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ABSTRACT 

Constrained ranking and selection (R&S) refers to the problem of selecting the best feasible design where 
both main objective and constraint measures need to be estimated via stochastic simulation. Despite the 
growing interests in constrained R&S, none has considered other selection qualities than a statistical 
measure called the probability of correct selection (!"#). In contrast, several new developments in other 
R&S literatures have considered financial significance as the selection quality. This paper aims to lay the 
foundation of using other selection qualities by attempting to minimize the opportunity cost in allocating 
the limited simulation budget. The opportunity cost is defined and two allocation rules which minimize its 
upper bound are presented together with a fully-sequential heuristic algorithm for implementation.  

1 INTRODUCTION 

We consider a constrained optimization where the number of alternatives is fixed. Due to uncertainties 
involved and the dynamic relationship between the parameters, both the main objective and constrained 
measures are estimated via stochastic simulation. As there is a finite number of alternatives, this problem 
falls under the Ranking and Selection (R&S) literatures. For introduction to R&S, excellent reviews are 
provided by Swisher et al. (2003), Kim and Nelson (2006), and Hong and Nelson (2009) while the exam-
ples of the problems can be found at www.simopt.org (Pasupathy and Henderson 2006; 2011). The goal 
of the initial works is to guarantee the desired level of probability of correct selection (!"#). This is done 
by determining the number of allocation needed or developing stopping rules which can reach more than 
the user-specified level of !"# when the procedure stops.   

There is also another stream of works which attempt to optimize the simulation budget. This is be-
cause the use of simulation requires considerable simulation efforts. Therefore instead of looking at the 
worst-case scenario, it develops a R&S procedure for maximizing the desired selection quality such as 
!"# using an average-case analysis. The resulting procedures are thus generally more efficient (Branke et 
al. 2007).  

There have been many recent developments on R&S with multiple performance measures to com-
plement the R&S literatures which initially focus on the unconstrained case (Rinott 1978, Kim and Nel-

898978-1-4799-2076-1/13/$31.00 ©2013 IEEE



Pujowidianto, Lee, and Chen 
 

son 2001, Chen et al. 2000). The problems with multiple performance measures can be classified into two 
groups. If all multiple performance measures are equally important, the problem can be modeled as multi-
objective optimization. Examples of simulation budget allocation procedures for multi-objective R&S can 
be found in Butler et al. (2001) which guarantee !"# or in Lee et al. (2010) and Teng et al. (2010) which 
maximize !"#. In some cases, it is more appropriate to use the constrained R&S model where there is 
one primary performance measure as the main objective while the rest of the secondary performance 
measures can be treated as constrained measures.  

Despite the recent interests, all of the constrained R&S procedures focus only on !"#. Andradóttir et 
al. (2005) and Andradóttir and Kim (2010) laid the foundation of constrained R&S literatures by develop-
ing several procedures for guaranteeing !"# when there is a single constraint. The procedures consist of 
the feasibility determination phase and the selection phase which can be implemented either sequentially 
or simultaneously. For the case with multiple performance measures, the feasibility determination can be 
made more efficient as shown in Batur and Kim (2010). Integrating the two works yield in a valid proce-
dure for selecting the best feasible design as proposed by Healey et al. (2013a). Healey et al. (2013b) and 
Healey et al. (2013c) provided some extensions by letting some designs to be dormant from the sampling 
process temporarily and by handling the issues in switching between alternatives. Another alternative is to 
convert the constrained R&S into its unconstrained version using multi-attribute utility theory as proposed 
by Morrice and Butler (2006). As all these procedures focus on guaranteeing !"#, there have also been 
some efforts for maximizing !"# in constrained R&S. Kabirian and Olafsson (2009) developed a heuris-
tic algorithm based on the feasibility and optimality indicators without studying !"# analytically. Pu-
jowidianto et al. (2009) and Lee et al. (2012) provided a closed-form allocation rule which asymptotically 
maximizes the lower bound of !"# that is developed using Bonferroni inequalities. The Bonferroni ap-
proximation is applicable for both the case of independent performance measures and the case where the 
performance measures are correlated. Hunter and Pasupathy (2010, 2012) attempted to maximize the !"# 
using large-deviations perspective by minimizing the rate of the probability of false selection 
(!"#,!"# = 1 − !"#) for the case with independent performance measures. None of the previously 
mentioned works explicitly account for the correlation between the main objective and the constrained 
measures. This is handled by Hunter et al. (2011) and Pujowidianto et al. (2012).      

