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ABSTRACT

We are interested in maximizing a general (but continuous) function where observations are noisy and may
be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the
expected value of information, while using a locally parametric belief model which uses linear approximations
around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with
Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the
function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent
subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying
function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions,
and appears to reliably find the optimal solution.

1 INTRODUCTION

We consider the problem of maximizing an unknown but continuous function over a finite set of possible
alternatives (which may be sampled from a continuous region), where observations of the function are noisy
and may be expensive to compute. This problem arises under settings such as simulation-optimization,
stochastic search, and ranking and selection. A popular strategy involves response surface methods which
fit polynomial approximations to guide the search of the next. Our work was motivated by difficulties we
encountered fitting parametric surfaces, even to relatively simple functions. Low order approximations can
produce terrible approximations, while higher order models quickly suffer from over fitting. This experience
led us to consider a variety of statistical strategies, but ultimately produced a new local parametric procedure
called Dirichlet Clouds with Radial Basis Functions (DC-RBF), developed by Jamshidi and Powell (2013).
This paper addresses the problem of doing stochastic search using the knowledge gradient, where the
underlying belief model is represented using DC-RBF.

The optimization of noisy functions, broadly referred to as stochastic search, has been studied thoroughly
since the seminal paper Robbins and Monro (1951) which introduces the idea of derivative-based stochastic
gradient algorithms. For an extensive coverage of the literature for stochastic search methods see, e.g.,
Spall (2003), Sutton and Barto (1998), and Fu (2006). A separate line of research has evolved under the
umbrella of active (or optimal) learning where observations are made specifically based on some measure of
value of information, see Powell and Ryzhov (2012) for a review. The idea of making measurements based
on the marginal value of information is introduced by Gupta and Miescke (1996) and extended under the
name knowledge gradient using a Bayesian approach which estimates the value of measuring an alternative
by the predictive distributions of the means, as shown in Frazier et al. (2008). The online learning setting
with discrete alternatives is studied in Gittins (1979); the knowledge gradient is extended to online (bandit)
settings in Ryzhov et al. (2012). The case of continuous decisions has been studied in Agrawal (1995)
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and Ginebra and Clayton (1995). Most of the previous work in ranking and selection problems assume
the alternatives to be independent (alternatives close to each other do not exhibit correlated beliefs), see
Nelson et al. (2001).

There is a small literature that deals with correlated beliefs (Frazier et al. 2009; Huang et al. 2006).
Villemonteix et al. (2009) introduces entropy minimization-based methods for Gaussian processes. An
adaptation of the knowledge with correlated beliefs using kernel regression and aggregation of kernels
for estimating the belief function is proposed in Barut and Powell (2013). This work builds on the work
presented in Mes et al. (2011), where the estimates are the hierarchical aggregates of the values. This
work is an extension of the knowledge gradient with linear beliefs, given in Negoescu et al. (2011), to
non-parametric beliefs.

There are three major classes of function approximation methods: look-up tables, parametric models
(linear or non-linear), and nonparametric models. Parametric regression techniques such as linear regression
(see Montgomery et al. (2001)) assume that the underlying structure of the data is known a priori and
is in the span of the regressor function. Due to the simplicity of this approach it is commonly used for
regression.

Nonparametric models, such as Eubank (1988), Müller (1988), offer the attraction of considerable
generality by using the raw data to build local approximations of the function, producing a flexible but
data-intensive representation. Nonparametric models are less sensitive to structural errors arising from a
parametric model. Most nonparametric models require keeping track of all observed data points, which make
function evaluations increasingly expensive as the algorithm progresses, a serious problem in stochastic
search. Bayesian techniques for function approximation or regression are computationally intensive and
require storage of all the data points (see Gelman et al. (2003)). Local polynomial models, such as
Fan (1992), build linear models around each observation and keep track of all the data points.

Another class of approximation algorithms use local approximations around regions of the function,
rather than each prior observation. Radial basis functions have attracted considerable attention due to
their simplicity and generality. One of the main attractions of the radial basis functions (RBFs) is that the
resulting optimization problem can be broken efficiently into linear and nonlinear subproblems. Normalized
RBFs are presented in Jones et al. (1990) which perform well for approximation for smaller amount of
training data. For a comprehensive treatment on various growing RBF techniques and automatic function
approximation technique using RBF, see Jamshidi and Kirby (2007) and references therein.

