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ABSTRACT

A classic Kriging or Gaussian process (GP) metamodel estimates the variance of its predictor by plugging-in
the estimated GP (hyper)parameters; namely, the mean, variance, and covariances. The problem is that this
predictor variance is biased. To solve this problem for deterministic simulations, we propose “conditional
simulation” (CS), which gives predictions at an old point that in all bootstrap samples equal the observed
value. CS accounts for the randomness of the estimated GP parameters. We use the CS predictor variance
in the “expected improvement” criterion of “efficient global optimization” (EGO). To quantify the resulting
small-sample performance, we experiment with multi-modal test functions. Our main conclusion is that
EGO with classic Kriging seems quite robust; EGO with CS only tends to perform better in expensive
simulation with small samples.

1 INTRODUCTION

The goals of metamodels may be sensitivity analysis of simulation models and optimization of real systems
being simulated. There are several types of metamodels, but most popular are linear regression analysis
and Kriging or Gaussian process (GP) models; see the many references to various types of metamodels
in Kleijnen 2008, p. 8. In this paper, however, we focus on Kriging—which is gaining popularity in the
WSC community.

To estimate a Kriging metamodel, we simulate (say) k “points” xi (i = 1, ..., k) or combinations of the
d ≥ 1 simulation inputs. In this paper we limit our research to deterministic simulation, which is popular
in engineering (this paper will be a building block for future research on random simulation). We assume
that the simulation model is “expensive”; i.e., a single simulation run requires so much computer time
to obtain the output (simulation response) wi that the set of input/output (I/O) data (X,w) is relatively
small—obviously, X denotes the k× d matrix with rows xi, and w = (w1, . . . , wk)

>. A rule-of-thumb for
k (number of points to be simulated) states that a valid Kriging metamodel requires k = 10d points when
using (popular) Latin hypercube sampling (LHS) to select these points; see Loeppky et al. (2009).

Classic Kriging (CK) estimates the variance of its predictor by plugging-in the estimated (hy-
per)parameters of the assumed stationary GP; these parameters are the constant mean β0, the constant
variance τ2, and the covariance matrix that is determined by the distances among the k points xi and
the assumed correlation function. For this correlation function we assume the popular so-called Gaussian
function with parameters θ; see the definition in (2). Let ψ = (β0, τ

2,θ>)> denote the (2+d)-dimensional
vector of Kriging parameters. Plugging-in the estimator ψ̂ makes the classic variance of the Kriging
predictor biased. This bias arises because the resulting Kriging predictor is nonlinear. To study nonlinear
statistics, we may apply parametric bootstrapping, which is a kind of Monte Carlo sampling with parameters
estimated from the “original” data—in our case (X,w)—so it is data-driven; see the general textbook on
bootstrapping by Efron and Tibshirani 1993, p. 52 and the additional recent references in Kleijnen 2008,
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pp. 81, 84. In this paper we study “conditional simulation” (CS), which improves bootstrapped Kriging
(BK) that was originally studied by Den Hertog et al. (2006). Both CS and BK resample old and new
points, but CS gives a prediction at an old point wi that in all bootstrap samples equals the observed value
wi; this property is attractive in deterministic simulation. BK and CS give estimates of the variance of
ŷ(x0) where ŷ(x0) denotes the Kriging predictor of the output at the new point x0. We use this variance
estimator σ̂2[ŷ(x0)] in efficient global optimization (EGO), which is a sequential algorithm that balances
local and global search for expensive black-box functions; i.e., EGO combines exploitation and exploration
(see the classic EGO article Jones et al. (1998)). EGO with BK has already been studied by Kleijnen et al.
(2012); now we also combine EGO with CS, and compare EGO combined with CK, BK, or CS.

To select the new point x0, EGO uses the expected improvement (EI) criterion, defined in Section 5. As
we shall see, this criterion implies that if two candidate new points (say) x0;1 and x0;2 have the same predicted
outputs ŷ(x0;1) = ŷ(x0;2) but different estimated predictor variances (say) σ̂2[ŷ(x0;1)] > σ̂2[ŷ(x0;2)], then
EGO selects x0;1, the point with the bigger variance (more uncertainty in the predictor). Consequently, bias
in the variance estimates σ̂2[ŷ(x)] would not matter in EGO, if CK, BK, and CS gave estimates σ̂2[ŷ(x)]
that would reach its maximum for the same new point x0.

Note: EGO is popular in mathematics and engineering with its deterministic simulation models
(often called “computer codes”), but not yet in the “simulation optimization” domain of Management
Science/Operations Research. Obviously, bootstrapping is computationally inexpensive compared with
expensive simulation, which may take days. Bootstrapping (including CS) can be easily implemented on
a parallel computer system.

