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ABSTRACT

We investigate the mean-squared error (MSE) performance of the Kiefer-Wolfowitz (KW) stochastic
approximation (SA) algorithm and two of its variants, namely the scaled-and-shifted KW (SSKW) in
Broadie, Cicek, and Zeevi (2011) and Kesten’s rule. We conduct a sensitivity analysis of KW with various
tuning sequences and initial start values and implement the algorithms for two contrasting functions. From
our numerical experiments, SSKW is less sensitive to initial start values under a set of pre-specified
parameters, but KW and Kesten’s rule outperform SSKW if they begin with well-tuned parameter values.
We also investigate the tightness of an MSE bound for quadratic functions, a relevant issue for determining
how long to run an SA algorithm. Our numerical experiments indicate the MSE bound for quadratic
functions for the KW algorithm is sensitive to the noise level.

1 INTRODUCTION

Consider the stochastic optimization problem

max
x∈Θ

f (x) = E[ f̃ (x)], (1)

where f̃ (x) is a noisy observation of f (x), and the objective is to find x∗ maximizing f . Various iterative
methods such as Robbins-Monro (RM), Kiefer-Wolfowitz (KW), and simultaneous perturbation stochastic
approximation (SPSA) have been used to estimate x∗; see Robbins and Monro (1951), Kiefer and Wolfowitz
(1952) and Spall (1992) for details. Each of these SA algorithms follows the underlying recursion

Xn+1 = ΠΘ

(
Xn +an∇̂ f (Xn)

)
, (2)

when finding the zero of ∇ f (x) in (1), where ΠΘ is a projection of Xn+1 back into the feasible region Θ if
Xn+1 /∈Θ, an is the step size or gain size, and ∇̂ f (Xn) is an estimate of ∇ f (Xn). The projection operator ΠΘ

is particularly important in the constrained optimization setting. Initially, the asymptotic theory underlying
SA considered functions that satisfy specific global conditions; however, later research has shown it is only
necessary for the requirements to hold on a compact set Θ that contains the optimum. Since the optimum is
unknown, the compact set must be large enough to increase the likelihood that x∗ ∈Θ; however, this may
increase the potential of an algorithm to perform poorly (Andradóttir 1995). The gain sequence {an} could
be deterministic (as with the popular rule an = θa/n where θa ∈ R) or adaptive. Adaptive rules adjust the
step size based on the ongoing performance of the algorithm; one well-known example is the rule by Kesten
(1958), which decreases the step size only when there is a directional change in the iterates. See George
and Powell (2006) for an extensive review of both deterministic and stochastic step sizes. The choice of
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{an} has a significant impact on the performance of the algorithm, and this impact is quite difficult to
characterize theoretically.

Asymptotic convergence properties of the KW algorithm and its variations have been a major research
focus in SA. Dupac (1957), Derman (1956), Fabian (1967), Tsybakov and Polyak (1990), and Polyak and
Juditsky (1992) have all proven convergence in MSE for various assumptions and modifications of the
KW algorithm. However, in practice, where the run-time is finite, a good finite-time bound for the MSE is
useful. Broadie, Cicek, and Zeevi (2011) derived such a bound using techniques similar to those in Dupac
(1957). The MSE bound depends on certain problem-dependent constants, which are typically difficult to
calculate in practice. However, in the special case where f is quadratic, the bound can be computed in
closed form, allowing us to observe its tightness.

We focus on the one-dimensional KW algorithm, which generates ∇̂ f (Xn) in (2) using finite differences.
Although theoretical convergence can be guaranteed by satisfying certain requirements, practical performance
depends on the choice of tuning sequences. In addition to selecting a gain sequence {an} in (2), the KW
algorithm requires an additional task of choosing a finite difference step-size sequence {cn} for the gradient.
The finite-time performance of KW depends on both sequences {an} and {cn}. Because of the sensitivity
of the KW algorithm to the tuning sequences, it is essential to choose an appropriate pair. In practice, KW
could have the following shortcomings: long oscillatory period if the gain sequence {an} is “too large,”
degraded convergence rate if {an} is “too small,” and poor gradient estimates if the gradient estimation
step-size sequence {cn} is “too small.”

