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ABSTRACT

This paper introduces an adaptive Radial Basis Function (RBF) method using weighted improvement for
the global optimization of black-box problems subject to box constraints. The proposed method applies
rank-one update to efficiently build RBF models and derives a closed form for the leave-one-out cross
validation (LOOCV) error of RBF models, allowing an adaptive choice of radial basis functions. In addition,
we develop an estimated error bound, which share several desired properties with the kriging variance.
This error estimate motivates us to design a novel sampling criterion called weighted improvement, capable
of balancing between global search and local search with a tunable parameter. Computational results on
45 popular test problems indicate that the proposed algorithm outperforms several benchmark algorithms.
Results also suggest that multiquadrics introduces lowest LOOCV error for small sample size while thin
plate splines and inverse multiquadrics shows lower LOOCV error for large sample size.

1 INTRODUCTION

In this paper, we focus on finding the global minimum of a real-valued deterministic function f (x), x ∈X ,
where X is a subset of Rd defined by box constraints and f is assumed to be lower-bounded, and continuous.
We assume that f (x) has no closed mathematical form and can only be evaluated through simulation.

One common approach to deal with such problems is to build a metamodel and use the minimizer of
the metamodel as an approximate optimal solution (Booker et al. 1999). However, the error introduced by
the metamodel approximation should be carefully examined since it may mislead the algorithm to a wrong
solution wasting a given computational budget. In case where a kriging model is used as a metamodel, there
is a well-established analysis on prediction error, and candidate solutions can be chosen by taking it into
consideration. Efficient Global Optimization (EGO) by Jones et al. (1998) is one of the most well-known
kriging-based global optimization algorithm, in which a new candidate point is determined by maximizing
the expected improvement function. Jones (2001) provided in-depth reviews on sampling strategies with
kriging models.

RBF models are also widely used in metamodel-based global optimization. They can be trained
efficiently by solving a system of linear equations and are applicable in almost any dimensional problems
since few restrictions are imposed on the location of sample points. The literature on RBF model-based
optimization has two main branches. One employs a utility function defined for RBF metamodels. Assuming
that the underlying objective function is smooth with a few local solutions, Gutmann (2001) defined a
bumpiness measure for RBF models. Provided with a target value (an estimate of the optimal objective
value), this method selects a new candidate point that minimizes the bumpiness of RBF models. Improved
strategies of specifying the target value are presented in Björkman and Holmström (2000) and Regis and
Shoemaker (2007a). The other branch of the literature focuses on the better utilization of objective function
values predicted by RBF models and prediction uncertainties represented by the distance to the nearest
evaluated point. The balance between exploration (maximize the prediction uncertainty) and exploitation
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(minimize the predictive value) is achieved by applying different weighting scheme on these two pieces
of information. Regis and Shoemaker (2005) exploited RBF metamodels by constraining the minimizer to
be distant from evaluated points. Regis and Shoemaker (2007b) and Regis (2011) sequentially evaluated
sample points with the maximum weighted score between the RBF metamodel prediction and the distance
measure. Jakobsson et al. (2010) estimated the prediction uncertainty using the same distance measure
and introduced a quality function defined by the total weighted uncertainty. Wendland (2005) reviewed an
error bound for RBF models, but its dependence on a parameter related to the unknown true function f
restricts its applications in metamodel-based optimization.

All these distance measures only provide a relative and crude estimate of the prediction uncertainty. A
better error estimate may guide the algorithm to conduct global search more wisely. To our knowledge, the
literature does not provide an easy-to-use and mathematical error estimate for RBF models, which allows
RBF-based optimization algorithms to efficiently select basis functions. This paper makes the following
contributions to the field of metamodel-based global optimization.

First, we propose a scheme to update RBF models using the Woodbury formula (Golub and Van Loan
1996), which allows us to efficiently inverts the interpolation matrix of RBF models whenever additional
points are available. The same formula helps us obtain a closed form of the LOOCV error of RBF models.
Based on this result, WIRBF can adaptively select radial basis functions throughout iterations. Second,
inspired by the bumpiness measure developed by Gutmann (2001), we provide a new point-wise error
estimate for RBF predictions using LOOCV. This error estimate can be efficiently computed and shares
several properties with the variance function of kriging models. Based on this new error estimate and
the smoothness measure of RBF models, we introduce the weighted improvement to balance the global
search and local search with a tunable parameter. The WI at an unknown point considers the possible
improvement introduced when assuming its true function value falls in the estimated error bound of the
RBF prediction. For each possible improvement, the WI function assigns a weight derived based on the
smoothness of the RBF model. Points with large prediction error and low prediction value show higher
weighted improvement.