In some cases, the !"# is unable to represent the decision maker’s interest. This is because the deci-
sion maker may be more concerned of economic criteria than statistical significance. For example, 10% 
!"# with $1 loss for every false selection may be preferred to 90% !"# with $1 million loss in the event 
that false selection occurs. This concept was first addressed by Chick and Inoue (2001) by minimizing the 
expected opportunity cost (!"#) in the context of selecting the best in an unconstrained optimization. Lee 
et al. (2007) provided a procedure for minimizing the opportunity cost of the observed Pareto and non-
Pareto set for a multi-objective R&S. However, none has used the opportunity cost (!") concept in a 
constrained R&S. Table 1 summarizes the development of R&S and the gap in the context of constrained 
R&S.  
 This paper aims to lay the foundation of constrained R&S based on economic criteria by minimizing 
the upper bound of !". The insights on the difference between the allocation rule when the criteria is !" 
and when !"# is the concern are discussed. This is a useful contribution which will lead the development 
of other simulation budget allocation procedures which focus on the financial significance. For example, 
in the context of unconstrained optimization, Chick et al. (2010) attempted to maximize the expected val-
ue of information of individual alternative if there can only be one sample to be allocated in the next stage 
of sampling process. Chick and Gans (2009) and Chick and Frazier (2012) pioneered the modeling of the 
simulation budget allocation procedure which looks at the stream of expected rewards. Therefore, instead 
of myopically allocate the budget via one-step lookahead, they consider the overall rewards using dynam-
ic programming. 
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Table 1:  Overview of R&S and the Research Gap in Constrained R&S 

 Guaranteeing 
Desired !"# 

Maximizing Desired Selection Quality 
!"# !" 

Unconstrained optimization Rinott (1978), Kim 
and Nelson (2001), 
Nelson et al. (2001) 

Chen et al. (2000, 
2010) 

Chick and Inoue 
(2001a, 2001b), 
Chick and Wu 

(2005), He et al. 
(2007) 

Constrained optimization Andradóttir et al. 
(2005), Andradóttir 

and Kim (2010), 
Morrice and Butler 

(2006) 

Pujowidianto et 
al. (2009, 2012), 
Hunter and Pasu-

pathy (2010, 
2012), Lee et al. 

(2012) 

? 

Multi-objective optimization Butler et al. (2001) Lee et al. (2010), 
Teng et al. (2010) 

Lee et al. (2007) 

 
 The organization of this paper is as follows. Section 2 formulates the simulation budget allocation 
problem and defines the opportunity cost in the context of constrained optimization. Section 3 presents 
the allocation rules which minimize the upper bound of the total opportunity cost (!"#). The sequential 
heuristic algorithm for implementation is provided in Section 4. Section 5 concludes this paper.  

2 PROBLEM FORMULATION 

2.1 Selection Problem 

We consider the problem of selecting the best feasible design from ! alternatives. Let !! be the random 
variable of the output of the main objective of design ! while !!" is the random variable of the output of 
the !th constraint measure, , ! = 1, 2,… , !, ! = 1, 2,… , !. !!" and !!"#!are the !th replications of !! and !!" 
respectively. The main objective value is ℎ! = ! !!"  and the !th constraint measure value is !!" =
! !!"# . The variances are !!!! = !"#! !!"  and are !!!"! = !"#! !!"# . We assume that the performance 
measures are normally distributed. The output is independent from design to design as well as from repli-
cation to replication. In addition, the performance measures are independent from one to another.  
 Without loss of generality, the goal of the selection problem is to select the design with the smallest 
main objective value where all of the constraint measures should be below the respective constraint limits 
!!. The constrained R&S problem is therefore to select the best feasible design ! as follows 
 

                               ! = argmin!!!,!,…,! ℎ! subject to !!" ≤ !!,!! = 1, 2,… , !.       (1) 
 
In practice, the performance measures need to be estimated via simulation. Let !! be the number of repli-
cations for design !. Thus, the performance measures can be estimated by the sample means, !! = !! =

!!"!!
!!! !! and !!" = !!" = !!"#!!