In this paper, we conduct an empirical investigation of the sensitivity of KW and two of its adaptive
variants, namely Kesten’s rule and the scaled and shifted KW (or SSKW) algorithm of Broadie et al.
(2011). Our goal is to identify problem characteristics that exert a strong impact on algorithm performance,
even in the presence of theoretical guarantees. For example, in the numerical results reported in Broadie et
al. (2011), SSKW outperforms the KW algorithm in terms of both MSE and oscillatory behavior in finite
time; however, this result is obtained using what seem to be nearly worst-case parameter setting for KW.
We replicate these results, but we also find that the performance of KW can be significantly improved over
a fairly wide choice of parameter settings. Although the worst-case performance of SSKW is much better
than that of KW, it is also the case that KW provides the best performance in a significant proportion of
problem instances. In addition, we find that Kesten’s rule performs similar to KW, and sometimes better,
when both algorithms begin with the same initial start value. We also investigate the finite-time MSE bound
in Broadie et al. (2011) and characterize instances where this bound is tight. These results underscore
the well-known difficulty of tuning, even for adaptive versions of KW. We hope that the results of this
analysis will provide guidance to practitioners on the challenges involved in implementing KW or similar
algorithms.

2 THE KW ALGORITHM AND ITS VARIANTS

In this paper, we focus on the truncated KW algorithm and its variants to find x∗ using symmetric differences
to estimate the gradient. Both algorithms use the underlying recursion

Xn+1 = ΠΘ

(
Xn +an

(
f̃ (Xn + cn)− f̃ (Xn− cn)

cn

))
,

where X1 is an arbitrary starting point, f̃ (x) ∼ H(·|x) and the tuning sequences {an} and {cn} satisfy a
set of assumptions. The accuracy and precision of the algorithms are highly reliant on the choice of the
tuning sequences in finite-time. For the KW algorithm, the {an} and {cn} are predetermined as opposed
to the SSKW, where the sequences are dynamically adjusted throughout the algorithm.

In Section 2.1, we discuss the KW convergence result from Kiefer and Wolfowitz (1952). We introduce
the finite-time MSE bound of KW derived in Broadie, Cicek, and Zeevi (2011) for quadratic functions
in Section 2.2. We describe two adaptive algorithms, Kesten’s rule and SSKW, in Sections 2.3 and 2.4,
respectively.
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2.1 Kiefer-Wolfowitz Algorithm

Kiefer and Wolfowitz (1952) proved that the KW algorithm converges asymptotically to the true solution.
Let {an} and {cn} be positive tuning sequences satisfying the conditions

cn→ 0, ∑an = ∞, ∑ancn < ∞, ∑a2
nc−2

n < ∞.

Also suppose that the function f (x) is strictly increasing for x < x∗, strictly decreasing for x > x∗,
∫

∞

−∞
(y−

f (x))2dH(y | x)< ∞ and satisfies the following regularity conditions:

1) There exist positive constants β and B such that

|x′ − x∗|+ |x′′ − x∗|< β =⇒ | f (x′)− f (x′′)|< B|x′ − x′′|.

2) There exist positive ρ and R such that

|x′ − x′′|< ρ =⇒ | f (x′)− f (x′′)|< R.

3) For every δ > 0 there exists a positive π(δ ) such that

|x− x∗|> δ =⇒ inf
δ

2 >ε>0

| f (x+ ε)− f (x− ε)|
ε

> π(δ ).

Then Xn converges to x∗ a.s.
The regularity conditions require f (x) to be locally Lipschitz in a neighborhood of x∗, preventing f (x)

from changing drastically in the feasible region and from being very flat outside a neighborhood of x∗ so
the iterates approach the optimum. Although the KW algorithm converges asymptotically, its finite-time
performance is dependent on the choice of tuning sequences, {an} and {cn}. If the current Xn is in a
relatively flat region of the function and the an is small, then the convergence will be slow. On the other
hand, the Xn is located in a very steep region of the function and {an} is large, then the iterates will
experience a long oscillation period. If {cn} is too small, the gradient estimates using finite differences
could be extremely noisy.

2.2 Finite-time MSE Bound

Broadie, Cicek, and Zeevi (2011) derived a finite-time bound for the MSE of the KW algorithm by applying
a similar technique as in Dupac (1957) used to prove convergence in MSE. We briefly summarize the
bound as follows. First, we make the following assumptions on the function f (x):

F1) There exist positive constants K0,K1, and C0 such that for every c ∈ [0,C0],

−K1(x− x∗)2 ≤ f (x+ c)− f (x− c)
c

(x− x∗)≤−K0(x− x∗)2.