DC-RBF is motivated by the need to approximate functions within stochastic search algorithms where
new observations arrive recursively. As we obtain new information from each iteration, DC-RBF provides a
fast and flexible method for updating the approximation. DC-RBF is more flexible than classical parametric
models, and provides a compact representation to minimize computational overhead. Unlike similar
algorithms in the literature, our method has only one tunable parameter, assuming that the input data has
been properly scaled.

The main contribution of this paper is the derivation of the knowledge gradient using DC-RBF to create
the belief model. We show the performance of this proposed idea in the context of several illustrative
examples. Section 2 formulates the ranking and selection model and establishes the notation used in this
paper. This section also highlights the Bayesian inference that is needed to build the approximation. Section
3 reviews the knowledge gradient using both lookup table and a linear, parametric belief model. Section 4
reviews the DC-RBF approximation technique that is used for constructing the belief model in this paper.
Section 5 derives the knowledge gradient using the DC-RBF belie model. Section 6 demonstrates the
performance of the proposed methodology using examples drawn from different problem classes. Finally
Section 7 provides the concluding remarks and highlights our future work.

2 THE RANKING AND SELECTION MODEL

We consider a finite set of alternatives X = {1,2, ...,M} where our belief about the true value mx of each
alternative x∈X is multivariate normal, given by m ∼N (q0,S0), where (q0,S0) represents the prior mean
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and covariance matrix. If we choose to observe x = xn, we observe ŷn+1
x = mx + en+1, where E

n [m ] = qn

and where en+1 is a random variable with known variance lx or, equivalently, precision b e
x = (lx)

−1. We
define m to be the vector of all the means [m1, . . . ,mM ]′. Having a fixed budget of N measurements, we
need to make sequential sampling decisions x0,x1, . . . ,xN−1 to learn about these alternatives.

As a result of this sequential sampling framework, it is natural to define the filtration F n as the s -algebra
generated by {(x0, ŷ1

x0),(x1, ŷ2
x1), . . . ,(xn−1, ŷn

xn−1)}. Let En and Varn denote E [·|F n] and Var [·|F n] (the
conditional expectation and variance with respect to F n), respectively.

In the off-line setting, the goal is to find the optimal alternative after N measurements, where the final
decision is

xN = argmax
x∈X

qN
x .

Let P be the set of all possible measurement policies, and E
p be the expectation taken when the policy

p ∈ P is used. The problem to find the optimal policy can be written as

sup
p∈P

E
p
[

max
x∈X

qN
x

]

.

We use the Bayesian setting to sequentially update the estimate of the alternatives. If at time n we
choose xn = x, we observe ŷn+1

x . This action along with the corresponding observation, and our prior belief
of m , we can compute the n+1st posterior distribution using standard normal sampling with a multivariate
normal prior distribution using the following updating equations, Gelman et al. (2003):

qn+1 = qn +
ŷn+1 −qn

x

lx +Sn
xx

Snex, (1)

Sn+1 = Sn − Snexe′xSn

lx +Sn
xx
, (2)

where ex is the standard basis vector. We can further rearrange Equation (1) as the time n conditional
distribution of qn+1,

qn+1 = qn + s̃(Sn,xn)Z,

where s̃(Sn,xn) = Snex√
lx+Sn

xx
and Z is a standard normal random variable.

3 KNOWLEDGE GRADIENT WITH CORRELATED BELIEFS

In this work we focus on the knowledge gradient with correlated beliefs, which is a sequential decision
policy for learning correlated alternatives, Frazier et al. (2009). In this framework the state of knowledge
at time n is defined as Sn := (qn,Sn). The goal is to pick the best possible option if we stop measuring at
time n. The value of being in state Sn is defined as

V n(Sn) = max
x′∈X

qn
x′ .

If we choose to measure xn = x, a new belief state Sn+1(x) is reached after observing ŷn+1
x using the updating

equations (1) and (2). The value of this new state is

V n+1(Sn+1(x)) = max
x′∈X

qn+1
x′ .

