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ABSTRACT

We consider a stochastic variational inequality (SVI) problem with a continuous and monotone mapping
over a compact and convex set. Traditionally, stochastic approximation (SA) schemes for SVIs have
relied on strong monotonicity and Lipschitzian properties of the underlying map. We present a regularized
smoothed SA (RSSA) scheme wherein the stepsize, smoothing, and regularization parameters are diminishing
sequences. Under suitable assumptions on the sequences, we show that the algorithm generates iterates that
converge to a solution in an almost-sure sense. Additionally, we provide rate estimates that relate iterates
to their counterparts derived from the Tikhonov trajectory associated with a deterministic problem.

1 INTRODUCTION

Variational inequalities (VI) represent an immensely important object in applied mathematics and operations
research. Variational inequality models find application in capturing a range of optimization and equilibrium
problems in engineering, economics, game theory, and finance. Given a set X ⊂Rn and a mapping F : X→Rn,
a VI problem (Facchinei and Pang 2003; Rockafellar and Wets 1998) denoted by VI(X ,F), requires a
vector x∗ ∈ X such that F(x∗)T (x−x∗)≥ 0, for any x ∈ X . We consider a stochastic generalization of this
problem in which the components of the map contain expectations. We are interested in solving VI(X ,F)
where mapping F : X → Rn represents the expected value of a stochastic mapping Φ : X ×Ω→ Rn, i.e.,
F(x) , E[Φ(x,ξ (ω))] where ξ : Ω→ Rd is a d−dimensional random variable and with the probability
space (Ω,F ,P). x∗ ∈ X solves VI (X ,F) if

E[Φ(x∗,ξ (ω))]T (x− x∗)≥ 0, for any x ∈ X .

For purposes of brevity, we let ξ denote ξ (ω). While SVIs are a natural extension of their deterministic
counterparts, generally deterministic schemes cannot be applied directly unless the expectation of the
mapping can be efficiently computed. Our interest in this paper is pertaining to finding an exact solution to
such problems when the expectations are unavailable in a closed form. Consequently, Monte-Carlo sampling
schemes assume relevance. Stochastic approximation methods (SA) and sample average approximation
methods (SAA) are amongst the well-known solution approaches in this regime. Moreover, a recent
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approach for addressing approximate solution of SVI problems is the stochastic mirror-prox algorithm
(Juditsky, Nemirovski, and Tauvel 2011). That method allows for both smooth and nonsmooth problems
and optimal rate of convergence is attained for a constant choice of the stepsizes. SA methods, first proposed
by Robbins and Monro (Robbins and Monro 1951), were motivated by stochastic root-finding problems.
The goal in such problems is to find a vector x ∈ Rn such that E[g(x,ξ )] = 0, where ξ : Ω→ Rd is a
random variable, g(·,ξ ) : Rn→ Rn is a continuous function for any realization of ξ . The SA scheme is
based on the iterative scheme xk+1 = xk− γkg(xk,ξk) for all k ≥ 0, where γk > 0 is the stepsize and ξk is
the realization of random variable ξ at k-th iteration .

A comprehensive review on SAA methods in the context of stochastic generalized equations has been
provided by Shapiro (Shapiro 2003). Xu investigated the application of SAA methods for the solution of
SVIs (Xu 2010). While SA methods have been extensively used in stochastic optimization regime (Ermoliev
1983; Kushner and Yin 2003; Cicek, Broadie, and Zeevi 2011), Jiang and Xu have recently introduced
employing SA schemes for solving SVIs (Jiang and Xu 2008). They considered the SVI problem with a
strongly monotone and Lipschitz mapping over a closed and convex set and provided global convergence
results. In an extension of that work, a regularized SA method is developed for solving SVIs with a
merely monotone and Lipschitz mapping (Koshal, Nedić, and Shanbhag 2010). In such a scheme, Lipschitz
property of the mapping is still required. The main motivation of this work is addressing ill-posed SVIs
where both the strong monotonicity and Lipschitz property of F are either unavailable or cannot be shown.

Before proceeding, we consider the question of nonsmoothness. In a deterministic regime, most of
researchers contended with nonsmothness through introducing a sequence of smooth and approximate
problems (Facchinei, Jiang, and Qi 1999) or using conjugate and proximal functions (Nesterov 2005). A
challenge associated with applying such schemes in stochastic regimes is that they require a closed form
of the stochastic functions while such information may not be available. Our work is motivated by a class
of averaged functions first introduced by Steklov (Steklov 1907). Several researchers have employed this
approach in stochastic programming and optimization (Bertsekas 1973; Norkin 1993) and more recently
(Lakshmanan and Farias 2008; Duchi, Bartlett, and Wainwright 2012). It is well-known that given a convex
function f (x) : Rn→R and a random variable ω with probability distribution P(ω), the function f̂ defined
by f̂ (x) ,

∫
Rn f (x+ω)P(ω)dω = E[ f (x+ω)] , is a differentiable function. Employing this technique

allowed us to address nonsmoothness in developing adaptive stepsizes SA schemes for stochastic convex
optimization problems and Cartesian SVIs in absence or unavailability of a Lipschitz constant (Yousefian,
Nedić, and Shanbhag 2012; Yousefian, Nedić, and Shanbhag 2013). A main difference between the present
paper and our preceding work is that here we let the smoothing parameter go to zero as the SA algorithm
proceeds. This enables us to reach the solution of the original problem rather than an approximate problem.
Our main contributions are as follows:

• Addressing nonsmoothness and absence of strong monotonicity: As mentioned earlier, the Lipschitz
property of the mapping has been among the main assumptions of much of the previous research.
Given an SVI problem, our main goal is to address ill-posed SVI problems by deriving the strong
monotonicity and Lipschitzian properties through employing regularization and local smoothing
techniques simultaneously.

