oracle, the feasible region of the problem P̃2 is not “deterministic”
in the sense of knowing whether or not a point x is feasible with no uncertainty.

We propose solving P̃2 (instead of P̃1) using a straightforward adaptation of R-SPLINE. Like R-
SPLINE, the framework we propose relies on two ideas: (i) a retrospective approximation (RA) frame-
work (Kim, Pasupathy, and Henderson 2012, Pasupathy and Kim 2011, Pasupathy 2010) that implicitly
generates a sequence of increasingly accurate sample-path problems to approximate the true problem P̃2;
and (ii) a local-search method called SPLINE explicitly devised to solve the generated sample-path problems
through the use of “phantom gradients” on the integer-ordered set. The sample-path problem in the adapted
version of R-SPLINE is formally stated as

Pk : Find X∗k such that X∗k ∈ {x
′ ∈ Fk : ˆ̃gmk (x′) 6 ˆ̃gmk (x), ∀x ∈ Fk∩N(x′)},

where Fk = {x ∈ X : ˆ̃gmk (x) <∞} and

ˆ̃gmk (x) =























ĝmk (x) if ĥi,mk (x) < ǫi,k, i = 1, · · · ,c,

∞ otherwise.

The sample-path problem Pk is thus obtained by replacing the objective function g and the constraints
functions hi, i = 1,2, . . . ,c by their corresponding estimators ĝmk and ĥmk obtained using a sample size
mk. Importantly, the constraints appearing in the original problem P̃2 are relaxed by an amount ǫi,k > 0
such that limk→∞ ǫi,k = 0, i = 1,2, . . . ,c. The local-search method, SPLINE, that is mentioned in (ii) is
an integer-ordered gradient-based search routine introduced in R-SPLINE. See Figure 1 for a sense of
SPLINE’S functioning, and Wang, Pasupathy, and Schmeiser (2013) for complete details.

Remark 1 We note that in the above framework, SPLINE can be replaced with any locally convergent
algorithm with no corresponding change in the results that we are about to present. SPLINE, however, is
a tailored local search algorithm that has been shown to perform well on integer-ordered problems.

Algorithm 1 R-SPLINE
Require: initial solution x0 ∈ X; sample sizes {mk}; limits on simulation calls {bk}

Ensure: sequence of solutions {X∗k }

1: Set X∗0 = x0.
2: for k = 1,2, . . .
3: X∗k = SPLINE(X∗k−1,mk,bk) {obtain a solution to sample-path problem Pk}

4: end for

Remark 2 The advantages of the RA framework have been noted in numerous earlier papers. First, RA
naturally allows the use of common random numbers (Law 2007). Specifically, during the kth iteration of
the procedure, the sample-path function ˆ̃gmk (x) is generated using the same sample size mk at each point
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Figure 1: (Above figure adapted from Wang, Pasupathy, and Schmeiser (2013).) A depiction of the
trajectory of SPLINE, the algorithm used to solve the sample-path problems generated within R-SPLINE.
SPLINE consists of a gradient search routine and a neighborhood enumeration routine. The gradient search
constructs “phantom gradient” directions (shown as direct lines) using an appropriate extension of the
sample-path function onto continuous space. At each step, a neighborhood enumeration is performed to
check if a local solution has been attained. The routine terminates if a local solution is attained; otherwise,
the search restarts from the superior solution identified during the neighborhood search.

x ∈X, thereby allowing any exploitable structure in the underlying true objective function to percolate into
the function ˆ̃gmk (x). Second, the progressive solution framework in RA allows using the solution X∗k−1 from
the most recent (k−1)th iteration as a “warm start” for solving the sample-path problem in the subsequent
kth iteration.

As was noted in the introduction, the scope of this paper is narrow. Our goal is to understand the
theoretical aspects of the framework that we have outlined. In what ensues, we limit ourselves to presenting
results that highlight important asymptotic aspects of the sample-path problem Pk, and the sequence of
solutions generated by the proposed framework. We present no numerical experience.

