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ABSTRACT

Global financial markets require suitable techniques for the quantification of the downside risk of financial
positions. In the current paper, we concentrate on Monte Carlo methods for the estimation of an important
and broad class of convex risk measures which can be constructed on the basis of optimized certainty
equivalents (OCEs). This family of risk measures — originally introduced in Ben-Tal and Teboulle (2007)
— includes, among others, the entropic risk measure and average value at risk. The calculation of OCEs
involves a stochastic optimization problem that can be reduced to a stochastic root finding problem via
a first order condition. We describe suitable algorithms and illustrate their properties in numerical case
studies.

1 INTRODUCTION

Global financial markets require suitable techniques for the quantification of the downside risk of financial
positions. The seminal papers of Artzner et al. (1999) and Föllmer and Schied (2002) triggered an intensive
scientific discussion about sensible risk measures with economically meaningful properties. However, there
are not many contributions in the literature on the Monte Carlo simulation and implementation of risk
measures – an issue of crucial importance for the implementation in practice.

The current article introduces a new Monte Carlo simulation technique for an important and broad
class of convex risk measures, the optimized certainty equivalents (OCE). This family of risk measures
was suggested by Ben-Tal and Teboulle (2007) and includes, among others, the entropic risk measure and
average value at risk. Average value at risk, also known as tail value at risk, conditional value at risk, or
expected shortfall, plays already an important role in practice and provides e.g. the basis for the Swiss
solvency test for insurance firms.

The computation of OCE-risk measures involves the solution of a stochastic optimization problem.
The key contribution of the present paper is to realize that by a first order condition the Monte Carlo
estimation of OCE-risk measures can be reduced to a two-step-procedure: the first step consists in solving
a stochastic root finding problem, the second step amounts to a standard Monte Carlo simulation of a value
function at the argument that was computed in the first step. Our observation allows us to use stochastic
root finding techniques for the purpose of risk measurement that could previously only be applied to a very
specific class of risk measures, i.e. utility-based shortfall risk, see Dunkel and Weber (2010). The current
paper shows that stochastic root finding possesses much higher relevance for financial risk management
than would previously have been expected in view of the existing literature.

The article is organized as follows. Section 2 reviews the (now standard) axioms of risk measures, see
Artzner et al. (1999) and Föllmer and Schied (2002). Section 3 presents the OCE-risk measures. We review
examples (see Ben-Tal and Teboulle (2007)) illustrating that well-known risk measures like the entropic
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risk measure and the average value at risk are special cases of OCEs, corresponding to an exponential
and piecewise linear utility function, respectively. The computation of OCEs requires the solution of a
stochastic optimization problem that can be reduced to a stochastic root finding problem under suitable
conditions. We present suitable algorithms in Section 4. The risk measures discussed in the paper and the
suggested algorithms are illustrated in the context of numerical case studies in Section 5. We calculate both
the entropic risk measure and the average value at risk as well as a third OCE that does not correspond to a
classical risk measure and is defined in terms of quartic utility. Section 6 concludes with a short summary
of the main findings.

2 RISK MEASURES

For the convenience of the reader, the current section reviews standard notions of the theory of static risk
measures. For a detailed description we refer to the excellent book by Föllmer and Schied (2011). We
assume that there is one time period characterized by the current time t = 0 and the future t = 1. Letting
(Ω,F ) be a measurable space of possible scenarios, a financial position is modeled by a measurable
mapping X : Ω→ R. The value X(ω) ∈ R for a specific ω ∈Ω represents the discounted net future value
of X if the scenario ω occurs. We fix a family X of financial positions, assuming that X is a vector
space containing the constants. Our aim is to summarize the risk of any financial position X ∈X by a
number ρ(X) ∈ R.
Definition 1 A map ρ : X → R is called monetary risk measure, if it satisfies the following conditions
for X ,Y ∈X :

(i) Monotonicity: If X ≤ Y , then ρ(X)≥ ρ(Y ).
(ii) Cash-Invariance: ρ(X +m) = ρ(X)−m, for all m ∈ R.