• Convergence rate analysis: Our second goal lies in analyzing the rate of convergence for the proposed
SA method. Suppose {xk} is generated by our proposed SA method and sk is the solution to the
kth regularized and smoothed SVI problem, we derive a bound for the error E

[
‖xk+1− sk‖2

]
.

The rest of the paper is organized as follows. Section 2 describes our proposed SA method and the main
assumptions of the problem. Section 3 gives the main theoretical results and properties of the proposed SA
method. In particular, the almost-sure convergence of the algorithm is provided. In section 4, we focus on
analyzing the convergence rate of the algorithm and derive a bound for a particular error of the scheme.

Notation: In this paper, a vector x is assumed to be a column vector, xT denotes the transpose of
a vector x, and ‖x‖ denotes the Euclidean vector norm, i.e., ‖x‖ =

√
xT x. We use ΠX(x) to denote the
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Euclidean projection of a vector x on a set X , i.e., ‖x−ΠX(x)‖ = miny∈X ‖x− y‖. We write a.s. as the
abbreviation for “almost surely”. We use E[z] to denote the expectation of a random variable z.

2 ALGORITHM OUTLINE

We consider the following algorithm where the sequence {xk} is generated by

xk+1 = ΠX (xk− γk(Φ(xk + zk)+ηkxk)) , for all k ≥ 0. (1)

where {γk} is the stepsize sequence, {ηk} is the regularization sequence, zk ∈ Rn is a uniform random
variable over the n-dimensional ball centered at the origin with radius εk for any k ≥ 0, and x0 ∈ X is a
random initial vector that is independent of the random variable ξ and such that E

[
‖x0‖2

]
< ∞. To have a

well defined Φ in algorithm (2), we define the set Xε as Xε , X +Bn(0,ε) where the scalar ε > 0 is an
upper bound of the sequence {εk} and Bn(y,ρ) is defined as the ball centered at point y with radius ρ , i.e.
Bn(y,ρ) = {x∈Rn | ‖x−y‖ ≤ ρ}. We let SOL(X ,F) denote the solution set of VI(X ,F) and Fk denote the
history of the method up to time k, i.e., Fk = {x0,ξ0,ξ1, . . . ,ξk−1,z1, . . . ,zk−1} for k ≥ 1 and F0 = {x0}.
Our first set of assumptions is on the properties of the set X , the mapping F , and random variables.
Assumption 1 Let the following hold:
(a) The set X ⊂ Rn is closed, bounded, and convex;
(b) Φ(x,ξ ) is a monotone and continuous mapping over the set Xε with respect to x for any ξ ∈Ω;
(c) SOL(X ,F) 6= /0, i.e., there exists an x∗ ∈ X such that (x− x∗)TE[Φ(x∗,ξ )]≥ 0, for all x ∈ X ;
(d) Random variables zi and ξ j are both i.i.d and independent from each other for any i, j ≥ 0.
Remark 1 Boundedness of the set X implies that there exists M > 0 for which ‖x‖ ≤M for any x ∈ X .
Moreover, an immediate consequence of continuity of the mapping Φ over the bounded set Xε is that there
exists C > 0 for which ‖Φ(x,ξ )‖ ≤C for any x ∈ Xε . Taking expectations on both sides of the preceding
inequality and using Jensen’s Inequality, we have ‖F(x)‖ ≤C for any x ∈ Xε .

Remark 2 By introducing stochastic errors wk, algorithm (1) can be rewritten as the following

xk+1 = ΠX (xk− γk(F(xk + zk)+ηkxk +wk)) , for all k ≥ 0

wk , Φ(xk + zk,ξk)−F(xk + zk), for all k ≥ 0. (2)

Note that the implementation of the algorithm (1) requires evaluation of the mapping Φ.

3 ALMOST-SURE CONVERGENCE

In this section, we present the main results of algorithm (2). After stating the main assumptions on
the stepsize, regularization, and smoothing sequences, we establish the convergence result by presenting
different properties of the algorithm.
Assumption 2 Let the following hold:
(a) {γk}, {ηk}, and {εk} are strictly positive sequences for k ≥ 0 converging to zero;

(b) There exists K1 ≥ 0 such that γk
ηkε2

k
≤ 0.5

(
(n−1)!!
n!!κC

)2
for any k ≥ K1, where n is the dimension of the

space and κ = 1 if n is odd and κ = 2
π

otherwise;
(c) For any k ≥ 0, εk ≤ ε , where ε is the parameter of the set Xε ;

(d) ∑
∞
k γkηk = ∞; (e) ∑

∞
k γ2

k < ∞; (f) ∑
∞
k

1
η2

k−1ηkγk

(
1− min{εk,εk−1}

max{εk,εk−1}

)2
< ∞; (g) ∑

∞
k

1
ηkγk

(
1− ηk

ηk−1

)2
< ∞;

(h) limk→∞
γk
ηk

= 0; (i) limk→∞
1

η2
k γk

(
1− min{εk,εk−1}

max{εk,εk−1}

)
= 0; (j) limk→∞

1
ηkγk

∣∣∣1− ηk
ηk−1

∣∣∣= 0.