3 MAIN RESULTS

If X∗k is the solution returned by SPLINE to problem Pk in the kth iteration of R-SPLINE, we would
like to show that the sequence of sample path solutions {X∗k } converges to the set of locally optimal
solutions of P̃1. We emphasize that we do not need to modify the SPLINE algorithm described in
Wang, Pasupathy, and Schmeiser (2013) for solving the “generated” sample-path problems Pk. This is
essentially because the objective function and constraints appearing in Pk are “observable.” Consequently,
as in R-SPLINE, the following statements are true about the sequence of solutions {X∗k }.

1. Since SPLINE returns a solution X∗k in finite time, {X∗k } is an infinite sequence of solutions returned
by the adapted version of R-SPLINE.

2. ˆ̃gmk (X∗k ) 6 ˆ̃gmk (X∗k−1)
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Under certain assumptions on the rate of increase of the sample sizes {mk}, and the quality of the
constraint estimators ĥi,mk , i = 1,2, . . . ,c, the feasible and the infeasible regions for the sample-path problem
Pk and the true problem P̃2 coincide in a certain precise sense. We note this in Lemma 1 after stating
assumptions on the sample sizes {mk} and the constraint estimators ĥi,mk , i = 1,2, . . . ,c.

Assumption 1 The sequence {mk} satisfies limsupk→∞ k/mk = 0.

Assumption 2 The sequence of random variables {hi(x)− ĥi,mk (x)} is governed by a large-deviation principle
with rate function Ii,x(s), i ∈ {1, · · · , c}, such that for any ǫ > 0, infx∈Xmin(Ii,x(−ǫ), Ii,x(ǫ)) = ηi > 0.

Lemma 1 Suppose Assumption 1 and Assumption 2 hold. Then Pr {Fk *F i.o.}= 0 and Pr{F *Fk i.o.}= 0.

Proof. Under Assumption 2 and by the Gartner-Ellis theorem (Dembo and Zeitouni 1998), for any ǫ > 0
and x ∈ X there exists K (independent of x and ǫ) ∈ N such that if k > K then

1
mk

log Pr{|hi(x)− ĥi,mk (x)| > ǫ} 6 −min(Ii,x(ǫ), Ii,x(−ǫ)) 6 −ηi < 0,

i = 1, · · · , c. Suppose η =min16i6c ηi.
Let x ∈ F . Then for ǫ < ǫk and k > K′(independent of x and ǫ)

Pr{x ∈ F c
k } 6 Pr{

c
∪

i=1
ĥi,mk (x) > ǫk}

6

c
∑

i=1

Pr{ĥi,mk (x) > ǫk}

=

c
∑

i=1

Pr{ĥi,mk (x) > ǫk, ĥi,mk (x) ∈ (hi(x)− ǫ,hi(x)+ ǫ)}

+Pr{ĥi,mk (x) > ǫk, ĥi,mk (x) < (hi(x)− ǫ,hi(x)+ ǫ)}

6 ce−mkη. (1)

Since limsupk→∞ k/mk = 0, Pr {x ∈ F c
k i.o.} = 0.

Let y ∈ F c. Suppose hj,mk (y) > 0 for some j ∈ {1, · · · ,c}. Then for ǫ > ǫ1 and k > K′′(independent of y
and ǫ)

Pr{y ∈ Fk} 6 Pr{
c
∩

i=1
ĥi,mk (y) < ǫk}

6 Pr{ĥ j,mk (y)− ǫk < 0}

= Pr{ĥ j,mk (y)− ǫk < 0, ĥ j,mk (y) ∈ (hj(y)− ǫ,hj(y)+ ǫ)}

+Pr{ĥ j,mk (y)− ǫk < 0 ĥ j,mk (y) < (hj(y)− ǫ,hj(y)+ ǫ)}

6 Pr{ĥ j,mk (y) < (hj(y)− ǫ,hj(y)+ ǫ)}

6 e−mkη. (2)