F2) f ′(x)(x− x∗)< 0 for all x ∈ R\{x∗}.

We also assume that the tuning sequences satisfy:

S1) an/c2
n ≤ (an+1/c2

n+1)(1+Aan+1) for all n≥ 1,
S2) an→ 0 as n→ ∞,

with 0 < A < 2K0. Then,

E(Xn+1− x∗)2 ≤Can/c2
n for all n≥ 1, (3)
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where C is a constant explicitly defined as

C = max
{

σ2

ξ
, max

1≤n≤n0

{
c2

n

an
Bn+1

}}
,

and

Dn = K2
1 Aa2

n +(K2
1 −2AK0)an−2K0−A,

n0 =

{
1 if Dn < 0 for all n≥ 1
sup
{

n≥ 1 : (K2
1 −2AK0)an +K2

1 Aa2
n ≥ 2K0−A

}
+1 otherwise

,

ξ = −sup{A−2K0 +(K2
1 −2AK0)an +K2

1 Aa2
n : n≥ n0},

Bn = X2
1

n

∏
i=1

pi +
n−1

∑
i=2

qi

n

∏
j=i+1

p j +qn,

pi = 1−2aiK0 +K2
1 a2

i , for i = 1,2, . . . ,n,

qi =
a2

i

c2
i

σ
2, for i = 1,2, . . . ,n,

σ
2 = sup

x∈Θ

Var[ f̃ (Xn + cn)− f̃ (Xn− cn)|Xn = x].

Equation (3) does not guarantee convergence in MSE, but rather establishes a finite bound for each
iteration. The bound is thus more useful when it is tight. In Section 3, we investigate the tightness of (4)
by comparing the bound with the exact MSE of simple quadratic functions of the form f (x) = αx2 where
α < 0 and the optimal x∗ = 0. The exact MSE can be computed as follows:

E(Xn+1− x∗)2 = X2
1 Π

n
i=1(1+2αai)

2 +
σ 2

2

n−1

∑
k=1

a2
k

c2
k

Π
n
j=k+1(1+2αa j)

2 +
a2

nσ2

2c2
n
. (4)

2.3 Kesten’s Rule

Kesten (1958) proposes a stochastic step-size, which decreases when there is a directional change in the
iterates, i.e. (Xn+1−Xn)(Xn−Xn−1) < 0. The idea behind this adaptive step-size is that, if the iterates
continue in the same direction, there is reason to believe they are approaching the optimum and should
not decrease the momentum. In our numerical experiments, we consider an = θa/n, so the gain size an
changes to an+1 only if there is a change in direction.

2.4 Scaled and Shifted Kiefer-Wolfowitz Algorithm

SSKW attempts to prevent slow convergence in finite-time by using adaptive tuning sequences {an} and
{cn} in the algorithm. In general, the SSKW has two phases: scaling and shifting.

Scaling Phase

• Step 0. Specify the following parameters:
– h0 = number of forced boundary hits
– γ = scale up factor for {cn}
– ka = maximum number of shifts of {an}
– va = initial upper bound of shift
– φa = maximum scale up factor for {an}
– kc = maximum number of scale ups for {cn}

948



Chau, Qu, Fu, and Ryzhov

– g0 = maximum number of gradient estimates in scaling phase
– mmax = maximum number of adaptive iterations

Choose X1 ∈ [l + c1,u− c1]. Initialize sh = 0,sc = 0. Let n = 1, m = 1 and g = 1.
• Step 1. For m ≤ h0 and g ≤ g0, generate an estimate ∇̂ f (Xn) using symmetric differences and

compute Xn+1 using the recursion in (2). If Xn+1 ∈ (l+cn,Xn), go to Step 2. If Xn+1 ∈ (Xn,u−cn,),
go to Step 3. If Xn+1 /∈ (l + cn,u− cn), go to Step 4.

• Step 2. Scale {an} up by α =min(φa,(u−cn+1−Xn)/(Xn+1−Xn)) and use {αan} for the remaining
iterations. Set Xn+1 = l + cn. Let n = n+1, m = m+1, g = g+1 and go to Step 1.