We numerically illustrate EGO with CK, BK, or CS, and estimate their relative performance. Our
experiment uses popular multi-modal test functions for which GPs are only approximations of the true
I/O functions. We detail one example with a single input (d = 1). Based on this example and additional
examples our main conclusion is that EGO with CK seems quite robust; i.e., EGO with CS or BK only
tends to perform better in expensive simulation with small samples.

Besides this introductory section, our paper comprises the following sections. Section 2 summarizes
CK. To make this paper stand on its own, Section 3 summarizes BK devised by Den Hertog et al. (2006)
and combined with EGO by Kleijnen et al. (2012). Section 4 details CS. Section 5 summarizes EGO.
Section 6 details one numerical example for EGO, and summarizes additional experiments. Section 7
presents conclusions and topics for further research.

2 CLASSIC KRIGING (CK)

The basics of Kriging are discussed in many publications, in several disciplines such as geostatistics,
engineering, and operations research. Most of our terminology and symbols come from Ankenman et al.
(2010).

In deterministic simulation, Kriging is an exact interpolator; i.e., the Kriging predictions y(xi) = yi
equal the observed simulation outputs w(xi) = wi for the k old input combinations xi: yi = wi (i = 1, ...,
k). These “old” I/O data are called the “training sample” in some Kriging publications.

Ordinary Kriging assumes that its output y(x) is a realization of the random process

Y (x) = β0 +M(x) (1)

with the constant meanβ0 and the following stochastic processM(x) with covariance matrixΣM (“universal”
Kriging does not assume a constant mean, but a linear regression model f(x)>β). The covariance between
M(x) and M(x′) is ΣM (x,x′) = τ2RM (x,x′) where RM is a correlation matrix and τ2 is the constant
process variance. More precisely, M(x) is a zero-mean second-order stationary stochastic process so
E[M(x)] = 0 and the correlation between two points x and x′ depends only on the distance |x− x′|. In this
paper we use the correlation function that is most popular in simulation; namely, the Gaussian correlation
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function in product form:

RM (x,x′,θ) =

d∏
j=1

exp[−θj(xj − x′j)2] (θj > 0) (2)

where θj measures the importance of input j (j = 1, ..., d).
To select Ŷ (x0)—the predictor of the simulation output at a new point x0—Kriging minimizes the

mean squared prediction error (MSPE) criterion:

MSPE[Ŷ (x0)] = E[Ŷ (x0)− w(x0)]
2. (3)

The minimum of (3) is determined by the following (1 + k)-dimensional Gaussian or Normal distribution:(
Y (x0)
Y (x)

)
∼ N1+k

[
β011+k,

(
τ2 ΣM (x0, ·)>

ΣM (x0, ·) ΣM

)]
(4)

where 11+k denotes the vector with all its (1 + k) elements equal to 1 and ΣM (x0, ·) denotes the k-
dimensional vector with Cov[M(x0),M(xi)], which denotes the covariance between the output of the
“new” point x0 and the output of the old point xi. The predictor is required to be linear (say) Ŷ (x0) =
a>Y (x) and unbiased so E[Ŷ (x0)|Y (x)] = E[Y (x0)|Y (x)]. The best linear unbiased predictor (BLUP)
can then be derived to be

Ŷ (x0,ψ) = β0 + ΣM (x0, ·)>Σ−1M [Y (x)− β01k] (5)

where we introduce the symbol Ŷ (x0,ψ) to emphasize that the predictor depends on ψ, the vector of
GP parameters. Together, (3) and (5) give the MSPE[Ŷ (x0,ψ)]. Because Ŷ (x0,ψ) is unbiased, this
MSPE[Ŷ (x0,ψ)] equals σ2[Ŷ (x0, ψ)]. It can be derived that

σ2[Ŷ (x0,ψ)] = τ2 −ΣM (x0, ·)>Σ−1M ΣM (x0, ·) +
[1− 1>k Σ−1M ΣM (x0, ·)]2

1>k Σ−1M 1k
. (6)

In practice, however, ψ is unknown and must be estimated. Typically, Kriging uses the maximum

likelihood estimators (MLEs), denoted by a hat so ψ̂ = (β̂0, τ̂
2, θ̂
>

)>. These MLEs follow from the
log-likelihood function, which follows from the distribution (4). Because this log-likelihood function is
rather complicated—possibly with ridges and local maxima—Kriging computes these MLEs numerically
through a constrained maximization algorithm. Different Kriging packages use different algorithms. We
use the free MATLAB Kriging toolbox called DACE, which is well documented by Lophaven et al. (2002)
and is often applied in practice; DACE applies the Hooke-Jeeves algorithm.