Since limsupk→∞ k/mk = 0, Pr {y ∈ Fk i.o.} = 0.
And since x and y were arbitrarily chosen from F and F c, respectively, Fk = F wp1 for k > K =

max(K′,K′′). �

Given Lemma 1, and assuming that the feasible region is finite, it seems intuitively clear that R-SPLINE
should return a correct local solution wp1, in the limit as k→∞. This is because, every pair of points in F
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orders itself (when measured with respect to the true objective g) correctly as k→∞. However, since F
is assumed to be finite, there are only a finite number of such pairs, yielding the correct overall ordering.
This is proved rigorously in the result that follows.

Theorem 1 Suppose F is finite. Then under Assumptions 1 and 2 and given a neighborhood definition
N, R-SPLINE returns a sequence of sample path solutions {X∗k } that converges wp1 to the set of true local
minima M∗(N) of problem P̃2.

Proof. Under Assumptions 1 and 2, Pr {Fk , F i.o.} = 0. Since X∗k ∈ Fk, Pr {X∗k < F i.o.} = 0. That is,
there exists K1 ∈N such that X∗k ∈ F with probability 1 if k > K1. F is bounded. Thus R-SPLINE returns
a sequence of solutions that are bounded with probability 1. Also, Pr {X∗k ∈ F

c i.o.} = 0.
Let ǫ = min {|g(x)−g(x′)| : (x, x′) ∈ F ,g(x) , g(x′)}. Then since F is finite, ˆ̃gmk converges uniformly

to g with probability 1 on the set F as k→∞. Thus there exists K2(ǫ) ∈ N such that | ˆ̃gmk (x)−g(x)| < ǫ/2
with probability 1 if k > K2 for all x ∈ F . So if g(x′) < g(x) then with probability 1, ˆ̃gmk (x′) < ˆ̃gmk (x) for
all x, x′ ∈ F if k > K2. This in turn implies that with probability 1 if ˆ̃gmk (x′) > ˆ̃gmk (x) then g(x′) > g(x)
for all x, x′ ∈ F , k > K2. Thus with probability 1, X∗k ∈ F bounded and g(X∗k ) 6 g(X∗k−1) for all k > K =
max(K1,K2), and hence Pr {X∗k < M∗(N) i.o.} = 0. �

If one is to relax Theorem 1 to include the context of unbounded feasible regions, more needs to be
assumed about the behavior of the objective function g to prevent “chase-offs” to infinity both due to the
structure of the recursion, and due to mischance. Once such assumptions are made, results analogous to
Lemma 1 and Theorem 1 can be proved for unbounded sets F . In the results that follow, we let S k(x)
denote the set {x′ ∈ X : ˆ̃gmk (x′) 6 ˆ̃gmk (x), x′ ∈ Fk} for each x ∈ F .

Assumption 3 Let the sequence of random variables {g(x)− ĝmk (x)} be governed by a large-deviation
principle with rate function Ix(s) such that for any ǫ > 0, infx∈Xmin(Ix(−ǫ), Ix(ǫ)) = ηg > 0.

Assumption 4 For each x ∈ X there exists δ > 0 such that the level set S (x, δ) = {x′ ∈X : g(x′) 6 g(x)+δ}
is finite.

Lemma 2 Suppose x0 ∈ F , and δ > 0 is such that S (x0, δ) is finite. Then under Assumptions 1–4,
Pr{S k(x0) * F ∩S (x0, δ) i.o.} = 0.

Proof. Pick y ∈ (F ∩S (x0, δ))c. Then either y ∈ F c or y ∈ S (x0, δ)c∩F . Suppose y ∈ F c. Then for
k > K1(independent on x0), Pr{y ∈ S k(x0)} 6 Pr{y ∈ Fk} 6 e−mkη (from (2)).