• Step 3. Scale {an} up by α = min(φa,(l+cn+1−Xn)/(Xn+1−Xn)) and use {αan} for the remaining
iterations. Set Xn+1 = u− cn. Let n = n+1, m = m+1, g = g+1 and go to Step 1.

• Step 4. Scale {cn} up by γ and use γcn for the remaining iterations.
Set Xn+1 = min{u− cn+1,max{Xn+1, l + cn}}. Let n = n+1, g = g+1 and go to Step 1.

Shifting Phase

• Step 1. For n≤mmax, generate an estimate ∇̂ f (Xn) using symmetric differences and compute Xn+1
using (2). If Xn+1 > u− cn+1 and Xn = l + cn or if Xn+1 < l + cn+1 and Xn = u− cn, go to Step 2.
If Xn+1 > Xn = u− cn or Xn+1 < Xn = l + cn, go to Step 3.

• Step 2. If sh ≤ ka, find the smallest integer β ′ such that Xn+1 ∈ (l + cn,u− cn) with an+β ′ . Set
β = min(va,β

′) and shift {an} to {an+β}. If β = va, set va = 2va. Let sh = sh+1. Go to Step 4.
• Step 3. If (sc≤ kc), scale {cn} up by γ and use {γcn} for the remaining iterations. Let sc = sc+1.
• Step 4. Set Xn+1 = min{u− cn+1,max{Xn+1, l + cn}} and let n = n+1 and go to Step 1.

The scaling and shifting phases adjust the tuning sequences in hopes of improving the finite-time
performance. In the scaling phase, the {an} is scaled up by α , i.e. {an} to {αan}, so the iterates can move
from one boundary to the other. In addition, {cn} is increased by scaling up by γ , i.e. {cn} to {γcn},
to minimize the noise of the gradient estimate if the iterates fall outside the truncation interval due to an
incorrect gradient direction. In the shifting phase, the sequence {an} is decreased by shifting or “skipping”
a finite number (β ) of terms, i.e. {an} to {an+β}, when the iterates fall outside of the feasible region
when the sign of the gradient is correct. In addition, cn is scaled up by γ if the previous iterate is at the
boundary and the update falls outside the feasible region but in the wrong direction. These adjustments do
not affect the asymptotic convergence, since the scaling phase only scales the sequences by a constant and
the shifting phase only scales up the {cn} finitely many times and skips a finite number of terms in {an}.

3 NUMERICAL EXPERIMENTS

We conduct two sets of numerical experiments. The first is to investigate the tightness of the finite-time MSE
bound derived in Broadie, Cicek, and Zeevi (2011), and the second is to compare the MSE performance
between KW and two of its variants described in Section 2.2, Kesten’s rule and SSKW. All experiments
were implemented with an = θa/n, cn = θc/ns where s ∈ {1/4,1/2}, θa > 0, θc > 0, 10,000 iterations,
and 1,000 sample paths.

3.1 Tightness of the Finite-time MSE Bound for Quadratics

We generated the MSE bound in (3) and the exact MSE in (4) for quadratic functions with various noise levels
and initial starting values for three different cases: 1) f (x) =−.001x2, cn = 1/n1/2, f (x) =−.15x2, cn =
1/n1/4 and f (x) = −.15x2, cn = 1/n1/2. The MSE bound is a function of constants that are not unique,
satisfying S1, S3, A1, and A2. We picked the largest K0 and smallest K1 satisfying A1 and A slightly less
than 2K0. Table 3.1 lists the constants used in our calculations for the MSE bound in (3), and the exact
MSE and MSE bound are listed in Table 3.1. The exact MSE (4) is a sum of three components. The first
term on the right hand side (RHS) of (4) is independent of σ and is dominated by the initial starting value,
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X1. The second and third terms in (4) are dominated by σ . When σ ∈ {0.001,0.01,0.1,1.0}, both terms
are small (< 1), but when σ = 10, the RHS is dominated by the second term. Therefore, the exact MSE
increases with X1 and σ . Using the parameters in Table 3.1, the constant C in the MSE bound can be
expressed as

C = max
{

σ2

ξ
,

c2
1

a1

(
X1(1−2a1K0 +K2

1 a2
1)(1−2a2K0 +K2

1 a2
2)+

a2
2

c2
2

σ
2
)}

. (5)