This definition formalizes that (i) risk should increase, if positions become worse, and that (ii) risk is
measured on a monetary scale.
Definition 2 A monetary risk measure ρ : X →R is called convex risk measure, if it satisfies the following
condition for X ,Y ∈X and λ ∈ [0,1]:

Convexity: ρ(λX +(1−λ )Y )≤ λρ(X)+(1−λ )ρ(Y ).
Convexity formalizes that diversification of financial positions does not increase risk measurements.

Definition 3 A convex risk measure ρ : X →R is called coherent risk measure, if it satisfies the following
condition for X ∈X :

Positive Homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X).
Example 4 We recall three well-known risk measures.

1. Value at risk. For λ ∈ (0,1) we define

VaRλ (X) := inf {m ∈ R | P[X +m < 0]≤ λ}.

The value at risk at level λ yields the smallest monetary amount m that needs to be added to the
financial position X in order to avoid that the probability of a loss exceeds λ . VaR is generally not
convex, but only positively homogeneous.

2. Average value at risk. For λ ∈ (0,1) we define the coherent risk measure

AVaRλ (X) :=
1
λ

∫
λ

0
VaRν(X) dν ,

which corresponds, under weak technical conditions, to the conditional expectation of a loss beyond
the VaRλ (X). AVaR is also known as CVaR, i.e. conditional value at risk.

923



Hamm, Salfeld, and Weber

3. Utility-based shortfall risk. Letting l : R→R be an increasing, non-constant, convex loss function
and λ ∈ [0,1] be a threshold level, we define the convex risk measure

UBSRl,λ (X) := inf {m ∈ R | E[l(−(X +m))]≤ λ}.

Utility-based shortfall risk of a financial position X equals the smallest monetary amount m that
needs to be added to X in order to avoid that the expected utility −E[l(−(X +m))] is less than the
threshold level −λ .The special case l(−X) = e−βX admits the representation

UBSRl,λ (X) =
1
β

(
log
(
E
[
e−βX

])
− log(λ )

)
.

3 OPTIMIZED CERTAINTY EQUIVALENTS

The current section summarizes important results on OCEs that provide the basis for the algorithms suggested
below. For further details we refer to the original reference Ben-Tal and Teboulle (2007).

In the following we let u : R→ [−∞,∞) be a concave and non-decreasing utility function satisfying
u(0) = 0, u(x)≥ 0 ∀x≥ 0, and u(x)< x ∀x.
Definition 5 Letting u be a utility function as above and X ∈ L∞ be a random variable, the optimized
certainty equivalent (OCE) is defined by the map OCEu : L∞→ R with

OCEu(X) = sup
η∈R
{η +E[u(X−η)]}. (1)

As shown by Ben-Tal and Teboulle (2007), the negative of a OCE defines a convex risk measure. This
is stated by the following corollary.
Corollary 6 Under the assumptions of Definition 5,

ρ(X) :=−OCEu(X), X ∈ L∞,

defines a convex risk measure.
OCE thus yields a simple method for the construction of convex risk measures associated to a utility

function u. As demonstrated in Ben-Tal and Teboulle (2007), the optimal η∗ that maximizes (1) satisfies
a first order condition – provided that u is continuously differentiable and strictly concave. The first order
condition is given by the equation

E[u′(X−η
∗)] = 1. (2)

This equation immediately leads to a stochastic root finding problem. An alternative approach would
consist in a gradient-based simulation optimization procedure, as described in Kim (2006), Hong and
Nelson (2009), Fu (2006), Fu (2008), Andradóttir (1998), and Henderson and Nelson (2006). In the current
setting, the derivative of the function u that defines the risk measure can be computed directly.

Note that the derivation of Equation (2) involves an exchange of the order of differentiation and
integration. If X ∈ L∞ and u is continuously differentiable and strictly concave, u′(X−η) is almost surely
bounded from above and below for any η ∈R which justifies the first order condition. In the general case,
the assumptions of the differentiation lemma need to be verified, see e.g. Lemma 16.2. in Bauer (2001).
Example 7 (a) Choosing the exponential utility function u(t) = 1− e−t , the negative of the OCE

yields the entropic risk measure with parameter 1, i.e.