Note that the incremental value due to measuring alternative x is defined as:

nKG,n
x = E

[

V n+1(Sn+1(x))−V n(Sn)|Sn,xn = x
]

,

= E

[

max
x′∈X

qn+1
x′ |Sn,xn = x

]

− max
x′∈X

qn
x′ .
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We would like to maximize the expected value of V n+1(Sn+1(x)) at time n. The knowledge gradient
policy chooses a measurement that would lead to maximize the expected incremental value, i.e.,

xKG,n = arg max
x∈X

nKG,n
x .

An algorithm to compute the KG values for alternatives with correlated beliefs is demonstrated in
Frazier et al. (2009) which is briefly described here. Consider an alternative way to write the KG formula
as

V
KG,n

x = h(qn, s̃(Sn,x)) ,

= E

[

max
x′∈X

qn
x′ + s̃x′(Sn,xn)Z|Sn,xn = x

]

− max
x′∈X

qn
x′ ,

where h(a,b) =E [maxi ai +biZ]−maxi ai is a generic function for any vector a and b of the same dimension.
The expectation can be computed as the point-wise maximum of affine functions ai+biZ with an algorithm
of complexity O(M2 log(M)).

The algorithm sorts the alternatives with bi in increasing order, then removes terms (ai,bi) if there is
some i′ such that bi = bi′ and ai > ai′ (i.e., removing parallel slopes with lower constant intercepts). Then
it removes dominated (ai′ ,bi′) if for all Z ∈R there exists some i such that i 6= i′ and ai′ +bi′Z ≤ ai +biZ.
After all of the dominated components are dropped, new vectors (ã, b̃) of dimension M̃ are created. At the
end of this process, we are left with a concave set of affine functions.

The function h(a,b) can be computed via

h(a,b) = å
i=1,...,M̃

(b̃i+1 − b̃i) f

(

−
∣

∣

∣

∣

ãi − ãi+1

b̃i+1 − b̃i

∣

∣

∣

∣

)

, (3)

where f (z) = f(z)+zF(z). Here, f(z) and F(z) are the normal density and cumulative distribution functions
respectively, Frazier et al. (2009).

Now suppose we can represent the true m as a linear combination of a set of parameters, i.e., m = Xa ,
where elements of a are the coefficients of the column vectors of a design matrix X . Instead of maintaining
a belief on the alternatives, we can maintain a belief on the coefficients, which is generally of a much
lower dimension. If we have a multivariate normal distribution on a ∼ N (J ,C), we can induce a normal
distribution on m , namely,m ∼ N (XJ ,XCXT ), Negoescu et al. (2010). Note that we use the scripted J
for the estimate of coefficients to differentiate them from the alternatives described in the previous section.
This linear transformation applies for prior and posterior distributions.

If at time n, alternative x is measured, let x̃n be the row vector of X corresponding to alternative x. We
can update Jn+1 and Cn+1 recursively via

Jn+1 = Jn +
ên+1

gn Cnx̃n,

Cn+1 = Cn − 1
gn

(

Cnx̃n(x̃n)TCn) .

This is useful if, for example, we are trying to find the best set of a vector of parameters which might
have 10 or 20 dimensions. These equations allow us to generate tens of thousands of potential measurement
alternatives x. If we use a lookup table belief model as was used in Frazier et al. (2009), this would involve
creating and updating a matrix Sn with tens of thousands of rows and columns. Using a parametric belief
model, we only need to maintain the covariance matrix Cn, which is determined by the dimensionality
of the parameter vector J . We never need to compute the full matrix XCXT , although we will have to
compute a row of this matrix.
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4 DC-RBF AS BELIEF MODEL

The DC-RBF scheme introduces a cover over the input space to define local regions, as described in
Jamshidi and Powell (2013). This scheme only stores a statistical representation of data in local regions
and locally approximates the data with a low order polynomial such as a linear model. The local model
parameters are quickly updated using recursive least squares. A nonlinear weighting system is associated
with each local model which determines the contribution of this local model to the overall model output.
The combined effect of the local approximations and the weights associated to them produces a nonlinear
function approximation tool. On the data sets that we have studied, this technique is efficient, both in
terms of computational time and memory requirements compared to classical nonparametric regression
methods. The new method is robust in the presence of homoscedastic and heteroscedastic noise. Our
method automatically determines the model order for a given dataset (one of the most challenging tasks in
nonlinear function approximation). Unlike similar algorithms in the literature, DC-RBF method has only
one tunable parameter; in addition it is asymptotically unbiased and provides an upper bound on the bias
for finite samples Jamshidi and Powell (2013).