By incorporating all the above results, we propose an adaptive radial basis function method WIRBF.
One feature of WIRBF is that it interrupts unpromising iterations and restarts with new sample points.
However, it differs from existing multistart-based algorithms such as Regis and Shoemaker (2007b) in the
sense that WIRBF requires new sample points to be distant from existing points. The new sample points
are sequentially generated by maximizing the prediction error. We provide data profiles of WIRBF and
four well-known metamodel-based global optimization algorithms on a set of 45 test problems from the
literature.

This paper is organized as follows. Section 2 reviews radial basis function interpolation models. Section
3 lays out the proposed radial basis function method WIRBF and discusses its main components in details.
Section 4 reports the data profiles of WIRBF and other existing algorithms on a set of test problems.
Section 5 concludes this paper.

2 RADIAL BASIS FUNCTIONS MODELS

The standard RBF interpolation method, first discovered by Hardy (1971), approximates the unknown
function with a linear combination of radially symmetric functions.
Definition 1 A standard RBF model interpolating n distinct evaluated points Sn = {(xi,yi = f (xi))}n

i=1 takes
the form of MSn(x) = ∑

n
i=1 αiψ (‖x− xi‖), where ψ (·) is a real-valued function on [0,∞), and α = {αi}n

i=1
are determined by the interpolation conditions MSn(xi) = yi for all i = 1, . . . ,n.

In this paper, an augmented RBF model with extra polynomial summands is also considered. This
model has been extensively studied by Powell (1992) and Wendland (2005).
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Definition 2 An augmented RBF model MSn interpolating n distinct evaluated points Sn = {(xi,yi)}n
i=1

takes the form of

MSn(x) =
n

∑
i=1

αiψ (‖x− xi‖)+
m̂

∑
j=1

β jπ j(x), (1)

where for all i = 1, . . . ,n and j = 1, . . . ,m̂, αi ∈ R, β j ∈ R, and {π j(x)}m̂j=1 are bases of a m̂=
(m−1+d

d

)
-

dimensional linear space Pd
m with polynomials in Rd of degree less than m.

Table 1 summarizes commonly-used radial basis functions, where θ > 0 is a tunable shape parameter.
In Section 3.2, we apply model selection techniques to determine a suitable ψ for a particular problem.

Table 1: Conditionally positive definite functions of different orders.

Name ψ (r) Order mψ

Multiquadrics (MQ) −
√

r2 +θ 1
Thin plate splines (TPS) r2 ln(r) 2
Cubic splines (CU) r3 2
Gaussian (GS) exp(−r2/θ) 0
Inverse multiquadrics (IMQ) (θ+ r2)−1/2 0

For a particular ψ , we define matrix Ψn ∈Rn×n with its (i, j) element being ψ
(∥∥xi− x j

∥∥) and matrix
Π ∈ Rn×m̂ whose (i, j) element is Πi j = π j(xi). Polynomials with high degrees are interesting but not
attractive in the context of simulation optimization since they require more evaluated points for interpolation.
In this paper, we use a linear tail (m= 2, m̂= d+1) in (1), then the ith row of Π is (1,xTi ). The weight
column vectors α = {αi}n

i=1, and β = {βi}m̂i=1 of model MSn are therefore obtained by solving the system(
Ψn Π

ΠT 0m̂×m̂

)(
α

β

)
=
( yn

0m̂

)
. Given distinct sample points Sn and the preceding choices of ψ , Powell (1992)

proves that the interpolation matrix Cm̂+n =
(

Ψn Π

ΠT 0m̂×m̂

)
is nonsingular if and only if the matrix Π has full

column rank and the polynomial degree satisfies m≥mψ for each ψ . In addition, the interpolation matrix
remains invertible while including additional distinct sample points.

Section 3.1 and 3.2 discuss augmented RBF models, while the proposed error estimates are derived
based on standard RBF models for simplicity. A rigorous discussion on error estimates of augmented RBF
models requires additional technical details. All results, however, can be easily applied to both types of
RBF models.

3 THE ALGORITHM

Figure 1 depicts the general structure of the proposed algorithm, WIRBF, for the global optimization of
black box problems. The full algorithmic description is presented in Algorithm 1.

WIRBF is a new multistart global optimization algorithm, which takes advantage of evaluated points
according to a new strategy (see Step 3 and 4). Throughout the process, WIRBF records evaluated points
with two sets: full information Sn = {(x, f (x)) : x ∈ Xn} and partial information S̃n = {(x, f (x)) : x ∈ X̃n},
where Xn = {xi}n

i=1 is the set of all evaluated sample points so far and X̃n is the set of evaluated points
since the most recent Restart. It is worth noting that Xn =

⋃n
i=1 X̃i and S̃n only records points evaluated

between two consecutive restarts. Hence S̃n = Sn until the first restart and S̃n ( Sn after WIRBF restarts.
WIRBF starts by constructing a set Xn0 = {xi}n0

i=1 of n0 space-filling design points, and running
simulations to obtain their function values, yn0 = { f (x),x ∈ Xn0}. At each iteration, WIRBF first builds
two global metamodels MSn with full information Sn and MS̃n with partial information S̃n. These two
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Algorithm 1 An Adaptive Radial Basis Function Method using Weighted Improvement.