ρ(X) = log
(
E
[
e−X]) .
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If we choose a utility function of the form u(t) = 1− e−β t , β > 1, the optimal η∗ – computed
according to (2) – coincides with the negative of utility-based shortfall risk with loss function
l(−X) = e−βX and threshold level λ = 1

β
. The risk measure defined in Corollary 6 is thus given by

ρ(X) = UBSRl,λ (X)− β −1
β

.

(b) Setting

u(t) =

{
α2t, t ≤ 0,

α1t, t > 0,

with 0≤ α1 < 1 < α2, we obtain

u(t) = α1[t]+−α2[−t]+,

using the abbreviation [z]+ := max {0,z}, z ∈ R. Calculating the optimal η∗ according to (2), we
obtain

η
∗ = F−1

(
1−α1

α2−α1

)
.

The special case α1 = 0 corresponds to

η
∗ = F−1

(
1

α2

)
= VaR 1

α2
(X).

In this case the OCE-risk measure defined in Corollary 6 coincides with the average value at risk
at level 1/α2, i.e.

ρ(X) =−OCEu(X) = AVaR 1
α2
(X).

Monte Carlo Methods The main contribution of the current paper is a new Monte Carlo method for
the computation of OCE-risk measures that are defined according to Corollary 6. The first order condition
(2) allows for the application of stochastic root finding methods. These can be used instead of stochastic
optimization procedures that are directly applied to the defining equation (1). We will explain two alternative
approaches to compute the OCE-risk measure on the basis of stochastic root finding.

(i) Method 1: According to equation (2) the optimal η∗ in (1) is the unique root of the function

g(η) = E[u′(X−η)]−1. (3)

The root η∗ can thus be computed by a stochastic root finding scheme, as explained in the next
section. In a second step, the associated OCE and the associated OCE-risk measure can be estimated
using a standard Monte Carlo procedure, since

OCEu(X) = η
∗+E[u(X−η

∗)].

(ii) Method 2: Alternatively, both the optimal η∗ in (1) and the corresponding OCE could jointly be
estimated by solving a 2-dimensional stochastic root finding problem. Denoting OCEu(X) = ξ ∗,
the pair (ξ ∗,η∗) satisfies

0 = ξ
∗ −η

∗ −E[u(X−η
∗)]

0 = E[u′(X−η
∗)]−1
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However, a 2-dimensional root finding algorithm turns out to be less efficient than Method 1. This
is not surprising, since the equation characterizing η∗ does not depend on ξ ∗. It is thus preferable
to estimate η∗ first, and to compute ξ ∗ only for an approximately correct value of η∗. Intermediate
computations of ξ ∗ for less precise estimates of η∗ do not accelerate the computation of η∗ – as
it would be the case in a fully coupled system. For this reason, we will concentrate on Method 1
in the following sections.

4 STOCHASTIC APPROXIMATION

In this section we provide a brief survey of stochastic root finding algorithms and explain how these can
be applied to the computation of OCEs and the corresponding risk measures. For further information on
stochastic root finding, we refer to Dunkel and Weber (2010) and the references therein. A very detailed
description of the topic is provided by Kushner and Yin (2003).

Robbins-Monro Algorithm. Our purpose is to construct an algorithm yielding a sequence of estimators
(ηn), n ∈N, which converges quickly to the sought root η∗ of the function g(η) defined in (3). The OCE
can then be obtained in a second step by a Monte Carlo procedure.

In many situations, stochastic root finding will not be based on naive Monte Carlo procedures, but
on sophisticated variance reduction techniques. It is thus advisable to describe the algorithms in a way
that allows for variance reduction. This approach is, for example, explained in Dunkel and Weber (2010).
Moreover, in practice random numbers are typically drawn uniformly on the interval (0,1). We will thus
use uniform random variables as the starting point for the simulation scheme.

For practical and mathematical reasons we design algorithms that are restricted to a bounded domain.
Letting −∞ < a < η∗ < b < ∞, we define for t ∈ R the projection

π(t) =


a, t ≤ a,

t, a < t < b,

b, b≤ t.