Note: Bachoc (2013) studies both MLEs and cross-validation estimators and finds that MLEs give more
bias for misspecified ΣM . We shall use a correctly specified ΣM in Sections 3 and 4, and a misspecified
ΣM in Section 6.

The predictor with plugged-in MLE ψ̂ follows from (5):

Ŷ (x0, ψ̂) = β̂0 + Σ̂M (x0, ·)>Σ̂
−1
M [Y (x)− β̂01k]. (7)

Obviously, this predictor is nonlinear. Its MSPE and variance are unknown. We define σ̂2CK[Ŷ (x0, ψ̂)] as
the CK estimator of the predictor variance (6) with plugged-in estimators:

σ̂2CK[Ŷ (x0, ψ̂)] = τ̂2 − Σ̂M (x0, ·)>Σ̂
−1
M Σ̂M (x0, ·) +

[1− 1>k Σ̂
−1
M Σ̂M (x0, ·)]2

1>k Σ̂
−1
M 1k

. (8)

971



Kleijnen and Mehdad

We conjecture that this estimator underestimates the true variance, because it ignores the randomness of
the MLEs. Above, we introduced the term “classic Kriging” (CK) for all Kriging methods (e.g., ordinary
Kriging) that ignore this randomness. To derive the alternative estimators BK and CS, we shall use
bootstrapping in the next sections.

3 BOOTSTRAPPED KRIGING (BK)

BK was developed by Den Hertog et al. (2006) to estimate the predictor variance as a function of the
location of the new point x0. It is well-known that as the new point x0 is closer to an old point xi, its
predictor variance decreases and becomes zero when the new point coincides with an old point. Den Hertog
et al. (2006) derive algorithms for (i) a fixed set of new points, (ii) a variable set of new points, and
(iii) adding new points one-at-a-time. We use algorithm (iii), because in EGO we shall use a fixed set
of candidate points in our search for the one candidate point that maximizes the EI and we ignore the
correlation between the outputs of two new points (also see Den Hertog et al. 2006, p. 404). Algorithm
(iii) uses the property that N1+k defined in (4) implies that the distribution of the new output given the k
old outputs is a conditional normal distribution (also see Den Hertog et al. (2006)’s equation 19). Now
we give the steps of their algorithm (iii).

1. We use Nk

(
β̂01k, Σ̂M

)
B times (B denotes the bootstrap sample size) to sample the k old points

w∗b (X, ψ̂) = (w∗1;b(X, ψ̂), . . . , w∗k;b(X, ψ̂))> where we compute ψ̂ from (X,w). For each new
point x0 we repeat steps 2 through 4 B times.

2. Given the k old points w∗b (X, ψ̂) of Step 1, we sample w∗b (x0, ψ̂) from

N
[
β̂0 + Σ̂M (x0, ·)>Σ̂

−1
M [Y (x)− β̂01k], τ̂2 − Σ̂M (x0, ·)>Σ̂

−1
M Σ̂M (x0, ·)

]
. (9)

3. Using w∗b (X, ψ̂) of Step 1, we compute ψ̂
∗
b . Next we calculate:

Ŷ (x0, ψ̂
∗
b) = β̂∗0;b + Σ̂M (x0, ·, ψ̂

∗
b)
>Σ̂
−1
M (ψ̂

∗
b)[w

∗
b (X, ψ̂)− β̂∗0;b1k].

4. This Ŷ (x0, ψ̂
∗
b) together with w∗b (x0, ψ̂) (the bootstrapped new output of Step 2) gives SPEb =

SPE[Ŷ (x0, ψ̂
∗
b)] = [Ŷ (x0, ψ̂

∗
b) − w∗b (x0, ψ̂)]2, which is the bootstrap estimator of the squared

prediction error (SPE).
5. The B bootstrap samples give the following bootstrap estimator of MSPE[Ŷ (x0)], defined in (3):

MSPE[Ŷ (x0, ψ̂
∗
)] =

∑B
b=1 SPEb
B

. (10)

We ignore the fact that the BK predictor Ŷ (x0, ψ̂
∗) is biased, like we assumed that the CK predictor

Ŷ (x0, ψ̂) is unbiased—even though the true parameters ψ are replaced by plug-in estimators.
Obviously, this makes (10) also give σ̂2[Ŷ (x0, ψ̂

∗
)]—abbreviated to σ̂2BK—which is the bootstrap

estimator of σ2[Ŷ (x0, ψ̂)].