Instead of the linear relationship m = Xa , we assume there is a non-linear relationship between m and
a,

m =
åNc

i=1 yi(ci,Wi)Xai

åNc
i=1 yi(ci,Wi)

, (4)

where yi is a kernel function with parameters center ci and width Wi.
In our model, we employ the Gaussian kernel function

y(c,W ) = exp(−||x− c||2W ),

where ||x||W =
√

xTW x. Nc is the total number of kernels, which is automatically determined based on the
shape of the function.

At time n, if alternative xn = x is chosen, we observe ŷn+1
x . According to the DC-RBF algorithm, the

data point xn needs to be assigned to a cloud; the resulting cloud I is determined by the distance between
the input data point xn and the center of the current clouds,

Di = ||xn − ci||.

Let I = arg mini DI . If DI > DT , (DT is a given known threshold distance), we create a new cloud UNc+1
(where Nc denotes the number of existing clouds), otherwise we will update cloud UI with the new data
point, Jamshidi and Powell (2013). We observe that this logic is independent of the observation ŷn+1

x which
simplifies (but also limits) our algorithm. However, the important simplification is that the set of clouds at
time n+1, given the clouds at n, is a deterministic function of xn, and this greatly simplifies our adaptation
of the knowledge gradient.

To update a particular cloud UI , we need to update the local regression model and its weight. Locally,
the iteration counter for cloud I is kI where åi ki = n, and x̃n is the attribute vector (note that this is a row
vector from the data matrix X ). The recursive update for the response follows from the linear regression
update

J kI+1
I = J kI

I +
êkI+1

gkI
CkI

I x̃n,

CkI+1
I = CkI

I − 1
gkI

(

CkI
I x̃n(x̃n)TCkI

I

)

,

where we define ên+1 = ŷn+1 − (Jn
I )

T x̃n and gn = lxn +(x̃n)TCn
I x̃n.
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The center of the weighting kernel is updated via the following equation

ckI+1
I = ckI

I +
xn − ckI

I

kI
.

Then the width of the weighting kernel is updated via the Welford formula, given in Knuth (1997). Note
that WI is computed for each dimension separately below

QkI = QkI−1 +(xn −QkI)/kI ,

SkI = SkI−1 +(xn −QkI−1)(xk −QkI).

The kI-th estimate of the variance is W 2
I = 1

kI−1SkI .

5 KNOWLEDGE GRADIENT WITH DC-RBF BELIEF MODEL

It is apparent that Equation (4) is a weighted sum of multiple linear estimates. From the above updating
equations of DC-RBF, each data point is used to update the local estimate of one cloud, implying the
coefficient vectors ai, i = 1, · · · ,Nc are independent. Suppose we impose normal beliefs on each ai such
that ai ∼ N (Ji,Ci); we note that m is the linear combination of independent normal random variables, so
it is also a normal random variable, where its distribution is expressed as

m ∼ N (
Nc

å
i=1

TiJi,
Nc

å
i=1

TiCiT
T

i ),

where Ti =
yiX

åNc
i=1 yi

.

Substituting this new expression of the belief state back to h(a,b) = E [maxi ai +biZ]−maxi ai , where

a =
Nc

å
i=1

T n
i Jn

i ,

b =
åNc

i=1 T n
i Cn

i T n,T
i ex

√

lx +åNc
i=1(T

n
i Cn

i T n,T
i )xx

.

We can compute the KG factor again via the correlated belief method described in Equation (3).