Inputs: Maximum allowed number of function evaluations Nmax; Initial sample size n0.
Outputs: The best solution x?Nmax and its function value f (x?Nmax) obtained by the algorithm.

Step 1. (Initialization and Space-Filling Designs) Set n= n0. Construct the space-filling design points
Xn0 = {xi}n0

i=1, and set X̃n0 = Xn0 . Evaluate the function values of design points to define Sn0 and S̃n0 .
Step 2. (Build Global Metamodels) Build two sets of RBF metamodels MS̃n and MSn with S̃n and Sn,

or update them using results in Section 3.1, and then employ model selection techniques in Section 3.2
to identify the most accurate model in each category.

Step 3. (Identify Candidate Points)
3.1 (Global Search): Identify a candidate point xg

n+1 by solving maxx∈X WI(x | S̃n, f (x?n),η).
3.2 (Local Search): Initialize the local region B(x̃?n,∆n), and determine a candidate point xl

n+1 by solving
maxx∈B(x̃?n,∆n) WI(x |Sn, f (x̃?n),η).

Step 4. (Simulation): Solve xnew = argmaxx∈{xg
n+1,x

l
n+1}

WI(x |Sn, f (x?n),η) and evaluate xnew.
Step 5. (Stopping Criterion): Solve minx∈Xn∪xnew f (x) to find (x?n, f (x?n)). If n+ |xnew| > Nmax, then

terminate the algorithm with the current best solution x?n as the final solution; otherwise initiate Step 6.
Step 6. (Unpromising iterations): Declare the current iteration not promising if one of the following

criteria is satisfied: (1) a small local region size ∆n ≤ ε∆; (2) the number of function evaluations without
introducing improvements exceeds Nf .

Step 7. (Restart): If the current iteration is declared unpromising, then generate and evaluate a new set
C r of sample points and discard old samples by setting X̃n+|C r|+1 = C r; Otherwise, only set C r = /0 and
X̃n+|C r|+1 = X̃n∪xnew. Set Xn+1+|C r| = Xn∪xnew∪C r and update Sn+|C r|+1, S̃n+|C r|+1, n := n+ |C r|+1
and go to Step 2.

Construct and
simulate

space-filling
design points

Fit or update
a RBF model Global Search

Local Search
Simulate the

candidate point
Stopping
Criterion

Return with
the current

best solution

Unpromising
iterationsRestart

Satisfied

Violated

Yes

No

Figure 1: General structure of WIRBF.

metamodels serve different purposes. The model MS̃n is used to generate a candidate point xg
n+1 for global

search. As S̃n does not include sample points evaluated before last restart, Step 3.1 tends to generate sample
points away from regions that were exhaustively explored. Meanwhile, since interpolating metamodels are
considered in this study, MSn constructed with more information is generally more accurate than MS̃n . To
avoid being attracted by explored regions, MSn is used to generate a candidate point xl

n+1 within a local region
B(x̃?n,∆n) = {x ∈X : ‖x− x̃?n‖∞

≤ ∆n}. We use ‖·‖
∞

for the convenience of generating local candidates
within box-constrained X ∩B(x̃?n,∆n). In this study, WIRBF constructs an adaptive local region B(x̃?n,∆n)

with nB-nearest evaluated points {x(1), . . . ,x(nB)} ⊂ Xn to x̃?n, where ∆n = maxi=1,...,nB

∥∥x(i)− x̃?n
∥∥

∞
.

One key element in WIRBF is the WI function that determines the function evaluational point to be
the candidate point with large weighted improvement. In Step 3 of Algorithm 1, we apply the WI function
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with different targets and RBF metamodels. In global search (Step 3.1), the WI function relies on S̃n and
f (x?n). Partial information S̃n reduces the probability of being attracted by explored local optimal points.
The global search focuses on improving the best solution found so far x?n. Meanwhile, in the local search
(Step 3.2), the WI function is based on Sn and f (x̃?n). A more accurate model MSn based on Sn is helpful in
finding promising points when the candidate point is restricted in the local region. In Step 4, we use all the
information collected Sn and f (x?n) to decide the most promising point among these two candidate points.