If y ∈ S (x0, δ)c∩F then g(y) > g(x0)+ δ. Then for 0 < 2ǫ < δ and k > K2(independent on x0 and δ),

Pr{y ∈ S k(x0)} = Pr{ĝmk (y) 6 ĝmk (x0)}

6 Pr{ĝmk (y) 6 ĝmk (x0), ĝmk (x0) ∈ (g(x0)− ǫ,g(x0)+ ǫ)}

+Pr{ĝmk (y) 6 ĝmk (x0), ĝmk (x0) < (g(x0)− ǫ,g(x0)+ ǫ)}

6 Pr{ĝmk (y) < (g(y)− ǫ,g(y)+ ǫ)}

+Pr{ĝmk (x0) < (g(x0)− ǫ,g(x0)+ ǫ)}

6 2e−mkηg (3)

Let pk =max(2e−mkηg , e−mkη). Then for any y ∈ (F ∩S (x0, δ))c, Pr{y ∈ S k(x0)} 6 pk if k > K =max(K1,K2).
And since lim supk→∞ k/mk = 0, Pr {y ∈ S k(x0) i.o.}= 0. Thus S k(x0) does not contain any point in (F ∩S (x0))c

with probability 1 for k > K. In other words Pr{S k(x0) * F ∩S (x0), δ) i.o.} = 0. �
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We are now ready to present the analogue to Theorem 1 for the context of unbounded feasible regions
F .

Theorem 2 Given a starting solution x0 ∈ F and a neighborhood definition N, and under Assumptions1–4,
R-SPLINE returns a sequence of sample path solutions {X∗k } that converges wp1 to the set of true local
minima M∗(N) of problem P̃2.

Proof. Suppose δ > 0 is such that S (x0, δ) is finite. Then Pr{S k(x0) * F ∩S (x0, δ) i.o.} = 0. Since
X∗k ∈ S k(x0), Pr {X∗k < S k(x0) i.o.} = 0. Hence there exists K1(independent on x0 and δ) ∈ N such that
X∗k ∈ F ∩S (x0, δ) with probability 1 if k > K1. And since F ∩S (x0, δ) is finite, R-SPLINE returns a sequence
of solutions that are bounded with probability 1. We also note (from to Lemma 1) that Pr {X∗k ∈ F

c i.o.} = 0.
Let ǫ = min {|g(x)− g(x′)| : (x, x′) ∈ F ∩S (x0, δ), g(x) , g(x′)}. Then since F ∩S (x0, δ) is finite and

contained in F , ˆ̃gmk converges uniformly to g with probability 1 on the set F ∩S (x0, δ) as k→∞. Thus
there exists K2(ǫ) ∈ N such that | ˆ̃gmk (x)− g(x)| < ǫ/2 with probability 1 if k > K2 for all x ∈ F ∩S (x0, δ).
So if g(x′) < g(x) then with probability 1, ˆ̃gmk (x′) < ˆ̃gmk (x) for all x, x′ ∈ F ∩S (x0, δ) if k > K2. This in
turn implies that with probability 1 if ˆ̃gmk (x′) > ˆ̃gmk (x) then g(x′) > g(x) for all x, x′ ∈ F ∩S (x0, δ), k > K2.
Thus with probability 1, X∗k ∈ F ∩S (x0, δ) bounded and g(X∗k ) 6 g(X∗k−1) for all k > K = max(K1,K2), and
hence Pr {X∗k < M∗(N) i.o.} = 0. �

Theorems 1 and 2 prove the almost sure convergence of R-SPLINE’s iterates {X∗k } to a true local
minimum. How fast does such convergence happen? In other words, can anything be said about the rate
at which the probability of adapted R-SPLINE returning a point other than a true local minimum decays
to zero? What is the corresponding rate for returning a truly feasible solution. The following two results
assert that these rates are exponential when the sample sizes are increased at a fast enough rate.

Theorem 3 If X is finite then under Assumptions 1 and 2, the probability that R-SPLINE returns an
infeasible solution decreases exponentially in k, i.e., Pr {X∗k < F } = O(e−kη) for some η > 0.