!!! !!. The selection is based on the sample mean and so the selected 
alternative ! is 

 
               ! = argmin!!!,!,…,! !!! !subject!to!!!" ≤ !! , ! = 1, 2,… , !.       (2) 
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2.2 Simulation Budget Allocation Problem 

Let ! be the simulation budget. The objective is to minimize the total opportunity cost (!"#) and so the 
simulation budget allocation problem is 
 

min!!,!!,…,!! !"# !subject!to! !!!
!!! = !, !! ≥ 0.       (3) 

 

2.3 Definition of Opportunity Cost (!") 
As there are multiple performance measures, there are several opportunity costs. First, there is an oppor-
tunity cost in terms of the main objective if the selected alternative is inferior to the best feasible design. 
Secondly, there is an opportunity cost for accounting the loss by selecting an infeasible design as the best.  
 Let !!! be the opportunity cost in terms of main objective. The opportunity cost is the difference in 
means of the main objective values between the selected alternative and the best as follows 
 

!!!! = max ℎ! − ℎ! , 0 .       (4) 
 
 In addition, let !!!! be the opportunity cost in terms of the !th constraint measure. The opportunity 
cost is the difference between the mean of the constraint measure with the respective constraint limit mul-
tiplied by weight factors !!, ! = 1, 2,… , !. The weight factor is used to monetize the penalty of violating 
the constraint measures. For example, if the goal is to minimize the total operations cost while ensuring 
the average waiting time is less than certain limit, the weight factor!would be the cost of the excess in 
waiting time. 
 

!!!!" = !!max !!" − !! , 0 .       (5) 
 
 If appropriate, !!!!" can be modified into a step function. This is useful when there is different pen-
alties of violating the constraint limit for each specific ranges.   
 The total opportunity cost (!"#) is therefore 
 

               !"# = !!!! + !!!!"!
!!! |! = ! !{! = !!}!!! ,      (6) 

 
where 
 
                               ! ! = !! = ! !!" ≤ !!!

!!! ∩ !!" > !!!
!!! ∪ !! < !!!!! .    (7) 

 
 Note that given a design is selected as the best, the total opportunity cost in (6) is the same as the case 
where the constraint measures are incorporated into the main objective to have an unconstrained optimi-
zation. However, the probability of design ! being the best is different. In this paper, a design can only be 
selected as the best if it is feasible with respect to all constraint limits. In the case where the decision 
maker converts the constraints into the main objective, there is a possibility that an infeasible design is the 
best design if it is close to the constraint limits and has a significantly better main objective than all feasi-
ble designs.  

3 ALLOCATION RULE 

This section provides some insights on the allocation rule that aims to minimize the estimated total oppor-
tunity cost as discussed in Section 3.1. For ease of illustration, Section 3.2 considers a special case with 
three designs when there is a single constraint. Two allocation rules are derived. Section 3.3 uses the as-
ymptotic framework as the simulation budget goes to infinity, ! → ∞. This is because there are usually 
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certain good properties when the problem is analyzed in the asymptotic context. Section 3.4 proposes an 
alternative allocation rule which considers the total opportunity cost in the next stage of sampling when 
all additional samples are allocated to only one design. Section 3.5 provides insights to generalize the re-
sults into the common scenarios with more than three designs in the presence of multiple constraints.  