Once the candidate point is evaluated in Step 4, WIRBF checks the stopping criterion. If the total
number of function evaluations n exceeds a prefixed number Nmax, WIRBF terminates with the best solution
found so far, x?n = argminx∈Xn

f (x). Otherwise, WIRBF initiates Step 6 and spares computational efforts by
interrupting unpromising iterations when the local region size ∆n ≤ ε∆ and no improvements are introduced
within Nf number of function evaluations. After deciding to terminate unpromising iterations, WIRBF
discards evaluated points in the partial information S̃n and generate a set C r of promising sample points by
sequentially maximizing the Power function maxx∈X P2

Ψn,Xn
(x) for positive definite ψ or maxx∈X P2

Cm̂+n,Xn
(x)

for conditionally positive definite ψ (see Section 3.3). This sampling scheme is equivalent to identifying
points with maximum prediction error and is meant to explore the unknown regions.

3.1 Updating RBF Models

In WIRBF, RBF models are constantly updated with new evaluated points. Although guaranteed to be positive
definite in theory, the interpolation matrix is prone to be ill-conditioned in practice because of clustered
points around local optimal points. This is inefficient and error-prone to inverse the whole interpolation
matrix each time. Mathematically, given an augmented RBF model MSn , let Sn+1 = Sn ∪ {(x̂, f (x̂))},
where (x̂, f (x̂)) is a new sampled point. Denote the weight vectors of MSn and MSn+1 by γn ∈ Rm̂+n and
γn+1 ∈ Rm̂+n+1, respectively. With the Woodbury formula, we can compute γn+1 without inverting the
interpolation matrix of MSn+1 ,

γn+1 = E−1
n+1

(
Cm̂+n ũ(x̂)
ũ(x̂)T ψ (0)

)−1( ỹn

f (x̂)

)
= E−1

n+1

(
γn +bC−1

m̂+nũ(x̂)ũ(x̂)Tγn−bC−1
m̂+nũ(x̂) f (x̂)

−bũ(x̂)Tγn +b f (x̂)

)
, (2)

where column vectors u(x̂) = {ψ (‖x̂− xi‖)}n
i=1, v(x̂) = {π j(x̂)}m̂j=1, ũ(x̂) = (u(x̂)T, v(x̂)T)T, ỹn =

( yn
0m̂

)
,

γn = C−1
m̂+nỹn, and the scalar b−1 = ψ (0)− ũ(x̂)TC−1

m̂+nũ(x̂). The permutation matrix En+1 is formed
by inserting the (n+ m̂+ 1)th row of an identity matrix I(n+m̂+1)×(n+m̂+1) into its (n+ 1)th row. The
computational complexity can be measured by the number of multiplications. The complexity of (2) is
O((n+ m̂)2), while that of the algorithm of inverting the same interpolation matrix using Singular Value
Decomposition (Golub and Van Loan 1996) is O((n+ m̂)3). The improvement is significant with a large n.

3.2 Model Selection

LOOCV has been applied as the model selection strategy in the literature. Brute force was used in Goel
et al. (2007) to determine weights in the ensemble of surrogates. Rippa (1999) presented an analytical
expression only for LOOCV on standard RBF models. In general, however, a closed form for LOOCV
on augmented RBF models is not provided. By applying the rank-one update, we manage to derive a
closed form for LOOCV on augmented RBF models, which accommodates a wider choice of radial basis
functions compared to standard RBF models.

To apply LOOCV, the set of evaluated points Sn = {(xi,yi)}n
i=1 is partitioned into n parts. For the ith

part, we fit a model MS−i with evaluated points S−i = Sn \{(xi,yi)} and measure its accuracy with the ith
evaluated point. We can compute the LOOCV error CVn(MSn) of the augmented RBF model MSn as follows

CVn(MSn) =
1
n

n

∑
i=1

∣∣yi−MS−i(xi)
∣∣= n−1

n

∑
i=1

∣∣∣γi[C−1
m̂+n]

−1
i,i

∣∣∣ .
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where [M]i,i is the (i, i)th element of matrix M, γ ∈Rm̂+n is the weight vector of MSn , and Cm̂+n =
(

Ψn Π

ΠT 0m̂×m̂

)
is the interpolation matrix of MSn .

3.3 Error Estimates of RBF Models

In this section, we propose a pointwise error estimate for the prediction of a standard RBF model using
leave-one-out cross validation. Suppose that a standard RBF model MSn interpolates an unknown function
f at a set Sn of evaluated points, our goal is to estimate |MSn(x̂)− f (x̂)| for all x̂ ∈X . To proceed with
this goal, we need consider a certain class of f, which is formalized in Assumption 1.
Assumption 1 The unknown function f is assumed to be smooth and belong to a Reproducing Kernel
Hilbert Space (RKHS) H generated by a reproducing kernel K, where K is also the radial basis function
used in MSn .