6 EMPIRICAL RESULTS

Here we demonstrate the performance of the algorithm on a variety of synthesized data sets. The data sets
have distinct features in terms of complexity of the response function as well as the noise. Note that the
algorithm provides a functional representation of the underlying belief function.

6.1 Quadratic Functions

Here we demonstrate KG-DC-RBF maximizing over a quadratic function on the interval [1,10]. We discretize
the interval by 0.1 producing a domain with 91 alternatives. We set the sampling variance as l = 1 and
the distance threshold for DC-RBF, DT = 2. We initialize with a constant prior, with q0 = maxx(mx)+3l
and S0 = 100I, where I is the identity matrix. Figure 1 illustrates the estimate of the function produced by
KG-DC-RBF after 50 iterations. We observe that the proposed algorithm has performed well in finding
the maximum of the given function. There are 5 components in the DC-RBF model.
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Figure 1: Estimate of a quadratic function with KG-DC-RBF, after 50 iterations. This estimate aims at
finding the maximum of the underlying function from a set of noisy observations and does not aim at
approximating the original function as a whole.

6.2 Newsvendor Problems

In the newsvendor problem, a newsvendor is trying to determine how many units of an item x to stock.
The stocking cost and selling price for the item is c and p, respectively. One could assume an arbitrary
distribution on demand D. The expected profit is given by

f (x) = E [pmin(x,D)]− cx.

With known prices and an uncertain demand, we want the optimal stocking quantity that maximizes profit.
This problem represents a nontrivial challenge for many online estimation methods. First, it is highly

heteroscedastic, with much higher measurement noise for larger values of x (especially x ≥ ED). Second,
if p− c is small relative to c, the function is highly nonsymmetric, which causes problems for simple
regressors such as quadratic functions. Higher order approximations suffer from overfitting and generally
lose the essential concave property of the function.

Figure 2 shows an instance of this problem, where we use p = 4, c = 3.9, and D is sampled from
N (40,1). The small variance of the distribution causes the function to have a sharp drop, whereas a larger
variance yields a smoother decline. In this particular example, we set the measurement noise l = 1, along
with prior beliefs q0 = maxx(mx)+3l and S0 = 100I. In this example, we see that KG-DC-RBF quickly
converges to the optimal alternative. This is otherwise very difficult if we have a parametric belief model
such as a quadratic function.

6.3 Performance on One-dimensional Test Functions

In this section we compare the performance KG-DC-RBF with two other methods of the same class. The
first is Pure Exploration, where each alternative is selected with probability 1/M at every time step. The
second is knowledge gradient with non-parametric beliefs (KG-NP) presented in Barut and Powell (2013),
which uses aggregates over a set of kernel functions to estimate the truth. We tested these policies on two
types of Gaussian Processes. All GP functions are defined on mesh points x = 1,2, . . . ,100. For all the
policies, we select the prior mean to be q0 = maxi mi + 3l , and prior covariance to be S0 = 100I. For
KG-NP, we use the Epanechnikov kernel and pick the number of the kernel as 64.
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Figure 2: Estimate of the optimal order quantity for a newsvender problem using KG-DC-RBF with DT = 5.

6.4 Gaussian Process with Homoscedastic Covariance Functions

In this part we test KG-DC-RBF policies on Gaussian processes with the covariance function

Cov(i, j) = s 2 exp

(

− (i− j)2

((M−1)r)2

)

,

which produces a stationary process with variance s 2 and length scale r . Higher values of r produce
fewer numbers of peaks, resulting in a smoother function. The variance s 2 scales the function vertically.
Figure 3 illustrates randomly generated Gaussian processes with different values of r .
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Figure 3: Stationary Gaussian processes with different values of r .