The first term in (5) dominates when σ is large since ξ = 0.001,0.1 for f (x) =−.001x2,−.15x2, respectively.
Therefore, the MSE bound and difference between the exact MSE and MSE bound increases significantly
when σ increases from 1.0 to 10.0. Otherwise, the MSE bound is equal to the second term, which
increases with X1 and σ . Table 3.1 contains the exact MSE and MSE bound for three different parameter
settings and for σ ∈ {0.001,0.01,0.1,1.0,10.0}. The first column in Table 3.1 lists/presents results for
f (x) =−.001x2, cn = 1/n1/2. In the presence of more noise, i.e. σ = 10.0, the MSE bound is 99,999.20,
which is the first term in (5) for each initial starting value. The difference between this bound and the
exact MSE is significant with a difference greater than 97,500. For σ = 1.0, the MSE bound only takes
the second term in (5), when the starting position is farther from the optimum, i.e. X1 =−40 and is tight.
However, when the initial starting value is closer to the optimum, i.e. X1 = 0,−5,−10,−20, the MSE
bound is equal to 999.99, which is the first term in (5), and thus the MSE bound is significantly greater
than the exact MSE. The MSE bound is very tight for rest of the cases with the exception of when σ = 0.1
and X1 = 0.

f (x) =−.001x2 f (x) =−.15x2, f (x) =−.15x2

cn = 1/n1/2 cn = 1/n1/4 cn = 1/n1/2

σ X1 Exact Bound Exact Bound Exact Bound

0.001

0 0.00 0.00 0.00 0.00 0.00 0.00
-5 24.04 24.85 0.06 8.85 0.06 0.09

-10 96.16 99.40 0.24 35.40 0.24 0.35
-20 384.64 397.61 0.95 141.61 0.95 1.42
-40 1538.56 1590.42 3.78 566.44 3.78 5.66

0.01

0 0.00 0.10 0.00 0.00 0.00 0.00
-5 24.04 24.85 0.06 8.85 0.06 0.09

-10 96.16 99.40 0.24 35.40 0.24 0.35
-20 384.64 397.61 0.95 141.61 0.95 1.42
-40 1538.56 1590.42 3.78 566.44 3.78 5.66

0.1

0 0.05 10.0 0.01 0.10 0.00 0.00
-5 24.09 24.86 0.07 8.86 0.06 0.09

-10 96.21 99.41 0.24 35.41 0.24 0.35
-20 384.69 397.61 0.95 141.62 0.95 1.42
-40 1538.61 1590.43 3.79 566.45 3.78 5.66

1.0

0 4.8 999.99 0.83 10.00 0.03 0.10
-5 28.84 999.99 0.89 10.00 0.09 0.10

-10 100.96 999.99 1.07 35.90 0.27 0.36
-20 389.44 999.99 1.78 142.11 0.98 1.42
-40 1543.36 1590.92 4.61 566.94 3.81 5.67

10.0

0 480.08 99999.20 83.23 999.79 3.20 9.99
-5 504.12 99999.20 83.29 999.79 3.26 9.99

-10 576.24 99999.20 83.47 999.79 3.43 9.99
-20 864.72 99999.20 84.18 999.79 4.14 9.99
-40 2018.64 99999.20 87.01 999.79 6.98 9.99

Table 1: Finite-time MSE bound and exact MSE for KW with n = 10,000, an = 1/n.
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f (x) an cn K0 K1 A n0 ξ

−.001x2 1/n 1/n1/2 0.002 0002 0.003 1 0.001
−.15x2 1/n 1/n1/2 0.3 0.3 0.5 1 0.1
−.15x2 1/n 1/n1/4 0.3 0.3 0.5 1 0.1

Table 2: Finite-time MSE Bound Parameters for KW

For the second column with f (x) =−.15x2, cn = 1/n1/2, the MSE bound is significantly greater than the
exact MSE across the board. The third column reports results for f (x) = −.15x2,cn = 1/n1/2 the MSE
bound is tight for all cases with the exception of the case with σ = 10.0. It would seem that the bound is
a useful guideline for problems with low variance, but becomes less tight as the noise level increases.