Excellent references on RKHS include Aronszajn (1950) and Wendland (2005). Assumption 1 allows
us to mathematically characterize the smoothness of any function g ∈H by ‖g‖H . For any g ∈H and
x̂ ∈X , by applying Cauchy-Schwarz inequality,

|g(x̂)|=
∣∣〈g,K(·, x̂)〉

H

∣∣≤ ‖g‖H‖K(·, x̂)‖H = ‖g‖H

√
〈K(·, x̂),K(·, x̂)〉

H
= ‖g‖H

√
K(x̂, x̂).

The upper bound of |g(x̂)| is proportional to ‖g‖H . In particular, when radial kernels are used, K(x̂, x̂) is
a constant for all x̂ ∈X . Thus ‖ ·‖H is a plausible measure of smoothness of a function. Moreover, ‖g‖H

can be computed efficiently for any g ∈H. Wendland (2005) gives the RKHS norm of a standard RBF
model MSn as ‖MSn‖2

H = αTΨnα .
To estimate the prediction error of MSn(x̂), we treat its true function value f (x̂) as a variable ŷ = f (x̂)

and construct a new metamodel MŜn+1
with Ŝn+1 = Sn∪{(x̂, ŷ)}. Assuming a smooth f, we may expect a

reasonable metamodel to be smooth as well and thus focus on its smoothness measure ‖MŜn+1
‖2

H . The model
MŜn+1

is defined by MŜn+1
(x) = ∑

n
i=1 α ′i ψ (‖x− xi‖)+α ′n+1ψ (‖x− x̂‖). The unknown weights {α ′i}n+1

i=1 are

determined by the interpolation conditions
(

Ψn u(x̂)
u(x̂)T ψ(0)

)
α ′ =

( yn
ŷ
)
, where Ψn = {ψ

(∥∥xi− x j
∥∥)}n

i, j=1 and
u(x̂) = {ψ (‖x̂− xi‖)}n

i=1. Since MŜn+1
∈H, its norm is given by

‖MŜn+1
‖2

H = (α ′)T
(

Ψn u(x̂)
u(x̂)T ψ (0)

)
α
′ =
(
yn ŷ

)( Ψn u(x̂)
u(x̂)T ψ (0)

)−1(yn

ŷ

)
=
(
yn ŷ

)(Ψ−1
n +bΨ−1

n u(x̂)u(x̂)TΨ−1
n −bΨ−1

n u(x̂)
−bu(x̂)TΨ−1

n b

)(
yn

ŷ

)
= ‖MSn‖2

H +(ψ (0)−u(x̂)TΨ
−1
n u(x̂))−1(MSn(x̂)− ŷ)2. (3)

By specifying a target value ŷ as an approximation of the optimal objective value, Gutmann (2001) selects
a candidate point x̂ that minimizes (3), which implies that the true function value f (x̂) is most like to be
ŷ since the resulted metamodel MŜn+1

is the smoothest. In the following, we interpret (3) from another
standpoint and derive pointwise error estimates for standard RBF models. The basic idea is to estimate
the upper bound of ‖MŜn+1

‖2
H that in turn limits the possible value of ŷ. First, (3) implies that for any

x̂ /∈Xn, (ψ (0)−u(x̂)TΨ−1
n u(x̂))−1 > 0 since it is one diagonal element of the inverse of a positive definite

interpolation matrix. Thus, we obtain the following proposition,
Proposition 1 Suppose {Sn}n∈N is an increasing sequence of distinct evaluated points in X , that is,
Sn ⊆ Sn+1 for any n ∈ N. Then ‖MSn‖H ≤ ‖MSn+1‖H ≤ ·· · ≤ ‖ f‖H .

Clearly, ‖MŜn+1
‖H ∈H should also be upper bounded by ‖ f‖H ,

‖MŜn+1
‖2

H = ‖MSn‖2
H +(ψ (0)−u(x̂)TΨ

−1
n u(x̂))−1(MSn(x̂)− ŷ)2 ≤ ‖ f‖2

H .
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Since we set ŷ = f (x̂), we obtain an error estimate of MSn(x̂) by solving the inequality for ŷ,

| f (x̂)−MSn(x̂)|
2 ≤ (ψ (0)−u(x̂)TΨ

−1
n u(x̂))(‖ f‖2

H−‖MSn‖2
H). (4)

This error bound has several implications: First, Corollary 18.1 in Fasshauer (2007) suggests that ‖ f‖2
H−

‖MSn‖2
H = ‖ f−MSn‖2

H . Meanwhile, Theorem 10.3 in Wendland (2005) states that convergence in ‖ · ‖H

implies pointwise convergence, that is, limn→∞ MSn(x̂) = f (x̂) for all x̂ ∈X . Thus ‖ f −MSn‖H can be
viewed as a measure of the overall model accuracy of MSn , while ψ (0)−u(x̂)TΨ−1

n u(x̂) acts as a distributor
of the residual over the entire region X . We therefore hypothesize that ‖ f−MSn‖H may be estimated with
model validation techniques, such as cross validation.