Assume that for any η ∈ [a,b] there exists a known function Yη : (0,1)→ R such that for any on (0,1)
uniformly distributed random variable U we have

g(η) = E[Yη(U)].

The Robbins-Monro algorithm for the estimation of η∗ is constructed as follows:

1. Choose
– a constant γ ∈

( 1
2 ,1
]
,

– a constant c > 0, and
– a starting point η1 ∈ [a,b].

2. Calculate the sequence of estimators recursively:

ηn+1 = π

(
ηn +

c
nγ

Yηn(Un)
)
, n ∈ N,

for a sequence (Un) of independent, U (0,1)-distributed random variables.

red In the case considered in the paper, a simple choice for Yη could consist in Yη(U) = 1−u′(q(U)−η),
where q denotes the quantile function of X .
Theorem 8 Suppose that the following assumptions hold:

(i) The function g(η) is well-defined and finite for all η ∈ [a,b].
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(ii) supη∈[a,b] Var [Yη(Un)]< ∞.

Then the sequence (ηn)n converges P-almost surely to the root η∗ of function (3).
Besides the consistency of the algorithm, its convergence rate can be further analyzed on the basis of

limit theorems for the rescaled quantities
√

nγ(ηn−η∗), n ∈N . For precise conditions we refer to Dunkel
and Weber (2010).
Theorem 9 Under suitable conditions, the rescaled quantities exhibit the following asymptotic behavior:
If γ = 1, then

√
n(ηn−η

∗)→N

(
0,
−c2Var[Yη∗(U)]

2cg′(η∗)+1

)
.

If γ ∈
(1

2 ,1
)
, then

√
nγ(ηn−η

∗)→N

(
0,
−cVar[Yη∗(U)]

2g′(η∗)

)
.

5 NUMERICAL CASE STUDIES

The aim of the current section is to illustrate the properties of Method 1 in numerical case studies. We
focus on three examples of OCEs: the entropic risk measure, average value at risk, and an OCE defined
in terms of quartic utility. In the first two cases, we analyze the example in which X is standard normally
distributed. In the third case in which the OCE corresponds to quartic utility, we investigate the impact of
the properties of the distribution. We provide results for X being distributed either according to a normal
distribution or a Student t-distribution. Both distributions are assumed to have the same mean and variance.
Observe that t-distributions are heavy tailed.

The estimation of the root η∗ of (3) is compared for different Robbins-Monro algorithms (RM). We
generated results from the recursive algorithms for values n = 100,300,1000,3000,10000,30000. For
each recursion depth n we repeated the simulation N = 104 times in order to obtain an empirical distribution
of the RM-estimator of the root. The starting point η1 of each run was sampled uniformly from the
interval [a,b], where a and b are the lower and upper projection-bounds. In the cases of the entropic risk
measure and average value at risk we set [a,b] := [η∗ −5,η∗+5]; in the case of quartic utility we choose
[a,b] := [η∗ −10,η∗+10]. In real-world applications η∗ is, of course, unknown. Choosing the bounds a
and b will in this case require pre-estimates of η∗ before running the algorithms. The fact that we assumed
that the projection interval is symmetric about η∗ is not crucial for our results. The Robbins-Monro
algorithm was simulated for the parameters γ = 0.7 and γ = 1 setting c = 1.

5.1 Entropic Risk Measure

Let u be the exponential utility function u(t) = 1−e−2t . Assuming that X is standard normally distributed we
can compute the optimal η∗ exactly, i.e. η∗=− log(2)

2 −1≈−1.34657. This yields OCEu(X)=− log(2)
2 − 1

2 ≈
−0.846574. Consequently, this example provides a good basis for testing our methods.

Figure 1 illustrates the distributions of 104 runs of the stochastic root finding algorithm for each
recursion depth. The drop shapes in the charts are generated based on a smooth kernel density estimation.
The estimated PDFs are mirrored along the η-axis (vertical axis) and scaled in the width. For increasing
step size the distributions are getting more Gaussian like with decreasing variance.