3.2 Numerical Experiment: Comparison of KW and its Variants

Not surprisingly, the performance of SSKW relative to KW heavily depends on the chosen parameters
such as truncated interval length, initial starting value, and tuning sequences. Our analysis replicates the
results of Broadie, Cicek, and Zeevi (2011), where SSKW performs significantly better than KW in terms
of MSE and oscillatory period, but we find that the chosen parameters for this experiment are among the
worst possible parameters for KW as illustrated in Figure 1 with KW and SSKW under θa = θc = 1. By
choosing a different initial starting position, the performance of KW can be significantly improved, as
demonstrated in Table 3 for two functions f (x) = −0.001x2 and f (x) = 100e−.006x2

. To offer a contrast
with the quadratic function, the second function considered is very steep and has flat tails.

Broadie, Cicek, and Zeevi (2011) compared the SSKW performance with that of KW whose MSE is
highly reliant on the tuning sequences and initial start value.
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KW θa = 1, θc = 1
KW θa = 500, θc = 4
KW θa = 90, θc = 5
Kesten θa = 1, θc = 1
Kesten θa = 10, θc = 5
Kesten θa = 100, θc = 1
SSKW θa = 1, θc = 1

Figure 1: MSE of the 10,000th iterate of KW and Kesten for three parameter settings and SSKW for f (x) =−.001x2,
σ = 0.001, an = θa/n, cn = θc/n1/4.
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The MSE performance results for f (x) = −.001x2 using KW in Broadie, Cicek, and Zeevi (2011) were
poor because the initial position was chosen to be far from the optimum and the gain size an was too
small to make any noticeable progress towards it after 10,000 iterations, so the iterates hover around the
initial position. In our numerical experiments, we also consider an =

θa
n and cn =

θc
n1/4 for θa,θc > 0. If

θa = θc = 1 as in Broadie, Cicek, and Zeevi (2011), but the initial start value is 0.01 instead of 30, then
the MSE from KW is significantly lower compared to SSKW. The first column in Table 3 compares the
MSE all three algorithms with X1 = 0.01, and clearly, KW outperforms SSKW in almost all cases. Of
course, a practitioner would have no way of knowing whether or not the starting iterate was close to the true
optimum, so these results do not indicate that KW will always perform well. They do indicate, however,
that KW exhibits substantial variation in performance.

We also conduct a sensitivity analysis for f (x) = −.001x2 with various starting positions X1 and
multiplicative constants, θa, and θc and implement SSKW and KW using Kesten’s rule. For the sensitivity
analysis, we considered a wide selection of parameters: 19 initial starting values uniformly spaced within
the truncated interval X1 ∈ {−50+5k | k = 1,2, ...19}, 45 different θa values parametrized by θa ∈ {10sk |
k = 1,2, . . . ,9,s = 0,1, . . . ,4} and 10 different θc values parametrized by θc ∈ {10sk | k = 1,2, ...,5,s = 0,1}.
In total, there are 8550 possible combinations of parameters.

The results show that KW and Kesten’s rule are sensitive to the parameter choice, but near-optimal
performance can be obtained with tuning. Figure 1 plots the MSE of KW for f (x) =−.001x2,σ = 0.001
against the initial starting values X1 for different sets of parameter choices. These cases serve as a good
representation of the majority of the MSE behaviors among the entire set of results. The case with
θa = θc = 1 is among the worst for KW and Kesten’s rule. The MSE is represented by a nearly vertical
line for both algorithms. For this parameter setting, SSKW beats KW and Kesten’s rule significantly
for all initial values with the exception of X1 = 0. For the case where θa = 90,θc = 5, KW outperforms
SSKW in a neighborhood around the optimum. However, there are cases such as θa = 500, θc = 4 for
KW and θa = 100, θc = 1 for Kesten’s rule that outperform SSKW for all initial start values. Of the 8550
combinations varying all parameters and 450 combinations with X1 = 30, KW performs better than SSKW
in 4275 and 215 cases, respectively, suggesting that KW requires some tuning to perform well, but that
there is a fairly wide range of tunable parameters that yield good performance. If KW performs better than
KW, the difference is not as pronounced as when SSKW outperforms KW, but careful tuning can partially
mitigate KW’s sensitivity to parameters such as the initial iterate.

f (x) =−0.001x2 [-50, 50] f (x) = 100e−0.006x2
[-50, 50]