Next, the pointwise error estimate may be conservative if the upper bound ‖ f‖2
H of ‖MSn‖2

H is used
in (4). A conservative error estimate will promote metamodel-based optimization algorithms to search
globally. Therefore, we propose to replace ‖ f‖2

H with an estimated upper bound of ‖MŜn+1
‖2

H so that the
estimated error bound is probabilistically satisfied. Finally, (3) characterizes the exact relationship between
‖MŜn+1

‖2
H and ‖MSn‖2

H . If k-fold (k < n) cross validation is used, it is rather difficult to derive an exact
relationship between ‖MŜn+1−k

‖2
H and ‖MSn‖2

H similar to (3).
Based on the above justifications, we propose to estimate ‖MŜn+1

‖2
H via leave-one-out cross validation.

‖MŜn+1
‖2

H −‖MSn‖2
H can be seen as the contribution of an point x̂ to the overall accuracy of a metamodel

MSn . For standard RBF models, ‖MŜn+1
‖2

H−‖MSn‖2
H ≥ 0 for all x̂ ∈X . In order to estimate ‖MŜn+1

‖2
H , we

make the following assumption relating ‖MŜn+1
‖2

H−‖MSn‖2
H with

{
‖MSn‖2

H−‖MS−i‖2
H

}n
i=1.

Assumption 2 We treat ‖MŜn+1
‖2

H −‖MSn‖2
H and

{
‖MSn‖2

H−‖MS−i‖2
H

}n
i=1 as if they were independent

random variables from the same distribution.
Proposition 2 The estimated error bound of a standard RBF model MSn is given by

P
[
| f (x̂)−MSn(x̂)|

2 ≤ P2
Ψn,Xn

(x̂)ρ
(
α ,Ψ−1

n |η
)]

= η , (5)

where ρ
(
α ,Ψ−1

n |η
)

is estimated from {‖MSn‖2
H−‖MS−i‖2

H}n
i=1 and P2

Ψn,Xn
(x̂) = ψ (0)−u(x̂)TΨ−1

n u(x̂).
In this study, we simply use the inverse of empirical cumulative distribution function, that is,

ρ
(
α ,Ψ−1

n |η
)

is the η-quantile Qη

[
{‖MSn‖2

H−‖MS−i‖2
H}n

i=1

]
with η ∈ [0,1]. By applying results from

Section 3.2, we obtain

‖MSn‖2
H−‖MS−i‖

2
H = α

2
i [Ψ

−1
n ]−1

i,i .

It is worth noting that P2
Ψn,Xn

(x̂) = 0 if and only if x̂ ∈ Xn and P2
Ψn,Xn

(x̂)> 0 for all x̂ /∈ Xn. Therefore,
(5) still preserves the property that the prediction error at evaluated points is zero. The complexity of (5) is
O(n2). Most computational efforts are spent in computing u(x̂)TΨ−1

n u(x̂). In the case of local radial basis
functions such as GS, the complexity can be further reduced by exploiting the sparse structure of u(x̂) and
Ψ−1

n . For simplicity, we only present the estimated error bound of augmented RBF models:

P
[
| f (x̂)−MSn(x̂)|

2 ≤ P2
Cm̂+n,Xn

(x̂)ρ
(
γ ,C−1

m̂+n |η
)]

= η ,

whereP2
Cm̂+n,Xn

(x̂)=ψ (0)− ũ(x̂)TC−1
m̂+nũ(x̂) and ρ

(
γ ,C−1

m̂+n |η
)
=Qη

[{
γ2

i [C
−1
m̂+n]

−1
i,i

}n

i=1

]
.The complexity

of this estimated error bound is O((m̂+n)2).
To demonstrate the effectiveness of the error estimate, in Figure 2, we compare it with the 95%

confidence interval for a kriging model on a randomly-generated function.
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Figure 2: The left figure shows the estimated error bounds of RBF models with η = 0.95 and ψ (r) =
exp(−r2/θ), where θ is chosen by minimizing the LOOCV error CVn(MSn); the right figure shows 95%
confidence interval of kriging models with Gaussian correlation functions.