3.1  Estimated Total Opportunity Cost (!"#$) 
There is no closed-form expressions for !"# in (6). It can be evaluated using Monte Carlo Simulation. 
However, we do not want to add the computational burden as the computational budget is limited. This is 
addressed by minimizing an upper bound to !"# called the estimated total opportunity cost (!"#$). The 
probability of design ! selected as the best can be bounded from above as follows 
 
                         ! ! = !! ≤ min min! ! !!" ≤ !! ,min!!! ! !!" > !!!

!!! ∪ !! < !! .   (8) 
 
Assuming that the main objective and the constraint measures are independent,  
 
                        ! ! = !! ≤ min min! ! !!" ≤ !! ,min!!! ! !!" > !!!

!!! + ! !! < !! .   (9) 
 
Therefore, the estimated total opportunity cost !"#$ is given by 

 
!"# ≤ !"#$ = !!!! + !!!!!

!!! ×min min! ! !!" ≤ !! ,min!!! ! !!" > !!!
!!! +!!!

! !! < !! .       (10) 
 

 The approximate simulation budget allocation rule becomes  
 

min!!,!!,…,!! !"#$ !subject!to! !!!
!!! = !, !! ≥ 0.       (11) 

 

3.2 The Case with Three Designs 

Let design 1 be the best feasible design, i.e. ! = 1 where ℎ! < min!!! ℎ!. As there is only one constraint, 
!!! = !! ≤ !. Design 2 represents a design that is feasible but worse than the best design in terms of the 
main objective, i.e. ℎ! < ℎ!, !! ≤ !. Design 3 has a better main objective value than the best design but 
it is infeasible, i.e. ℎ! > ℎ!, !! > !. The total opportunity cost (!"#) in this case becomes 

 
    !"# = ℎ! − ℎ! |! = 2 ! ! = 2! + ! !! − ! |! = 3 ! ! = 3! .    (12) 

 
 The idea of the upper bound of ! ! = !!  is to look at the individual probability that is critical in de-
termining its probability of being selected as the best. For example, design 2 is feasible while design 3 is 
infeasible. Therefore, there is a higher chance for design 2 to appear as feasible and to beat design 3 as 
design 3 is likely to be infeasible. In this case, the probability to be focused is the probability of design 2 
beating the best design 1, that is either when design 2 appears to be better than design 1 in terms of the 
main objective or design 1 appears to be infeasible. Similarly, design 3 has a high chance to appear to be 
better than designs 1 and 2 in terms of the main objective. Therefore, its probability of being the best is 
mostly influenced by its probability of being feasible. The estimated !"# (!"#$) can then be given by 
 

        !"#$ = ℎ! − ℎ! |! = 2 ! !! > ! + ! !! < !! + ! !! − ! |! = 3 ! !! ≤ ! .   
 (13) 
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 Let ! and Φ be the probability density function (pdf) and the cumulative distribution function (cdf) 
for the standard normal distribution, ! ! = !

!! !
!!! !, Φ ! = !

!! !
!!! !!

!! !". Given that !(!,!!) 
denotes a normal distribution with mean ! and variance !!, let !(!!,!) be the pdf of !(ℎ! − ℎ!,!!!,!! ), 
!!!,!! = !!!

!

!!
+ !!!

!

!!
, !(!!,!)  be the pdf of !(!! − !,!!!! ), !!!! = !!!!

!!
, !(!!,!)  be the pdf of !(! −

!!,!!!! ), and !!!! = !!!!
!!

. Therefore,  
 

       ℎ! − ℎ! |! = 2 ! !! > ! = ℎ! − ℎ! ! !!,! !!!,!!!
! = ℎ! − ℎ! Φ !!!!

!!!
,   

 (14) 
 

      ℎ! − ℎ! |! = 2 ! !! < !! = ℎ! − ℎ! ! !!,! !!!,!!!
! = ℎ! − ℎ! Φ !!!!!

!!!,!
,   

 (15) 
 

      ! !! − ! |! = 3 ! !! ≤ ! = ! !! − ! ! !!,! !!!,!!!
! = ! !! − ! Φ !!!!