For our test functions, we use s 2 = 0.5 and choose r ∈ [0.05,0.1] and DT = 5. For both of these
values, we generate 500 test functions to test the policy. We use the opportunity cost as the performance
benchmark,

OC(n) = max
i

mi −qi⋆ ,

with i⋆ = arg maxx qn
x . This measures the difference between the maximum of the truth and the value of the

best alternative found by a given algorithm. We take the average of the opportunity cost for each different
parameters over r . We also test the policies on two different sampling noise levels. The lower one with
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l = 0.01 and the high noise with l = 1
4 (max(m)−min(m)). The opportunity costs on a log scale for

different policies are given in Figure 4.
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(a) r = 0.1,l = 0.01

0 50 100 150 200
10

−2

10
−1

10
0

n

lo
g
1
0
(O

C
)

 

 

KG-DC-RBF
EXP
KGNP

(b) r = 0.1,l = d/4
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(c) r = 0.05,l = 0.01

0 50 100 150 200
10

−2

10
−1

10
0

10
1

n

lo
g
1
0
(O

C
)

 

 

KG-DC-RBF
EXP
KGNP

(d) r = 0.05,l = d/4

Figure 4: Comparison of policies on homoscedastic GP, where d = max(m)−min(m).

The KG-DC-RBF method outperforms both KG-NP and EXP in the low noise setting (l = 0.01), due
the fact that it could construct the underlying belief model with a few observations. In the high noise setting,
with r = 0.05, the functions have more peaks and valleys, and the advantage of KG-DC-RBF becomes less
apparent with the fixed DT = 5, while keeping a slightly better performance. The high sampling variance
makes some of the smaller peaks and valleys indistinguishable and requires more alternatives to sample
from, making it difficult to identify local maxima.

6.4.1 Gaussian Process with Heteroscedastic Covariance Functions

In this part we consider non-stationary covariance functions, particularly the Gibbs covariance function,
Gibbs (1997). It has a similar structure to the exponential covariance function, as described above, but is
heteroscedastic. The Gibbs covariance function is given by

Cov(i, j) = s 2

√

2(l(i)l( j)
l(i)2 + l( j)2 exp

(

− (i− j)2

l(i)2 + l( j)2

)

,
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where l(i) is an arbitrary positive function in i. Here we choose a horizontally shifted periodic sine function
given by

l(i) = 10

(

1+ sin

(

2p
(

i
100

+u

)))

+1,

where u is a random number from [0,1]. The opportunity costs on a log scale for different policies are
given in Figure 5.
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(b) l = d/4

Figure 5: Comparison of policies on heteroscedastic GP, where d = max(m)−min(m).

Similar to the previous experiment in the stationary case, we observe that the KG-DC-RBF outperforms
both KG-NP and EXP in the low noise setting. Note that in the heteroscedastic case the covariance
between alternatives changes according to the index of the alternative, which makes it a harder estimation
problem. Similar to the previous experiment we observe that in the high noise case, the advantage of
KG-DC-RBF becomes less apparent with the fixed DT = 2, while keeping a slightly better performance.
These experiments show that the KG-DC-RBF method is robust in the heteroscedastic case. In addition,
the KG-DC-RBF is faster and requires less storage.

7 CONCLUSION

In this paper we introduced the adaptation of the knowledge gradient technique for optimizing functions
using the DC-RBF belief model. The knowledge gradient offers an efficient search strategy by maximizing
the marginal value of a measurement. We note that the method focuses on finding the optimal solution
rather than producing a good approximation of the function (even near the optimum).

The method offers some useful features.

• It overcomes the need for extensive tuning as required by parametric approximations. The local
parametric approach automatically adapts to the order of the function.

• The belief model naturally accommodates heteroscedastic noise.
• We avoid the need to store the entire history of observations, but we do require storing history in

the form of a smaller set of clouds.
• We also avoid the need to specify hyperparameters for Bayesian priors.
• The updating of the belief model is fully recursive, and the knowledge gradient is quite easy to

compute using the knowledge gradient for correlated beliefs using the linear belief model for each
cloud.
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• The proposed technique can be used both for on-line and off-line learning problems by using the
simple bridging formula given in Ryzhov et al. (2012).

The experimental work shown here is encouraging. Not surprisingly, we get better performance on
functions with relatively low noise in the measurement process. Our experiments were all performed on
relatively low-dimensional functions, and it remains to be seen how it would scale to higher dimensional
problems. In addition, we have found that the fitting of linear models to clouds with a small number of
datapoints can be highly unreliable, especially in the presence of high levels of measurement noise. For this
reason, we are investigating the use of a hierarchical blend of constant and linear functions with weights
that adapt to the quality of the fit.
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