Proof. Let η =min16i6c ηi. Then

Pr {Fk * F } = Pr { ∪
y∈X\F

{y ∈ Fk}}

6

∑

y∈X\F

Pr {y ∈ Fk}

6

∑

y∈X\F

e−mkη

6 |X|e−kη (4)

where the last inequality of (4) follows from Assumption 1. Thus, Pr {X∗k < F } 6 Pr {Fk * F } 6 |X|e−kη. �

Theorem 4 If X is finite then given a neighborhood definition N and under Assumptions 1, 2 and 3,
the probability that R-SPLINE returns a locally suboptimal solution decreases exponentially in k, i.e.,
Pr {X∗k < M∗(N)} = O(e−kη′ ) for some η′ > 0.

Proof. Let W∗(X) and W∗k (X) denote the set of global minima for problems P̃1 and Pk, respectively. Both
W∗(X) and W∗k (X) are nonempty sinceX is finite. Then let ǫ > 0 be such that 2ǫ <miny∈F \W∗(X)(g(y)−g(x∗)),
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where x∗ ∈W∗(X). Then for some y ∈ F \W∗(X) and k large enough,

Pr {y ∈W∗k (X)} 6 Pr {ĝmk (y) 6 ĝmk (x∗)}

= Pr {ĝmk (y) 6 ĝmk (x∗), ĝmk (x∗) ∈
(

g(x∗)− ǫ,g(x∗)+ ǫ
)

}

+Pr {ĝmk (y) 6 ĝmk (x∗), ĝmk (x∗) <
(

g(x∗)− ǫ,g(x∗)+ ǫ
)

}

6 Pr {ĝmk (y) 6 g(y)− ǫ}+Pr {ĝmk (x∗) <
(

g(x∗)− ǫ,g(x∗)+ ǫ
)

}

6 Pr {ĝmk (y) < (g(y)− ǫ,g(y)+ ǫ)}+Pr{ĝmk (x∗) <
(

g(x∗)− ǫ,g(x∗)+ ǫ
)

}

6 2e−kηg (5)

The last inequality of (5) follows from Assumptions 1 and 3.
Thus for large enough k,

Pr {M∗k(N) * M∗(N)} 6
∑

y∈X\M∗(N)

Pr {y ∈ M∗k(N)}

=
∑

y∈X\F

Pr {y ∈ M∗k(N)}+
∑

y∈F \M∗(N)

Pr {y ∈ M∗k(N)}

6

∑

y∈X\F

Pr {y ∈ Fk}+
∑

y∈F \M∗(N)

Pr {y ∈W∗k (N(y))}

6

∑

y∈X\F

e−kη +
∑

y∈F \M∗(N)

2e−kηg

6 3 |X|e−kη′ (6)

where the third inequality of (6) follows from (2) and (5), and η′ =min{ηg, η}. �

4 CONCLUDING REMARKS

We consider the relatively unexplored problem of local integer-ordered SO with stochastic constraints.
For solving this problem, we adapt the recently proposed R-SPLINE algorithm (for unconstrained or
deterministically-constrained contexts) by including a sampled and relaxed version of the constraints from
the true problem. It so happens that the asymptotics of the adapted version resembles the originally
proposed R-SPLINE, in terms of the consistency and convergence rate of the returned solutions with
respect to optimality and feasibility. When the true solutions lie on the boundary of the feasible region,
interesting questions relating to how one should choose the extent of relaxation of the constraints remains
an unexplored but important question. When all local solutions lie on the interior of the feasible region,
the proposed adaptation presents no surprises. While we have assumed that the SPLINE algorithm is used
within the retrospective approximation context to create the adapted version of R-SPLINE, any deterministic
locally minimizing algorithm for integer ordered spaces can be used SPLINE’s stead, with no change in
the results we have presented.

ACKNOWLEDGMENTS

The authors were supported in part by the Office of Naval Research contract N000141110419.

REFERENCES
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