Remark 3 Later in Lemma 5, we provide a suitable choice for the sequences {γk}, {ηk}, and {εk} that
satisfies the conditions of Assumption 2.
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The following supermartingale convergence theorem is a key in our analysis in establishing the almost-
sure convergence of algorithm (2) and may be found in (Polyak 1987) (cf. Lemma 10, page 49).
Lemma 1 [Robbins Siegmund’s Lemma] Let {vk} be a sequence of nonnegative random variables, where
E[v0]< ∞, and let {αk} and {µk} be deterministic scalar sequences such that 0≤ αk ≤ 1, and µk ≥ 0 for
all k ≥ 0, ∑

∞
k=0 αk = ∞, ∑

∞
k=0 µk < ∞, and limk→∞

µk
αk

= 0, and E[vk+1|v0, . . . ,vk]≤ (1−αk)vk +µk a.s. for
all k ≥ 0. Then, vk→ 0 almost surely as k→ ∞.
Lemma 2 [Properties of the stochastic errors wk defined by (2)] Consider algorithm (2) and suppose
Assumptions 1(b) and (d) hold. Then, the stochastic error wk satisfies the following relations for any k≥ 0:

Eξ [wk |Fk] = 0 for any realization of zk and E
[
‖wk‖2 |Fk

]
≤C2.

Proof. Let us assume that k ≥ 0 is fixed. The definition of wk in (2) implies that

Eξ [wk |Fk] = Eξ [Φ(xk + zk,ξk) |Fk]−F(xk + zk) = F(xk + zk)−F(xk + zk) = 0,

where we used the independence of zk and ξk. To show the second inequality, we may write

E
[
‖wk‖2 |Fk

]
= E

[
‖Φ(xk + zk,ξk)−F(xk + zk)‖2 |Fk

]
= E

[
‖Φ(xk + zk,ξk)‖2 |Fk

]
+E
[
‖F(xk + zk)‖2 |Fk

]
−2E

[
Φ(xk + zk,ξk)

T F(xk + zk) |Fk
]
.

Since zk and ξk are independent random variables (Assumption 1(b)), we can write

E
[
Φ(xk + zk,ξk)

T F(xk + zk) |Fk
]
= Ez

[
Eξ [Φ(xk + zk,ξk) |Fk]

T F(xk + zk) |Fk

]
= E

[
‖F(xk + zk)‖2 |Fk

]
.

From the two preceding relations and the definition of C in Remark 1, we obtain the desired result.

Next, we present a Lemma stating that the local smoothing technique preserves the monotonicity
property. The proof of this Lemma is straightforward and is omitted.
Lemma 3 Suppose mapping F : Xε → Rn is monotone over the set Xε . For k ≥ 0, consider mappings
Fk : X→Rwhere Fk(x) = E[F(x+ zk)] and zk ∈Rn is a uniform random variable defined on an n-dimensional
ball with radius εk > 0 where εk ≤ ε for k ≥ 0. Then, the mapping Fk is monotone over the set X .
Remark 4 Lemma 3 implies that the mapping Fk +ηkI is strongly monotone. When the set X is closed
and convex, Theorem 2.3.3 of (Facchinei and Pang 2003) indicates that VI(X ,Fk +ηkI) has a unique
solution. Throughout this paper, we let the sequence {sk} be defined such that sk is the unique solution of
VI(X ,Fk +ηkI) for k ≥ 0, where Fk : X → Rn is defined by Fk(x) = E[F(x+ zk)].

The following proposition, presents a bound on the rate ‖sk− sk−1‖, convergence of {sk}, and the
Lipschitzian property of the approximate mapping Fk.
Proposition 1 [Convergence of {sk} and Lipschitzian property of Fk] Suppose Assumption 1 holds. Consider
the sequence {sk} such that sk ∈ SOL(X ,Fk +ηkI) for k ≥ 0, where εk ≤ ε for any k ≥ 0. Then,
(a) For any k≥ 1, ‖sk−sk−1‖ ≤ 2nC

ηk−1

(
1− min{εk,εk−1}

max{εk,εk−1}

)
+M

∣∣∣1− ηk
ηk−1

∣∣∣, where M and C are the norm bounds
on the set X and the mapping F respectively (Remark 1).
(b) Suppose SOL(X ,F) 6= /0 and let the sequences {ηk} and {εk} go to zero. Then limk→∞ sk = x∗, where
x∗ is a solution of VI(X ,F).
(c) For any k ≥ 0, the mapping Fk is Lipschitz over the set X with the parameter κ

n!!
(n−1)!!

C
ε

, where κ = 1

if n is odd and κ = 2
π

otherwise.

Proof. (a) Suppose k ≥ 1 is fixed. Since sk ∈ SOL(X ,Fk +ηkI) and sk−1 ∈ SOL(X ,Fk−1 +ηk−1I),

(sk−1− sk)
T (Fk(sk)+ηksk)≥ 0 and (sk− sk−1)

T (Fk−1(sk−1)+ηk−1sk−1)≥ 0.
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Adding the preceding relations, yields (sk−1− sk)
T (Fk(sk)−Fk−1(sk−1)+ηksk−ηk−1sk−1)≥ 0. By adding

and subtracting Fk−1(sk)+ηk−1sk, we obtain that

(sk−1− sk)
T (Fk(sk)−Fk−1(sk))+(sk−1− sk)

T (Fk−1(sk)−Fk−1(sk−1))

+(ηk−ηk−1)(sk−1− sk)
T sk−ηk−1‖sk− sk−1‖2 ≥ 0.

By monotonicity of Fk−1, ηk−1‖sk− sk−1‖2 ≤ (sk−1− sk)
T (Fk(sk)−Fk−1(sk))+(ηk−ηk−1)(sk−1− sk)

T sk.
By the Cauchy-Schwartz inequality and the definition of M, we obtain

ηk−1‖sk− sk−1‖ ≤ ‖Fk(sk)−Fk−1(sk)‖+M|ηk−1−ηk|. (3)

Let pu denote the probability density function of the random vector z and suppose it is given by pu(z), 1
cnεn

fro any z ∈ Bn(0,ε), where cn , π
n
2

Γ( n
2+1) . In the following, we estimate the term ‖Fk(sk)−Fk−1(sk)‖. First,

let us consider the case εk ≤ εk−1.