3.4 Weighted Improvement

Given a set of sample points Sn = {Xn,yn} and a target value τ∗, the weighted improvement WI(x̂ |Sn,τ
∗) at

an unknown point x̂ primarily relies on two elements: (a) the improvement Ix̂ = max(τ∗− ŷ,0) = (τ∗− ŷ)+,
where the variable ŷ represents the unknown f (x̂); (b) a weight functionW (ŷ) for each possible Ix̂ =(τ∗− ŷ)+.
We consider the following weight function,

W (ŷ) =
‖MSn‖H

πP
Ψn,Xn

(x̂)
×‖MŜn+1

‖−2
H =

π−1‖MSn‖HPΨn,Xn
(x̂)

‖MSn‖2
HP2

Ψn,Xn
(x̂)+(ŷ−MSn(x̂))2 ,

where ‖MSn‖H ,MSn(x̂), and P
Ψn,Xn

(x̂) are all constants given x̂, ψ and Sn; Our choice of W (ŷ) exhibits
three properties: (a) It monotonically decreases as ŷ deviates from MSn(x̂), implying the metamodel MŜn+1

becomes bumpier; (b) W (ŷ)≥ 0, for any ŷ ∈R; (c)
∫ +∞

−∞
W (ŷ)d ŷ = 1. A closer look at W (ŷ) reveals that it

can be treated as the probability density function of a Cauchy random variable ŷ with two robust measures:
median MSn(x̂) and median absolute deviation ‖MSn‖HPΨn,Xn

(x̂).
With the two key elements defined, we now compute WI(x̂ |Sn,τ

∗) by integrating the weighted im-
provement Ix̂ over all possible ŷ,

WI(x̂ |Sn,τ
∗) =

(∫
W (ŷ)d ŷ

)−1 ∫
W (ŷ)Ix̂ d ŷ.

However, the integration would be undefined for unconstrained ŷ. Therefore, in our weighted improvement
procedure, we restrict the possible ŷ within the estimated error bound (5), that is, ŷ ∈ [ f̃l(x̂), f̃u(x̂)],

where f̃l(x̂) = MSn(x̂)−
√
P2

Ψn,Xn
(x̂)ρ

(
α ,Ψ−1

n |η
)
, and f̃u(x̂) = MSn(x̂)+

√
P2

Ψn,Xn
(x̂)ρ

(
α ,Ψ−1

n |η
)
. Such a

restriction brings simplification, yielding a closed form for the WI function. Meanwhile, this restriction
can be adjusted by changing the size of [ f̃l(x̂), f̃u(x̂)] with η . We obtain the WI at x̂,

WI(x̂ |Sn,τ
∗,η) = ‖MSn‖HPΨn,Xn

(x̂)
(

ln(1+v2)− ln(1+u2)

2(tan−1 (u)− tan−1 (v))
+

τ∗ −MSn(x̂)
‖MSn‖HPΨn,Xn

(x̂)

)
, (6)
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where u=min
(

τ∗−MSn (x̂)
‖MSn‖HP

Ψn,Xn (x̂)
,

√
ρ(α ,Ψ−1

n |η)
‖MSn‖H

)
and v=min

(
τ∗−MSn (x̂)

‖MSn‖HP
Ψn,Xn (x̂)

,−
√

ρ(α ,Ψ−1
n |η)

‖MSn‖H

)
. The WI func-

tion for augmented RBF models could be obtained by simply replacing P2
Ψn,Xn

(x̂) and ρ
(
α ,Ψ−1

n |η
)

with
their counterparts, P2

Cm̂+n,Xn
(x̂) and ρ

(
γ ,C−1

m̂+n |η
)
.

To better comprehend the WI function, we plot (6) for a randomly-generated function and compare
it with the EI function in Figure 3. The two metamodels are constructed with the same set of sample
points. For the RBF model, we choose a cubic ψ (r) = r3 and η = 0.25,0.95. The kriging model uses
a Gaussian correlation function. The target value τ∗ is highlighted with the horizontal dashed line. As
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Figure 3: The left figure shows the WI function with η = 0.25; the middle figure uses η = 0.95; the right
figure illustrates the EI function of a kriging model. The star denotes the point with maximum WI or EI.

depicted in the left and middle panel of Figure 3, a lower η promotes local search as the estimated error
bound [ f̃l(x̂), f̃u(x̂)], x̂ ∈X of the RBF model is narrower. When η = 0.95, the WI function identifies
similar promising regions (six peaks of the WI function) as the EI function in kriging does.

4 NUMERICAL EXPERIMENTS

In this section, we compare WIRBF with four alternative approaches: EGO (Jones et al. 1998), rbfSolve
(Gutmann 2001), MADS-DACE (Audet and Dennis 2006), and MLMSRBF (Regis and Shoemaker 2007b).
We use EGO and rbfSolve implemented in the TOMLAB optimization environment, MADS-DACE im-
plemented in the NOMADm software package, and a Matlab version of MLMSRBF implemented by its
author.