X1 = .01 X1 = 30
σ Algorithm 100 1000 10000 100 1000 10000

0.001
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 5.07x10−2 1.68x10−2 4.84x10−3

KW 10−4 10−4 10−4 763.8 653.3 431.4
Kesten 1.12x10−4 1.08x10−4 1.04x10−4 10−7 3x10−8 10−8

0.01
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 5.07 1.68 4.90x10−1

KW 10−4 10−4 10−4 763.8 653.3 431.2
Kesten 2.10x10−3 2.11x10−3 2.05x10−3 9.54x10−6 2.76x10−6 8.41x10−7

0.1
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 165.8 57.4 16.0

KW 10−4 10−4 10−4 763.4 651.4 418.2
Kesten 2.01x10−1 2.03x10−1 1.97x10−1 5.65x10−2 2.76x10−4 8.41x10−5

1.0
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 187.2 57.8 18.7

KW 10−4 10−4 10−4 722.5 562.5 415.7
Kesten 20.1 20.3 19.7 456.9 315.1 239.7

Table 3: MSE of the 100th, 1,000th, and 10,000th iteration for KW and its variates with an = 1/n, cn = 1/n1/4.
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Figure 2: Sensitivity of KW to θa for f (x) =−.001x2 an = θa/n, cn = θc/n1/4, n = 10,000.
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Figure 3: Sensitivity of SSKW for f (x) =−.001x2 as a function of φa, n = 10,000.
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Figure 2 plots the MSE f (x) =−.001x2,an = θa/n,cn = θc/n1/4of the 10,000th iterate as a function of
logθa given θc = 1,10,40. The case where σ = 0.001 is omitted, because the results are similar to those
for σ = 0.01. For logθa < 4, the MSE decreases for each given value of θc. However, for logθa ≥ 4, the
MSE behaves differently for all noise levels. But, the overall behavior as a function of θc is similar across
noise levels. The MSE decreases for all θa as θc increases, so in the case where θc = 40, there is a wide
range of θa values where the MSE of KW is lower than that of SSKW. But the MSE of KW could also
be extremely high if the tuning sequences are not chosen well. Moreover, we investigate the sensitivity of
SSKW to φa, which is the upper bound of the scale up factor for {an} as depicted in Figure 3. The MSE
decreases until φa, the maximum scale up factor for {an}, is equal to 4 and increases for σ = 0.01,0.1
while it levels off for σ ∈ {1.0,10.0} thereafter. It seems that for lower noise levels,i.e. σ ∈ {0.01,0.1},
φa = 4 is a better choice, while φa = 10 leads to a lower MSE for σ ∈ {1.0,10.0}.

In addition, we implement KW and its variants using the same parameters (an = 1/n,cn = 1/n1/4,X1 = 30)
as in Broadie, Cicek, and Zeevi (2011) on f (x) = 100e−.006x2

to test the algorithms under the same setting
for a different function. Figure 4 plots the MSE of the 10,000th iterate as a function of the initial
start value. KW and Kesten’s rule outperform SSKW within certain intervals around the optimum for
σ ∈ {0.001,0.01,0.1,1.0} and Kesten’s better performance intervals overlap the intervals of KW. However,
the KW using the deterministic step-size 1/n performs better than using Kesten’s step-size where the
intervals overlap, which can be seen in Figure 4. Unfortunately, outside of those intervals, both algorithms
have a tendency to perform poorly. However, for the other four noise levels, the intervals where KW and
Kesten’s rule outperform SSKW are larger. However, there is a tradeoff, since if by chance the initial start
value is closer to the boundary, the difference in performance can be drastic.
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Figure 4: MSE Comparison of KW, Kesten, and SSKW for f (x) = 100e−.006x2
, an = 1/n, cn = 1/n1/4,