‖Fk(sk)−Fk−1(sk)‖=
∥∥∥∥∫Rn

F(sk + zk)pu(zk)dzk−
∫
Rn

F(sk + zk−1)pu(zk−1)dzk−1

∥∥∥∥
=

∥∥∥∥∫‖z‖<εk

F(sk + z)
1

cnεn
k

dz−
∫
‖z‖<εk−1

F(sk + z)
1

cnεn
k−1

dz
∥∥∥∥

=

∥∥∥∥∫‖z‖<εk

F(sk + z)
1

cnεn
k

dz−
(∫
‖z‖<εk

F(sk + z)
1

cnεn
k−1

dz+
∫

εk≤‖z‖<εk−1

F(sk + z)
1

cnεn
k−1

dz
)∥∥∥∥

≤
∥∥∥∥∫‖z‖<εk

F(sk + z)
(

1
cnεn

k
− 1

cnεn
k−1

)
dz
∥∥∥∥+∥∥∥∥∫

εk≤‖z‖<εk−1

F(sk + z)
1

cnεn
k−1

dz
∥∥∥∥

≤
∫
‖z‖<εk

‖F(sk + z)‖
∣∣∣∣ 1
cnεn

k
− 1

cnεn
k−1

∣∣∣∣dz+
∫

εk≤‖z‖<εk−1

‖F(sk + z)‖ 1
cnεn

k−1
dz,

where in the third equality we used {z∈Rn | ‖z‖< εk−1}= {z∈Rn | ‖z‖< εk}∪{z∈Rn | εk ≤ ‖z‖< εk−1}
when εk ≤ εk−1, and in the last two inequalities we made use of the triangle inequality and the Jensen’s
inequality respectively. By the definition of C in Remark 1, we obtain

‖Fk(sk)−Fk−1(sk)‖ ≤C
∫
‖z‖<εk

∣∣∣∣ 1
cnεn

k
− 1

cnεn
k−1

∣∣∣∣dz+C
∫

εk≤‖z‖<εk−1

1
cnεn

k−1
dz

=C(cnε
n
k )

(
1

cnεn
k
− 1

cnεn
k−1

)
+C(cnε

n
k−1− cnε

n
k )

1
cnεn

k−1
= 2C

(
1−
(

εk

εk−1

)n)
.

Now, using relation (3), we obtain

‖sk− sk−1‖ ≤
2C

ηk−1

(
1−
(

εk

εk−1

)n)
+M

∣∣∣∣1− ηk

ηk−1

∣∣∣∣ . (4)

Since we assumed that εk ≤ εk−1, we may write

1−
(

εk

εk−1

)n

=

(
1− εk

εk−1

)(
1+
(

εk

εk−1

)
+ . . .+

(
εk

εk−1

)n−1
)
≤ n

(
1− εk

εk−1

)
. (5)

Therefore when εk ≤ εk−1, from (5) and (4), the desired inequality holds for all k ≥ 1. Now, suppose
εk ≥ εk−1. Following the similar steps above, one can check that if εk ≥ εk−1, then ‖Fk(sk)−Fk−1(sk)‖ ≤
2C
(

1− ( εk−1
εk

)n
)

. Therefore, ‖Fk(sk)−Fk−1(sk)‖ ≤ 2nC
(

1− εk−1
εk

)
implyingthe desired inequality.

(b) The proof is similar to the proof of Proposition 9 in (Yousefian, Nedić, and Shanbhag 2013).
(c) The proof can be done similar to the proof of Lemma 8 of (Yousefian, Nedić, and Shanbhag 2012).
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Next, we construct a recursive relation for the error between the iterate xk+1 and its counterpart sk.
Such a relation is a key for the convergence analysis of the proposed algorithm.
Lemma 4 [A recursive bound for the error] Consider algorithm (2) where {γk}, {ηk}, and {εk} are strictly
positive sequences. Let Assumptions 1, 2(b), and 2(c) hold and suppose there exists K2 ≥ 0 such that for
any k ≥ K2, we have ηkγk < 1. Then, the following relation holds a.s. for any k ≥max{K1,K2}:

E
[
‖xk+1− sk‖2 |Fk

]
≤
(

1− 1
2

ηkγk

)
‖xk− sk−1‖2 +2C2

γ
2
k +4M2

η
2
k γ

2
k

+16n2C2
(

1− min{εk,εk−1}
max{εk,εk−1}

)2 1
η2

k−1ηkγk
+4M2

(
1− ηk

ηk−1

)2 1
ηkγk

.

where K1 is given by Assumptions 2(b).

Proof. Using the fixed point property of the projection operator at the solution sk ∈ SOL(X ,Fk +ηkI),
we can write sk = ΠX(sk− γk(Fk(sk)+ηksk)). Employing the nonexpansiveness property of the projection
operator, the preceding relation, and algorithm (2), we obtain

‖xk+1− sk‖2 ≤ ‖xk− γk(F(xk + zk)+ηkxk +wk)− sk + γk(Fk(sk)+ηksk)‖2

= ‖(1−ηkγk)(xk− sk)− γk(F(xk + zk)−Fk(sk))− γkwk)‖2

= (1−ηkγk)
2‖xk− sk‖2 + γ

2
k ‖F(xk + zk)−Fk(sk)‖2 + γ

2
k ‖wk‖2

−2γk(1−ηkγk)(xk− sk)
T (F(xk + zk)−Fk(sk))−2

(
(1−ηkγk)(xk− sk)− γk(F(xk + zk)−Fk(sk))

)T
wk.