!!!
,  

 (16) 
 

and 
 

                               !"#$ = ℎ! − ℎ! Φ !!!!
!!!

+ Φ !!!!!
!!!,!

+ ! !! − ! Φ !!!!
!!!

.          (17) 

 
 

 Two of the possible ways to minimize !"#$ are described in Sections 3.3 and 3.4. Section 3.3 shows 
how  !"#$ can be asymptotically minimized while Section 3.4 aims to maximize the difference between 
!"#$ before and after allocating some additional simulation budget to a design.  

3.3 Asymptotic Allocation 

The approximate simulation budget allocation problem can be solved by deriving the Karush-Kuhn-
Tucker (KKT) conditions to the problem in (11). By taking the natural log in solving the KKT conditions 
and letting the simulation budget tend to infinity, i.e. ! → ∞, only the terms inside Φ ∙  remain. In other 
words, the effect of the individual loss is dissolved. As a result, the allocation rule will be the same as that 
for maximizing the probability of correct selection !"# in Lee et al. (2012). The next section attempts to 
quantify the effect of the opportunity cost explicitly by looking at one step ahead.   

3.4 One-step Lookahead Allocation 

In this approach, we are interested in how to allocate additional samples !! to a single design ! given that 
!! samples have been observed for each design ! = 1, 2,… , !. This is similar to the approach by He et al. 
(2007) for unconstrained optimization. Given the additional sample to design !, !"#!! for the case with 
three designs can be updated as follows,  
 

    !"#!! = ℎ! − ℎ! !∗ !!,! !!!,!!!
! + !∗ !!,! !!!,! + ! !! − ! !∗ !!,! !!!,!!!

! .   
 (18) 
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 The idea is to update the variance of the pdf to consider the additional sample !!. For example if 

! = 1, !∗(!!,!) is the pdf of !(ℎ! − ℎ!,!!!,!! = !!!
!

!!!!!
+ !!!

!

!!
), !∗(!!,!) be the pdf of !(!! − !,!!!! =

!!!!
!!!!!

) while there is no changes to !(!!,!) as !∗ !!,!  remains to be the pdf of !(! − !!,!!!! = !!!!
!!
). If 

! = 2, only !∗(!!,!) is updated where !!!,!! = !!!
!

!!
+ !!!

!

!!!!!
  while only !∗ !!,!  is updated if ! = 3 by 

changing the estimated variance !!!! = !!!!
!!!!!

.  
 The allocation rule is then to allocate the additional sample only to a design of which the difference 
between !"#!! and the current !"#$ is the highest.  

3.5 Generalization 

Sections 3.2 to 3.4 focus the discussion on the case with three designs when there is a single constraint. In 
general, there are often more than three designs and multiple constraints are present. The one-step 
lookahead allocation rule is expected to be similar. The presence of many constraints and designs will re-
quire one to compare the probabilities to derive the upper bound of the probability of being the best. This 
can be addressed by computing the respective opportunity costs. The probability to be focused is then the 
one that has the least opportunity cost so as to ensure that the upper bound of the !"# is tight.   

4 SEQUENTIAL ALGORITHM 

This section presents a fully-sequential heuristic algorithm for implementing the allocation rule. In prac-
tice, the means and variances can be estimated using sample mean and sample variance based on !! ini-
tial replications for all of the designs. Afterwards, the sampling budget is increased by ! = !!!

!!! = 1. 
The algorithm is described as the following 

 
INPUT   number of designs !, the total simulation budget !, the initial number of replications 

!!, the additional budget in each stage !, and; 
INITIALIZE ! ← 0; 
    Perform !! samples for all designs;!!!,! = !!,! = ⋯ = !!,! = !!. 
LOOP WHILE !!,!!

!!! < !  DO 
 UPDATE Calculate sample means and sample standard deviation using the new simulation out-

put; select the sample best feasible design ! 
 