n = 10,000.
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4 CONCLUSION

Our objective was to further investigate the MSE performance of KW and its variants and to test the quality
of a finite-time MSE bound for the KW algorithm. From our numerical experiments, SSKW is insensitive
to the initial start value; however, finite-time performance could be further improved by implementing KW
or Kesten with well-tuned parameters, which allows both algorithms to be less sensitive to the initial start
value. An advantage of KW or Kesten’s rule is the ability to fine-tune only two parameters to achieve a
lower MSE compared to a total of eight parameters for SSKW; however, the tradeoff is the potential to
perform extremely poorly if the wrong parameters are chosen. SSKW is more conservative; its MSE is
higher than that of KW or Kesten under good parameter choices but not nearly as high as the MSE of
KW or Kesten when they perform poorly. The performance of the algorithms is heavily dependent on the
chosen parameters as well as the geometry of the functions. Furthermore, our numerical results regarding
the finite-time MSE bound indicate the bound is tight for functions with less noise. In practice, the success
or failure of a KW-like algorithm hinge on problem-dependent factors such as the geometry of the function
and the level of simulation noise. These issues prove difficult to overcome even for adaptive stepsizes. We
hope that this study will shed light on some of these practical factors and help guide practitioners in their
choice of SA algorithm.
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(1): 47–75.

Fabian, V. 1967. “Stochastic Approximation of Minima with Improved Asymptotic Speed”. The Annals of
Mathematical Statistics 38 (1): 191–200.

George, A. P., and W. B. Powell. 2006, October. “Adaptive stepsizes for recursive estimation with applications
in approximate dynamic programming”. Machine Learning 65 (1): 167–198.

Kesten, H. 1958. “Accelerated Stochastic Approximation”. The Annals of Mathematical Statistics 29 (1):
41–59.

Kiefer, K., and J. Wolfowitz. 1952. “Stochastic estimation of the maximum of a regression function”. The
Annals of Mathematical Statististics 23 (3): 462–466.

Polyak, B., and A. Juditsky. 1992. “Acceleration of Stochastic Approximation by Averaging”. SIAM Journal
on Control and Optimization 30 (4): 838–855.

Robbins, H., and S. Monro. 1951. “A Stochastic Approximation Method”. The Annals of Mathematical
Statistics 22:400–407.

Spall, J. 1992. “Multivariate stochastic approximation using a simultaneous perturbation gradient approx-
imation”. IEEE Transactions on Automatic Control 37 (3): 332–341.

Tsybakov, A., and B. Polyak. 1990. “Optimal order of accuracy of search algorithms in stochastic opti-
mization”. Problemy Peredachi Informatsii 26 (2): 45–63.

AUTHOR BIOGRAPHIES

MARIE CHAU is a Ph.D. candidate in Applied Mathematics, Statistics, and Scientific Computation at the
University of Maryland. She has a M.S. in applied math and degrees in math, finance and economics from
UMCP. Her research interests lie in stochastic optimization and financial engineering. Her email address

955



Chau, Qu, Fu, and Ryzhov

is mchau@math.umd.edu.

HUASHUAI QU is a Ph.D. candidate in Applied Mathematics, Statistics, and Scientific Computation at
the University of Maryland, where he received a Gold Medal in Teaching Award from the Mathematics
Department in 2010. His research interests lie in the broad areas of optimal learning and simulation
optimization. He received the 2012 INFORMS Computing Society Student Paper Award and the Best
Theoretical Paper Award at WSC2012. His email address is huashuai@math.umd.edu.

MICHAEL C. FU is Ralph J. Tyser Professor of Management Science in the Robert H. Smith School of
Business, with a joint appointment in the Institute for Systems Research and affiliate faculty appointment
in the Department of Electrical and Computer Engineering, all at the University of Maryland. His re-
search interests include simulation optimization and applied probability, with applications in supply chain
management and financial engineering. He has a Ph.D. in applied math from Harvard and degrees in
math and EECS from MIT. He served as WSC2011 Program Chair, NSF Operations Research Program
Director, Management Science Stochastic Models and Simulation Department Editor, and Operations Re-
search Simulation Area Editor. He is a Fellow of INFORMS and IEEE. His email address is mfu@umd.edu.

ILYA O. RYZHOV is an Assistant Professor in the Robert H. Smith School of Business at the University of
Maryland. He received a Ph.D. in Operations Research and Financial Engineering from Princeton University.
His research deals with optimal learning and the broader area of stochastic optimization, with applications
in disaster relief, energy, and revenue management. He was a recipient of WSC’s Best Theoretical Paper
Award in 2012. His work has appeared in Operations Research, and he is a co-author of the book Optimal
Learning, published in 2012 by John Wiley & Sons. His email address is iryzhov@rhsmith.umd.edu.

956