Adding and subtracting Fk(xk), we obtain

‖xk+1− sk‖2 ≤ (1−ηkγk)
2‖xk− sk‖2 + γ

2
k ‖F(xk + zk)−Fk(xk)‖2 + γ

2
k ‖Fk(xk)−Fk(sk)‖2

+2γ
2
k (F(xk + zk)−Fk(xk))

T (Fk(xk)−Fk(sk))+ γ
2
k ‖wk‖2−2γk(1−ηkγk)(xk− sk)

T (F(xk + zk)−Fk(xk))

−2γk(1−ηkγk)(xk− sk)
T (Fk(xk)−Fk(sk))−2

(
(1−ηkγk)(xk− sk)− γk(F(xk + zk)−Fk(sk))

)T
wk.

Taking the expectation in the preceding result conditioned on Fk, using ‖F(xk+zk)‖≤C, and Fk is Lipschitz
with constant κ

n!!
(n−1)!!

C
εk

(Proposition 1(c)), we obtain

E
[
‖xk+1− sk‖2 |Fk

]
≤ (1−ηkγk)

2‖xk− sk‖2 + γ
2
k C2 + γ

2
k ‖Fk(xk)‖2−2γ

2
kE[F(xk + zk) |Fk]

T Fk(xk)

+ γ
2
k

(
κ

n!!
(n−1)!!

C
εk

)2

‖xk− sk‖2 +2γ
2
k (E[F(xk + zk) |Fk]−Fk(xk))

T (Fk(xk)−Fk(sk))

+ γ
2
kE
[
‖wk‖2 |Fk

]
−2γk(1−ηkγk)(xk− sk)

T (E[F(xk + zk |Fk)]−Fk(xk))

−2γk(1−ηkγk)(xk− sk)
T (Fk(xk)−Fk(sk))−2E

[(
(1−ηkγk)(xk− sk)− γk(F(xk + zk)−Fk(sk))

)T
wk |Fk

]
.

Note that Eξ [wk |Fk] = E[wk |Fk] = 0 by Lemma 2 implying that the last term is zero. Therefore,
Term 1 = 0. Using the preceding result and E[F(xk + zk) |Fk] = Fk(xk), we obtain that

E
[
‖xk+1− sk‖2 |Fk

]
≤ (1−ηkγk)

2‖xk− sk‖2 + γ
2
k C2− γ

2
k ‖Fk(xk)‖2 + γ

2
k

(
κ

n!!
(n−1)!!

C
εk

)2

‖xk− sk‖2

+ γ
2
kE
[
‖wk‖2 |Fk

]
−2γk(1−ηkγk)(xk− sk)

T (Fk(xk)−Fk(sk)).
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Since ηkγk < 1 for any k≥K2, the term 1−ηkγk is positive. On the other hand, monotonicity of Fk implies that
the term (xk−sk)

T (Fk(xk)−Fk(sk)) is nonnegative. Therefore, 2γk(1−ηkγk)(xk−sk)
T (Fk(xk)−Fk(sk))≥ 0

for any k ≥ K2. Using this, the preceding relation, and γ2
k ‖Fk(xk)‖2 ≥ 0, for any k ≥ K2,

E
[
‖xk+1− sk‖2 |Fk

]
≤

(
1−2ηkγk +η

2
k γ

2
k + γ

2
k

(
κ

n!!
(n−1)!!

C
εk

)2
)
‖xk− sk‖2 + γ

2
k
(
E
[
‖wk‖2 |Fk

]
+C2) .

Using the definition of M in Remark 1 and the triangle inequality, we can write ‖y− z‖ ≤ ‖y‖+‖z‖ ≤ 2M.
Taking this to account and using E

[
‖wk‖2 |Fk

]
≤C2 from Lemma 2, the preceding inequality yields

E
[
‖xk+1− sk‖2 |Fk

]
≤

(
1−2ηkγk + γ

2
k

(
κ

n!!
(n−1)!!

C
εk

)2
)
‖xk− sk‖2 +2C2

γ
2
k +4M2

η
2
k γ

2
k . (6)

Note that the above inequality is not yet a recursive relation. To obtain a recursive relation, we need
to estimate the term ‖xk − sk‖ in terms of ‖xk − sk−1‖. Using the triangle inequality, we can write
‖xk− sk‖ ≤ ‖xk− sk−1‖+‖sk− sk−1‖.Therefore, we obtain

‖xk− sk‖2 ≤ ‖xk− sk−1‖2 +‖sk− sk−1‖2 +2‖sk− sk−1‖‖xk− sk−1‖. (7)

Using the relation 2ab≤ a2 +b2, for a,b ∈ R, we obtain that

2‖sk− sk−1‖‖xk− sk−1‖= 2(
√

ηkγk‖xk− sk−1‖)
(
‖sk− sk−1‖√

ηkγk

)
≤ ηkγk‖xk− sk−1‖2 +

‖sk− sk−1‖2

ηkγk
.

Combining this result, Proposition 1(a), and (7), we obtain

‖xk− sk‖2 ≤ (1+ηkγk)‖xk− sk−1‖2 +

(
2nC
ηk−1

(
1− min{εk,εk−1}

max{εk,εk−1}

)
+M

∣∣∣∣1− ηk

ηk−1

∣∣∣∣)2(
1+

1
ηkγk

)
≤ (1+ηkγk)‖xk− sk−1‖2 +2

(
2nC
ηk−1

(
1− min{εk,εk−1}

max{εk,εk−1}

)
+M

∣∣∣∣1− ηk

ηk−1

∣∣∣∣)2 1
ηkγk

, (8)

where in the last inequality we used 1+ 1
ηkγk

< 2
ηkγk

as a consequence of γkηk < 1. Let us define qk ,

1−2ηkγk + γ2
k

(
κ

n!!
(n−1)!!