4.1 Experimental Setup

We consider a set T of 45 different test problems whose dimensions range from 2 to 15 with the median
dimension being 8. Most problems have been used in the literature Gutmann (2001) and Regis and
Shoemaker (2007b) to compare different global optimization algorithms. Seven of T are selected from
(Dixon and Szegö 1978). Besides, we include Beale (d = 2), Zakharovd (d = 5,10) and Powell’s singular
function Powelld (d = 8,12) from the literature. Another subset of T comprises deterministic test problems
that attempt to mimic stochastic simulations with high-frequency and low-frequency oscillations in the form
of sine and cosine functions, including Ackleyd (d = 2,5,10,15), Schwefeld (d = 2), Griewankd (d = 15).
Aside from these standard test problems, we also include 26 random instances of the Schoen (1993) test
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problems, labeled as Schoend,20, Schoend,100, d = 3, . . . ,15. Schoend,20 has more than 10 local optimal
points, and Schoend,100 exhibits more than 50 local optimal points, four of which are steep local minima.

To examine the robustness, we test all algorithms on each problem with 50 replications using Nmax = 850
function evaluations. In each replication, each algorithm starts with n0 = 2(d+1) initial points randomly
generated by Latin Hypercube Sampling implemented in the Matlab command lhsdesign(). We leave
all parameters in MADS-DACE, EGO, MLMSRBF and rbfSolve at default values in this study.

The implementation of WIRBF scales the feasible region of each problem into [0,1]d , which is also
adopted by the other four algorithms. The WIRBF implementation demonstrated here relies on parameters as
follows: η = 0.6, |C r|= 2(d+1), nB = 2d, Nf = max(8,d), ε∆ = 10−4√d. Our computational experience
shows that WIRBF also works well when it approximates the optimal point of the WI function with the
best one selected from a limited number of points. Specifically, we randomly generate Ng = 500d points in
Step 3.1 and Nl = 300d in Step 3.2. Furthermore, we consider three variants of WIRBF: In WIRBF-AUTO,
all five basis functions in Table 1 are used in the model selection, where the shape parameter in MQ, IMQ
and GS is chosen by minimizing the LOOCV error; WIRBF-CU and WIRBF-TPS respectively uses CU
and TPS to construct RBF models throughout the iterations.

4.2 Experimental Results

We now present computational results using data profile (Moré and Wild 2009). This profiling technique
depends on three components: a set A of optimization algorithms, a set T of test problems, and a
convergence test. The derivative-free convergence test is given by

f (x0)− f (x)≥ (1− εct)( f (x0)− fL),

where εct > 0 is a tolerance, x0 is the starting point for the problem and is set to be the best solution found
after evaluating n0 space-filling design points, and fL is the smallest function value obtained by any tested
algorithm within Nmax function evaluations and 50 runs.

Figure 4 shows the data profiles for different accurate levels of εct = {10−1,10−5}. WIRBF-AUTO
generally performs best. The performance of the variants of WIRBF are similar when an low accurate level
εct = 10−1 is demanded, while the differences among their performances increases at the accuracy level
εct = 10−5. Given the equivalent 30 simplex gradient (30(d + 1) function evaluations), WIRBF-AUTO,
WIRBF-CU and WIRBF-TPS respectively solve 82%, 80% ,and 82% of problems to εct = 10−1, and
41%, 35% ,and 31% of problems to εct = 10−5, while MLMSRBF, rbfSolve, EGO, and MADS-DACE
respectively solve 72%, 54%, 34%, and 52% of problems to εct = 10−1, and 21%, 8%, 12% and 7% of
problems to εct = 10−5.

We are also interested in the type of radial basis function selected by WIRBF-AUTO. Figure 5a suggests
that the LOOCV-based model selection strategy favors MQ for small sample size, while TPS becomes the
top choice for large sample size. It is surprising to observe a low percentage of choosing CU despite the
good performance of WIRBF-CU. Figure 5b presents the mean normalized LOOCV error of different RBF
models for different number of sample points across the experiments. A higher value indicates a lower
LOOCV error. We can see that the performance of IMQ, TPS and CU increases with the sample size
relative to other basis functions, but CU is seldom the best thus is not favored according to the criterion
of minimizing LOOCV error.

5 CONCLUSIONS

In this paper, we have presented an adaptive radial basis function method using weighted improvement.
We first propose to construct RBF models using rank-one update and then derive a closed form of LOOCV
errors of RBF models. We also propose a new error estimate for RBF interpolation models via leave-one-out
cross validation. Previous works mainly use the minimum distance to evaluated points as an indicator
of the prediction uncertainty. Computational results show that the three variants of WIRBF outperforms
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Figure 4: Data profiles for algorithms A on test problems T .
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Figure 5: Radial basis functions selected by LOOCV with 50 runs and 45 problems.

existing algorithms. We also find out that LOOCV-based model selection strategy favors MQ for small
sample size, while TPS becomes the top choice for a large sample size, and the performance of IMQ, CU
and TPS generally increases with the sample size relative to other basis functions.
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