 ALLOCATE  Increase the sampling budget by ! = 1 and select the design !∗ to receive the addi-

tional one sample 
 
 SIMULATE Perform additional one sample for design !∗; update !!∗,!!! = !!∗,! + 1; ! ← ! + 1. 
END OF LOOP 
  
For the asymptotic allocation, the allocation rule is the same as that in Lee et al. (2012). In this case, 
!∗ = argmax! !!,!!! − !!,!  while !∗ = argmax! !"#!! − !"#$  for the one-step lookahead allocation 
rule. 

5 CONCLUSION 

This paper revisits the problem of constrained ranking and selection where the performance metric of in-
terest is the total opportunity cost instead of the probability of correct selection. This is to cater to the de-
cision makers who are more interested in the economic value of the decision instead of the statistical sig-
nificance. The problems are formulated and two possible allocation rules are presented. The asymptotic 
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allocation turns out to be equivalent to that for probability of correct selection. Similar to the case of un-
constrained optimization, the one-step lookahead allocation is able to consider the total opportunity cost 
by looking at each hypothetical value for allocating samples for a single design before the actual sam-
pling. This research can be extended by considering the framework by Chick and Frazier (2012) which 
looks at the entire future stream of rewards instead of only one-step ahead. In addition, the empirical val-
ue of new allocation rules considering the total opportunity cost needs to be investigated.  

ACKNOWLEDGMENTS 

This work has been supported in part by National Science Foundation under Award CMMI-1233376, De-
partment of Energy under Award DE-SC0002223, NIH under Grant 1R21DK088368-01, and National 
Science Council of Taiwan under Award NSC-100-2218-E-002-027-MY3. The authors would also like to 
thank the Proceedings Editors and two anonymous reviewers for their constructive feedbacks.  

REFERENCES 

Andradóttir, S., D. Goldsman, and S.-H. Kim. 2005. “Finding the best in the presence of a stochastic con-
straint.” In Proceedings of the 2005 Winter Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. 
B. Armstrong, and J. A. Joines, 732–738. Piscataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.  

Andradóttir, S., and S.-H. Kim. 2010. “Fully Sequential Procedures for Comparing Constrained Systems 
via Simulation”. Naval Research Logistics 57: 403–421. 

Batur, D., and S.-H. Kim. 2010. “Finding Feasible Systems in the Presence of Constraints on Multiple 
Performance Measures”. ACM Transactions on Modeling and Computer Simulation 20: 13:1–26.  

Branke, J., S. E. Chick, and C. Schmidt. 2007. “Selecting a selection procedure.” Management Science 
53:1916-1932. 

Butler, J., D. J. Morrice, and P. W. Mullarkey. 2001. “A multiple attribute utility theory approach to rank-
ing and selection.” Management Science 47:800-816. 

Chen, C. H., J. Lin, E. Yücesan, and S. E. Chick. 2000. “Simulation budget allocation for further enhanc-
ing the efficiency of ordinal optimization.” Discrete Event Dynamic Systems: Theory and Applica-
tions 10:251-270. 

Chick, S., and P. Frazier. 2012. “Sequential Sampling with Economics of Selection Procedures.” Man-
agement Science 58: 550 – 569. 

Chick, S., and N. Gans. 2009. “Economic Analysis of Simulation Selection Problems.” Management Sci-
ence 55: 421 – 437. 

Chick, S. E., and K. Inoue. 2001. “New two-stage and sequential procedures for selecting the best simu-
lated system.” Operations Research 49: 732-743. 

Chick SE, Y., and Z. Wu. 2005. “Selection Procedures with Frequentist Expected Opportunity Cost 
Bounds.” Operations Research 53: 867-878. 

Chick, S. E., J. Branke, and C. Schmidt. 2010. “Sequential sampling to myopically maximize the ex-
pected value of information.” INFORMS Journal on Computing 22, 71-80. 

He, D., S. E. Chick, and C. H. Chen. 2007. “The Opportunity Cost and OCBA Selection Procedures in 
Ordinal Optimization.” IEEE Transactions on Systems, Man, and Cybernetics—Part C (Applications 
and Reviews) 37: 951–961. 