C
εk

)2
. Now, inequalities (6) and (8) imply that for k ≥ K2

E
[
‖xk+1− sk‖2 |Fk

]
≤ qk(1+ηkγk)‖xk− sk−1‖2 +2C2

γ
2
k +4M2

η
2
k γ

2
k

+2qk

 2nC
ηk−1

(
1− min{εk,εk−1}

max{εk,εk−1}

)
︸ ︷︷ ︸

a

+M
∣∣∣∣1− ηk

ηk−1

∣∣∣∣︸ ︷︷ ︸
b


2

1
ηkγk

. (9)

By Assumption 2(b), we can write for k ≥ K1,

γk

ηkε2
k
≤ 0.5

(
(n−1)!!

n!!κC

)2

⇒ γ
2
k

(
κ

n!!
(n−1)!!

C
εk

)2

≤ ηkγk

2
⇒−2ηkγk + γ

2
k

(
κ

n!!
(n−1)!!

C
εk

)2

≤−3
2

ηkγk.

Therefore, qk ≤ 1− 3
2 ηkγk. This implies that qk(1+ηkγk)≤ (1− 3

2 ηγk)(1+ηkγk) = 1− 1
2 ηkγk− 3

2 η2
k γ2

k ≤
1− 1

2 ηkγk. Using relation (9) and qk ≤ 1 (which follows by qk ≤ 1− 3
2 ηkγk), and the fact that for real

numbers a and b, (a+b)2 ≤ 2a2 +2b2, we conclude that the desired relation holds.
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We are now ready to present the almost-sure convergence result.
Proposition 2 [Almost-sure convergence] Let Assumptions 1 and 2 hold. Suppose {xk} is given by
algorithm (2). Then {xk} converges to a solution of VI(X ,F) almost surely.

Proof. From Assumption 2(a), γk and ηk go to zero. Thus, there exists a constant K2 ≥ 0 such that
γkηk < 1 for any k≥ K2. Let use define define sequences {vk}, {αk}, and {µk} for k≥max{K1,K2} given
by vk , ‖xk− sk−1‖, αk ,

1
2 γkηk and

µk , 2C2
γ

2
k +4M2

η
2
k γ

2
k +16n2C2

Term 1︷ ︸︸ ︷(
1− min{εk,εk−1}

max{εk,εk−1}

)2 1
η2

k−1ηkγk
+4M2

Term 2︷ ︸︸ ︷(
1− ηk

ηk−1

)2 1
ηkγk

.

Therefore, Lemma 4 implies that E[vk+1 |Fk]≤ (1−αk)vk +µk for k≥max{K1,K2}. To claim conver-
gence of the sequence {xk}, we show that conditions of Lemma 1 hold. The nonnegativity of vk, αk, and µk for
k≥max{K1,K2} is trivial. Assumption 2(d) indicates that the condition ∑k αk = ∞ is satisfied. On the other
hand, positivity of γk and ηk indicates that αk ≤ 1 holds for k≥max{K1,K2}. Since ηk goes to zero, there
exists a bound η̄ such that ηk ≤ η̄ . Therefore, µk ≤ (2C2 +4M2η̄2)γ2

k +16n2C2(Term 1)+4M2(Term 2).
Assumptions 2(e), (f), and (g) show that γ2

k , Terms 1 and 2 are summable. Therefore, we conclude that

µk is summable too. It remains to show that limk→∞
µk
αk

= 0. It suffices to show that limk→∞

γ2
k

αk
= 0,

limk→∞
Term 1

αk
= 0, and limk→∞

Term 2
αk

= 0. These three conditions hold due to Assumptions 2(h), (i),
and (j) respectively. In conclusion, all of the conditions of Lemma 1 hold and thus ‖xk− sk‖ goes to
zero almost surely. Moreover, since ηk and εk go to zero, Proposition 1(b) implies that the sequence {sk}
converges to a solution of VI(X ,F). Hence, we conclude that the sequence {xk} generated by algorithm
(2) converges to a solution of VI(X ,F) almost surely.

This section is ended by providing a class of the stepsize, regularization, and smoothing sequences
that guarantees almost-sure convergence.
Lemma 5 Suppose sequences {γk}, {ηk}, and {εk} are given by γk = γ0(k+1)−a, ηk = η0(k+1)−b, and
εk = ε0(k+1)−c where a,b,c > 0, a+3b < 1, a > b+2c, a > 0.5, and γ0, η0, ε0 are strictly positive
scalars and ε0 = ε . Then, sequences {γk}, {ηk}, and {εk} satisfy Assumption 2.

Proof. We show that each part of Assumption 2 holds as follows:
(a) Assumption 2(a) holds since a, b, c, γ0, η0, and ε0 are strictly positive.
(b) To show that part (b) holds, we write γk

ηkε2
k
= γ0(k+1)−a

η0(k+1)−bε2
0 (k+1)−2c = (k+ 1)−(a−b−2c) γ0

η0ε2
0
. Since a >

b + 2c, then (k + 1)−(a−b−2c) → 0. Therefore, γk
ηkε2

k
→ 0 implying that there exists K1 ≥ 0 such that

γk
ηkε2

k
≤ 0.5

(
(n−1)!!
n!!κC

)2
for any k ≥ K1. This indicates that Assumption 2(b) holds.