For n = 100 the right panel (γ = 1) of Figure 1 shows a bimodal distribution. The same effect can be
observed in the other examples presented below. This is due to the fact that the initial root estimates hit the
bounds of the simulation interval quite frequently. If γ is large, the correction terms of the iterative scheme
decrease faster than for smaller γ . The initial accumulation of mass at the boundaries of the projection
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interval converges to the sought root as n grows. For γ = 1 a bimodal distribution remains visible in the
histograms.

Table 1 shows the mean and the variance of the simulation depending on the number of iterations and
the constant γ . The bias decreases in both cases in a qualitatively similar way, but the variance decreases
faster for γ = 1.

5.2 Average Value at Risk

Let u be defined according to Example 7(b), i.e. u(t) = α1[t]+−α2[−t]+. As explained above, we will
calculate η∗ as the value at risk at level 1

α2
according to the first order condition. Afterwards we can

simulate the OCE which yields the average value at risk at level 1
α2

in the case α1 = 0.
Figure 2 illustrates the distributions of 104 runs of the stochastic root finding algorithm for a given

iteration size between 100 and 30 000. The figure shows that the variance decreases rapidly and that for
larger number of iterations the performance of the algorithm is better for γ = 1. Mean and variance of the
empirical distributions are provided in Table 2.

Figure 3 illustrates a path of the calculation of the OCE which is the average value at risk for the
piecewise linear utility function. The path was generated by simple Monte Carlo simulation.

Table 1: Mean and variance of the empirical distribution of ηn depending on the number of iteration steps
n and the constant γ .

γ = 0.7 γ = 1
iteration steps n mean variance mean variance

100 -1.8373 0.2214 -1.9000 0.5051
300 -1.7296 0.0946 -1.5774 0.2096
1000 -1.4639 0.2552 -1.4245 0.0798
3000 -1.4032 0.1083 -1.3725 0.0251
10000 -1.3722 0.0445 -1.3543 0.0047
30000 -1.3589 0.0195 -1.3493 0.0017

100 300 1000 3000 10000 30000

-6

-5

-4

-3

-2

-1

0

100 300 1000 3000 10000 30000

-6

-5

-4

-3

-2

-1

0

Figure 1: Distribution charts for the RM algorithm with recursion depth n ∈ {100, ...,30000} and (left: γ =
0.7, right: γ = 1.0) for the exponential utility function. The black dots represent the expectations of the
distributions and the gray dashed line marks the exact value of the root.

The precision of the Monte Carlo estimation of the OCE or corresponding risk measure does, of course,
depend on the precision of the estimate of η∗. For a fixed simulation depth n, both bias and variance
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contribute to the error in the estimation of η∗. Figure 4 illustrates how bias and variance in the estimation
of η∗ influence the average estimate of average value at risk in step 2 of the simulation procedure.

The variance of the estimation of η∗ can be reduced to zero, if we replace its random estimator by
the mean of the empirical distributions shown in Figure 2. The error of the resulting estimate of η∗ for
various recursion depths is then essentially only due to the bias of the stochastic root finding algorithms.
The purple dots in Figure 4 show the corresponding Monte Carlo estimates for average value at risk, if the
mean of the empirical distribution is used as input parameter η∗ in step 2 of the computation of the OCE.

Table 2: Mean and variance of the empirical distribution of ηn depending on the number of iteration steps
n and the constant γ .

γ = 0.7 γ = 1
iteration steps n mean variance mean variance

100 -1.8432 0.2219 -2.2636 0.2590
300 -1.7211 0.0927 -1.8101 0.0413
1000 -1.6782 0.0388 -1.6696 0.0066
3000 -1.6601 0.0176 -1.6504 0.0020
10000 -1.6509 0.0073 -1.6462 0.0006
30000 -1.6484 0.0035 -1.6453 0.0002

100 300 1000 3000 10000 30000
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

100 300 1000 3000 10000 30000
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 2: Distribution chart for the RM algorithm with recursion depth n∈{100, ...,30000} and (left: γ = 0.7,
right: γ = 1.0) for the piecewise linear utility function. The black dots represent the mean of the distributions
and the gray dashed line marks the exact value of the root.

0 20 000 40 000 60 000 80 000 100 000

-2.08

-2.06

-2.04

-2.02

-2.00

Figure 3: A path of a Monte Carlo estimation of the OCE for the piecewise linear utility function. The
dashed orange line represents the exact value.