Healey, C., S. Andradóttir, and S.-H. Kim. 2013a. “Selection Procedures for Simulations with Multiple 
Constraints under Independent and Correlated Sampling.” Submitted. 

Healey, C., S. Andradóttir, and S.-H. Kim. 2013b. “Efficient Comparison of Constrained Systems using 
Dormancy.” European Journal of Operations Research 224:340-352  

Healey, C., S. Andradóttir, and S.-H. Kim. 2013c. “Minimal Switching Procedures for Constrained Rank-
ing and Selection under Independent and Common Random Numbers.” Under Review 

905



Pujowidianto, Lee, and Chen 
 

Hong, L. J., and B. L. Nelson. 2009. “A Brief Introduction to Optimization via Simulation.” In Proceed-
ings of the 2009 Winter Simulation Conference, Edited by M. D. Rosetti, R. R. Hill, B. Johansson, A. 
Dunkin, and R. Ingalls, 75–85. Piscataway, New Jersey: Institute of Electrical and Electronics Engi-
neers, Inc. 

Hunter, S. R. and R. Pasupathy. 2010. “Large-deviation sampling laws for constrained simulation optimi-
zation on finite sets.” In Proceedings of the 2010 Winter Simulation Conference, Edited by B. Johans-
son, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 995-1002. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc. 

Hunter, S. R. and R. Pasupathy. 2012. “Optimal sampling laws for stochastically constrained simulation 
optimization on finite sets.” INFORMS Journal on Computing Articles in Advance, 1-16. 

Hunter, S. R., N. A. Pujowidianto, C. H. Chen, L. H. Lee, R. Pasupathy, and C. M. Yap. 2011. “Optimal 
sampling laws for constrained simulation optimization on finite sets: the bivariate normal case.” In 
Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmel-
spach, K. P. White, and M. Fu, 4294-4302. Piscataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc. 

Kabirian, A., and S. Ólafsson. 2009. “Selection of the best with stochastic constraints.” In Proceedings of 
the 2009 Winter Simulation Conference, Edited by M. D. Rosetti, R. R. Hill, B. Johansson, A. Dun-
kin, and R. Ingalls, 574-583. Piscataway, New Jersey: Institute of Electrical and Electronics Engi-
neers, Inc. 

Kim, S. H., and B. L. Nelson. 2001. “A fully sequential procedure for indifference-zone selection in 
simulation.” ACM Transactions on Modeling and Computer Simulation 11:251-273.  

Kim, S. H., and B. L Nelson. 2006. “Selecting the Best System.” In Handbook in Operations Research 
and Management Science: Simulation, Edited by S. Henderson and B. L. Nelson, Chapter 17, 501-
534. Elsevier, Amsterdam. 

Lee, L. H., E. P. Chew, and S. Teng. 2007. “Finding the Pareto Set for Multi-objective Simulation Models 
by Minimization of Expected Opportunity Cost.” In Proceedings of the 2007 Winter Simulation Con-
ference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 513–
521. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Lee, L. H., E. P. Chew, S. Teng, and D. Goldsman. 2010.  “Finding the non-dominated Pareto set for mul-
ti-objective simulation models.” IIE Transactions 42:656-674. 

Lee, L. H., N. A. Pujowidianto, L.-W. Li, C. H. Chen, and C. M. Yap. 2012. “Approximate simulation 
budget allocation for selecting the best system in the presence of stochastic constraints.” IEEE Trans-
actions on Automatic Control 57: 2940-2945. 

Morrice, D. J. and J. C. Butler. 2006. “Ranking and selection with multiple “targets”. In Proceedings of 
the 2006 Winter Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. 
Nicol, and R. M. Fujimoto, 222–230. Piscataway, New Jersey: Institute of Electrical and Electronics 
Engineers, Inc. 

Pasupathy, R., and S. G. Henderson. 2006, December. “A Testbed of Simulation-Optimization Prob-
lems”. In Proceedings of the 2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wie-
land, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 255–263. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers, Inc. 