(c) Part (c) holds because εk ≤ ε0 for any k ≥ 0 and ε0 = ε .
(d) Let us now check part (d) to see if it holds. We have ∑

∞
k=0 ηkγk = η0γ0 ∑

∞
k=0

1
(k+1)a+b . Since a,b > 0

and a+3b < 1, then a+b < 1. Thus, ∑
∞
k=0

1
(k+1)a+b = ∞. Therefore, Assumption 2(d) is met.

(e) To show that part (e) holds we need to show that γ2
k is summable. We have γ2

k = γ2
0 (k+ 1)−2a and

2a > 1 since a > 0.5. Therefore, γ2
k is summable which means that condition (e) is satisfied.

(f) Note that sequences {ηk} and {εk} are both decreasing. Therefore,

1
η2

k−1ηkγk

(
1− min{εk,εk−1}

max{εk,εk−1}

)2

=
1

η2
k−1ηkγk

(
1− εk

εk−1

)2

<
1

η3
k γk

(
1− εk

εk−1

)2

, Term 1.
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It suffices to show that Term 1 is summable. First, we estimate 1− εk
εk−1

. We have 1− εk
εk−1

= 1− ε0(k+1)−c

ε0k−c =

1−
( k

k+1

)c
= 1−

(
1− 1

k+1

)c
. Recall that the Taylor expansion of (1− x)p for |x|< 1 and any scalar p is

given by (1− x)p = ∑
∞
j=0(−1) j

(
p
j

)
x j = 1− px+ p(p−1)

2 x2− p(p−1)(p−2)
6 x3 + · · · . Using this expansion

for x = 1
k+1 and p = c, we have 1− εk

εk−1
= 1−

(
1− c 1

k+1 +
c(c−1)

2
1

(k+1)2 + · · ·
)
= O(k−1). Therefore, from

the preceding relation, we obtain Term 1 = O(k−2)

η3
0 γ0(k+1)−3b−a = O(k−(2−a−3b)). To have Term 1 summable, we

need to have 2−a−3b > 1 or equivalently a+3b < 1. This holds by our assumptions.
(g) In a similar fashion that we used in part (f), we can show that 1− ηk

ηk−1
= O(k−1). Therefore,

Term 3 , 1
ηkγk

(
1− ηk

ηk−1

)2 O(k−2)

η0γ0(k+1)−(a+b) = O(k−(2−a−b)). To show that condition (g) is satisfied, we need
to show that Term 3 is summable. From the preceding relation, we need to show that 2− a− b > 1 or
equivalently a+b< 1. We assumed that a+3b< 1 and b> 0. Thus, we have a+b= a+3b−2b< 1−2b< 1.
Therefore, O(k−(2−a−b)) is summable and we conclude that condition (g) is met.
(h) We have γk

ηk
= γ0(k+1)−a

η0(k+1)−b =
γ0
η0
(k+1)−(a−b). To show that γk

ηk
goes to zero when k goes to infinity, we

only need to show that a > b. We assumed that a+3b < 1. Therefore, b < 1
3(1−a). Since a > 0.5, the

preceding relation yields b < 1
3 0.5. Thus, b < 0.5 < a, implying that condition (h) holds.

(i) From the discussion in part (f), we have 1− εk
εk−1

= O(k−1). To show the condition (i), we write

Term 4 ,
1

η2
k γk

(
1− min{εk,εk−1}

max{εk,εk−1}

)
=

1
η2

0 γ0(k+1)−a−2b O(k−1) = O(k−(1−a−2b)).

Thus, it suffices to show that a+2b < 1. This is true since a+3b < 1 and b > 0. Hence, Term 4 goes to
zero implying that part (i) holds.
(j) We have Term 5 , 1

ηkγk

∣∣∣1− ηk
ηk−1

∣∣∣= 1
η0γ0(k+1)−a−b O(k−1) = O(k−(1−a−b)). Since a+3b < 1 and b > 0,

we have a+b < 1, showing that Term 5 converges to zero.

4 A BOUND FOR THE ERROR OF THE APPROXIMATE PROBLEM

In the second part of this paper, we focus on the rate analysis of algorithm (2). We begin the discussion by
a family of assumptions on the sequences. This set of assumptions are essential to derive a particular rate.
Assumption 3 Let the following hold:
(a) There exist 0 < δ < 0.5 and K3 ≥ 0 such that γk

ηkε2
k
≤ γk+1

ηk+1ε2
k+1

(1+δηk+1γk+1) for any k ≥ K3;

(b) There exists a constant B1 > 0 such that ε2
k

η2
k−1ηkγ3

k

(
1− min{εk,εk−1}

max{εk,εk−1}

)2
≤ B1 for any k ≥ 0;

(c) There exists a constant B2 > 0 such that ε2
k

ηkγ3
k

(
1− ηk

ηk−1

)2
≤ B2 for any k ≥ 0.

Remark 5 Similar to the result of Lemma 5, one can provide a feasible choice of the sequences that
satisfy Assumption 3. We omitted this result due to space limitations.