In practice, the estimation of η∗ will typically not be repeated several times. A single estimate will be
used as the input parameter for the Monte Carlo simulation of the OCE. This corresponds to sampling η∗

from the empirical distributions shown in Figure 2. The blue dots in Figure 4 show the sample average
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of the corresponding Monte Carlo estimates for average value at risk. As expected, the comparison in
Figure 4 shows that the bias of the estimator of AVaR is significantly larger in the second case.

5.3 Quartic Utility

Assume that

u(t) :=

{
1− (t−1)4, if t ≤ 1,

1, otherwise.

We compare two different distributions for the financial position X . In the first case we assume that
X is normally distributed with variance σ2 = 5

3 , in the second case we suppose that X has a Student
t-distribution with ν = 5 degrees of freedom. Both random variables have the same mean and variance,
but different tail behavior. In both cases, the expression η +E[u(X−η)] can be written as a closed-form
expression of η . This allows us to obtain the exact value of the OCE. We compute that η∗ =−2.16359
and OCEu(X) =−1.6511 in the first case, i.e. if X is normally distributed. In the second case, i.e. if X is
Student t-distributed, we get η∗ = −3.73624 and OCEu(X) = −5.93075. As expected, the heavy tailed
Student t-distribution does indeed lead to a higher OCE-risk measure.

100 300 1000 3000 10 000 30 000 100 000

-2.16

-2.14

-2.12

-2.10

-2.08

-2.06

-2.04

Figure 4: Convergence of the Monte Carlo estimation of the OCE for η having the empirical distribution
(blue) or being Dirac distributed at the mean of the empirical distributions (purple).

Figures 5 and 6 illustrate the empirical distributions of the estimates of η∗ which are sampled according
to RM algorithms. The projection interval was set to η∗ ±10. The figures show that for quartic utility and
finite sample sizes the estimation errors can be smaller for γ = 0.7 than for γ = 1. Finite sample properties
might, thus, deviate from the asymptotic behavior suggested by the limit theorems above.

Figure 6 illustrates that the algorithm might actually perform quite badly for heavy tailed distributions
like the t-distribution. Variance reduction techniques are in this case a crucial tool that needs to be employed
in order to secure reasonable simulation results. For a discussion of this insight in a different context we
refer to Dunkel and Weber (2010).

6 CONCLUSION

A large family of OCE-risk measures has been introduced by Ben-Tal and Teboulle (2007) which includes
well-known examples like average value at risk and the entropic risk measure. The OCE-risk measures
can be computed by solving a stochastic optimization problem. Under weak conditions, by a first order
condition, the calculation can be reduced to a two step procedure: a stochastic root finding problem in the
first step, and the computation of an expected value in the second step. In the current paper we suggest
algorithms for the estimation of OCE-risk measures and test them numerically.

930



Hamm, Salfeld, and Weber

100 300 1000 3000 10000 30000
-10

-8

-6

-4

-2

0

100 300 1000 3000 10000 30000
-10

-8

-6

-4

-2

0

Figure 5: Distribution chart for the RM algorithm with recursion depth n ∈ {100, ...,30000} and (left:
γ = 0.7, right: γ = 1.0) for the piecewise quartic utility function and a normally distributed random variable.
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Figure 6: Distribution chart for the RM algorithm with recursion depth n ∈ {100, ...,30000} and (left:
γ = 0.7, right: γ = 1.0) for the piecewise quartic utility function and a Students t-distribution with ν = 5
degrees of freedom.

The performance of the algorithms depends largely on the properties of the distribution of the financial
position whose risk is estimated. The performance of the algorithms is reasonable for distributions with
bounded variance and light tails. However, the suggested simulation procedures are usually not optimal, if
distributions are heavy tailed. In this case, it seems to be crucial to employ variance reduction techniques
in order to improve performance.

The suggested techniques provide promising algorithms for the estimation of a broad class of convex
risk measures based on utility theory. Future research needs to investigate how their performance can be
improved in the case of distributions with high variance or heavy tails and how they can efficiently be
applied to real-world examples.
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