Pasupathy, R., and S. G. Henderson. 2011, December. “SimOpt: A Library of Simulation Optimization 
Problems”. In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. 
Creasey, J. Himmelspach, K. P. White, and M. Fu, 4080–4090. Piscataway, New Jersey: Institute of 
Electrical and Electronics Engineers, Inc. 

Pujowidianto, N. A., L. H. Lee, C. H. Chen, and C. M. Yap. 2009. “Optimal computing budget for con-
strained optimization.” In Proceedings of the 2009 Winter Simulation Conference, Edited by M. D. 
Rosetti, R. R. Hill, B. Johansson, A. Dunkin, and R. Ingalls, 584-589. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc. 

906



Pujowidianto, Lee, and Chen 
 

Pujowidianto, N. A., S. R. Hunter, R. Pasupathy,  L. H. Lee, and C. H. Chen. 2012. “Closed-form sam-
pling laws for stochastically constrained simulation optimization on large finite sets.” In Proceedings 
of the 2012 Winter Simulation Conference, Edited by C. Laroque, J. Himmelspach, R. Pasupathy, O. 
Rose, and A. M. Uhrmacher, Article No. 14. Piscataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc. 

Rinott, Y. 1978. “On two-stage selection procedures and related probability inequalities.” Communica-
tions in Statistics A7:799–811. 

Swisher, J. R., S. H. Jacobson, and E. Yücesan. 2003. “Discrete-event simulation optimization using 
ranking, selection, and multiple comparison procedures: a survey.” ACM Transactions on Modeling 
and Computer Simulation 13:134-154. 

Teng, S., Lee, L. H., and Chew, E. P. 2010. “Integration of Indifference-zone with Multi-objective Com-
puting Budget Allocation.” European Journal of Operational Research 203:419-429. 

AUTHOR BIOGRAPHIES 

NUGROHO A. PUJOWIDIANTO is an R&D Writing System Engineer in the Business Printing Divi-
sion, Printing and Personal Systems Group at Hewlett-Packard Singapore. He received his B.Eng. (Me-
chanical Engineering) degree from Nanyang Technological University in 2006 and his Ph.D. degree from 
the Department of Industrial and Systems Engineering, National University of Singapore in 2013. He is a 
member of IEEE and was previously a teacher at Pioneer Secondary School under the Ministry of Educa-
tion, Singapore. His research interests include simulation optimization and its application in health care. 
His email address is nugroho@hp.com. 
 
LOO HAY LEE is an Associate Professor and Deputy Head (Research) in the Department of Industrial 
and Systems Engineering, National University of Singapore. He received his B.S. (Electrical Engineering) 
degree from the National Taiwan University in 1992 and his Ph.D. degree in 1997 from Harvard Univer-
sity. He is currently a senior member of IEEE, a member of ORSS and INFORMS. He is the associate ed-
itor for IIE Transactions, Flexible Services and Manufacturing Journal, the Asia Pacific Journal of Opera-
tional Research, the co-editor for Journal of Simulation and is a member in the advisory board for OR 
Spectrum. His research interests include simulation-based optimization, and maritime logistics. His email 
address is iseleelh@nus.edu.sg. 
 
CHUN-HUNG CHEN is a Professor in the Department of Systems Engineering and Operations Re-
search at George Mason University. He received his Ph.D. from Harvard University in 1994. His research 
interests are mainly in development of very efficient methodology for simulation and optimization and its 
applications. Dr. Chen has served as Co-Editor of the Proceedings of the 2002 Winter Simulation Confer-
ence and Program Co-Chair for 2007 Informs Simulation Society Workshop. He is currently an associate 
editor of IEEE Transactions on Automatic Control, area editor of Journal of Simulation Modeling Prac-
tice and Theory, associate editor of International Journal of Simulation and Process Modeling, and simu-
lation department editor for IIE Transactions. His email address is cchen9@gmu.edu and his web page is 
http://mason.gmu.edu/~cchen9. 
 
 
 

907