The following result, provides a bound on the error that relates the iterates {xk} and the approximate
sequence {sk}. This result provides us an estimate of the performance of our algorithm with respect to the
iterates of the solutions to the approximated problems VI(X ,Fk +ηkI).
Proposition 3 [An upper bound for E

[
‖xk+1− sk‖2

]
] Consider algorithm (2) where {γk}, {ηk}, and {εk}

are strictly positive sequences. Let Assumptions 1, 2(b), 2(c), and 3 hold. Suppose {ηk} is bounded by η̄

and there exists some scalar K2 ≥ 0 such that for any k ≥ K2 we have ηkγk < 1. Then,

E
[
‖xk+1− sk‖2]≤ θ

γk

ηkε2
k
, for any k ≥ K̄, (10)
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where K̄ ,max{K1,K2,K3}, sk is the unique solution of VI(X ,Fk+ηkI), K1 and K3 are given by Assumptions
2(b), and 3(d) respectively. More precisely, relation (10) holds if

θ = max

{
4M2 ηK̄ε2

K̄
γK̄

,
2C2ε2 +4M2η̄2ε2 +16n2C2B1 +4M2B2

0.5−δ

}
. (11)

Proof. We begin the proof by employing Lemma 4. Let us define ek , E
[
‖xk− sk−1‖2

]
for k ≥

K̄+1.Taking expectation in the relation of Lemma 4, we obtain a recursive inequality in terms of the mean
squared error between xk+1 and sk. For any k ≥ K̄ +1 we have

ek+1 ≤
(

1− 1
2

ηkγk

)
ek +2C2

γ
2
k +4M2

η
2
k γ

2
k +16n2C2

(
1− min{εk,εk−1}

max{εk,εk−1}

)2

η2
k−1ηkγk

+4M2

(
1− ηk

ηk−1

)2

ηkγk
. (12)

To show the main result, we use induction on k. The first step is to show that the result holds for k = K̄.
Using the definition of M in Remark 1 and the Cauchy-Schwartz inequality, we can write

eK̄+1 = E
[
‖xK̄+1− sK̄‖2]= E

[
‖xK̄+1‖2−2xT

K̄+1sK̄ +‖sK̄‖2]≤ E
[
‖xK̄+1‖2 +2‖xK̄+1‖‖sK̄‖+‖sK̄‖2]

≤M2 +2M2 +M2

(
4M2 ηK̄ε2

K̄
γK̄

)
γK̄

ηK̄ε2
K̄

.

Let us define θK̄ , 4M2 ηK̄ε2
K̄

γK̄
. Thus, the preceding relation implies that the main result holds for k = K̄

with θ = θK̄ . Now, suppose et+1 ≤ θ
ηt γk
ε2

t
for K̄ < t ≤ k−1 for some finite constant θ > 0. We will show

that ek+1 ≤ θ
γk

ηkε2
k
. Using the induction hypothesis, (12), and Assumptions 3(e) and (f) we obtain

ek+1 ≤
(

1− 1
2

ηkγk

)
θ

γk−1

ηk−1ε2
k−1

+2C2
γ

2
k +4M2

η
2
k γ

2
k +16n2C2 γ2

k

ε2
k

B1 +4M2 γ2
k

ε2
k

B2.

Using the Assumption 3(d) we obtain

ek+1 ≤
(

1− 1
2

ηkγk

)
(1+δηkγk)θ

γk

ηkε2
k
+2C2

γ
2
k +4M2

η
2
k γ

2
k +16n2C2 γ2

k

ε2
k

B1 +4M2 γ2
k

ε2
k

B2. (13)

Note that we have(
1− 1

2
ηkγk

)
(1+δηkγk)θ

γk

ηkε2
k
= θ

γk

ηkε2
k
−θ

(
δ

2

)
ηkγ3

k

ε2
k

+θηkγk

(
−1

2
+δ

)
γk

ηkε2
k
+2C2

γ
2
k . (14)

Using nonpositivity of −θ

(
δ

2

)
ηkγ3

k
ε2

k
, (13), (14) and by taking out the factor γ2

k
ε2

k
, it follows that

ek+1 ≤ θ
γk

ηkε2
k
+

γ2
k

ε2
k

Term 1︷ ︸︸ ︷[
−θ

(
1
2
−δ

)
+2C2

ε
2 +4M2

η̄
2
ε

2 +16n2C2B1 +4M2B2

]
. (15)

If we show that the multiplier of the term γ2
k

ε2
k

in the brackets is nonpositive for some θ > 0, we obtain the

desired result. Note that {ηk} is bounded by η̄ and Assumption 3(c) implies that εk ≤ ε . By Assumption
3(d), we have

(1
2 −δ

)
> 0. Therefore, if θ ≥ 2C2ε2+4M2η̄2ε2+16n2C2B1+4M2B2

0.5−δ
, then Term 1 is nonpositive.

This implies that ek+1 ≤ θ
γk

ηkε2
k

and therefore the induction argument is done. In conclusion, if θ satisfies

relation (11), then relation (10) holds for any k ≥ K̄.
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Remark 6 Proposition 3 provides an upper bound for the MSE between iterates of the algorithm (1) and
solutions of the approximate problems. However, in order to obtain the rate of convergence of algorithm
(1), we need an estimate of the error E

[
‖sk− x∗‖2

]
. This question is not addressed in this paper and it is

a future direction to our work.

5 CONCLUDING REMARKS

We consider a stochastic variational inequality problem with monotone and possibly non-Lipschitzian
maps over a closed, convex, and compact set. Such problems may arise from stochastic nonsmooth
convex optimization problems as well as from stochastic nonsmooth Nash games. A regularized smoothing
stochastic approximation (SA) scheme is presented wherein the map is simultaneously regularized and
smoothed. A Tikhonov-based regularization ensures that the map is strongly monotone at every step with a
constant given by the regularization constant. Similarly, a convolution-based smoothing allows for claiming
that the map is Lipschitz continuous with a prescribed constant. In the resulting SA scheme, the steplength,
regularization parameter, and the smoothing parameter are all diminishing. By suitable choices of such
sequences, almost sure convergence of the scheme can be recovered. Additionally, an error bound is
provided that relates the error in the generated iterates and a suitably defined approximate solution.
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