The standard error (SE) of σ̂2BK is computed straightforwardly, because the B random variables in (10)
are independently sampled from the same distribution so they are independently and identically distributed
(IID): SE{σ̂2[Ŷ (x0, ψ̂

∗
)]} = [

∑B
b=1(SPEb −MSPE)2/{(B − 1)B}]1/2. So this SE decreases with B1/2.

We use tB−1 (Student t-statistic with B−1 degrees of freedom) to compute a two-sided symmetric (1−α)
CI:

P{σ2[Ŷ (x0, ψ̂)] ∈ σ̂2[Ŷ (x0, ψ̂
∗
)]± tB−1;α/2 SE{σ̂2[Ŷ (x0, ψ̂

∗
)]}} = 1− α. (11)
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Figure 1: Illustration of BK; (a): jointly sampled outputs at 5 equi-spaced old and 98 equi-spaced new
points, for B = 5; (b): Kriging predictions for 98 new points based on 5 old points sampled in (a); (c):
estimated predictor variances and their 95% CIs with B = 100, and CK’s predictor variances; (d): same as
(c) but with B = 20,000

This CI assumes that tB−1 is not very sensitive to possible non-normality of SPE, which features in (10).
For large B, we have tB−1;α/2 ↓ zα/2 where zα/2 denotes the α/2 quantile of the standard normal variable
z so (4) implies z ∼ N (0, 1) and P (z < zα/2 ) = α/2.

Figure 1 illustrates BK. Part (a) displays only B = 5 samples, to avoid cluttering-up the plot; notice
that each of these B samples has its own output values at the old points. Part (b) shows less “wiggling”
than part (a); the predictions at old points coincide with the values sampled in part (a). Part (c) uses B =
100; it also displays CK’s σ̂2CK computed from (8). Part (d) uses B = 20,000 to confirm our conjecture
that BK tends to give bigger estimates σ̂2BK than σ̂2CK.

4 CONDITIONAL SIMULATION (CS)

CS is popular in the French literature on Kriging; see the references in Wackernagel 2003, p. 188. We
formulate the basic idea of CS in Chilès and Delfiner 1999, pp. 465-469 as follows. Let S(·) be a
non-conditional simulation (or bootstrap sample) of Y (·) independent of Y (·) and with the same covariance
as Y (·). When “conditioning”, we pass from S(·) to a simulation YCS(·) that is equal to Y (·) in the old
points. Let Ŷ (x0) be the Kriging predictor of Y (x0) based on the old I/O data (X,w). Obviously, we
have Y (x0) = Ŷ (x0) + [Y (x0) − Ŷ (x0)] where the Kriging error Y (x0) − Ŷ (x0) is unknown because
Y (x0) is unknown. Analogously, we have S(x0) = Ŝ(x0) + [S(x0)− Ŝ(x0)], but now S(x0) is known and
so is the error term. Substituting the simulated error into the decomposition of Y (x0), we obtain YCS(x0)

= Ŷ (x0) + [S(x0)− Ŝ(x0)]. Because Kriging is an exact interpolator at an old point x, we have Ŷ (x) =
Y (x) and Ŝ(x) = S(x) so YCS(x) = Y (x). Notice that Journel and Huijbregts 2003, pp. 496-498 prove
that YCS(·) preserves the covariance of Y (·).
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Figure 2: Illustration of CS; (a): predictions at 98 new points, for B = 5; (b): estimated predictor variances
and their 95% CIs for B = 100, and CK’s predictor variances; (c): same as (b) but for B = 20,000

Whereas Chilès and Delfiner (1999) focus on spatial data in geostatistics, we focus on simulation
models. Whereas we see CS as a type of parametric bootstrapping, Chilès and Delfiner 1999, p. 453 call
CS a “Monte Carlo method”. We detail our CS algorithm as follows.

1. We use Nk

(
β̂01k, Σ̂M

)
B times to sample thek old pointsw∗b (X, ψ̂) = (w∗1;b(X, ψ̂), . . . , w∗k;b(X, ψ̂))>

where we compute ψ̂ from (X,w). For each new point x0 we repeat steps 2 through 4 B times.
2. We use the conditional normal distribution (9) to samplew∗b (x0, ψ̂) given the k old points w∗b (X, ψ̂).
3. w∗b (X, ψ̂) from Step 1 gives ψ̂

∗
b . Next we calculate:

Ŷ (x0, ψ̂
∗
b) = β̂∗0;b + Σ̂M (x0, ·, ψ̂

∗
b)
>Σ̂
−1
M (ψ̂

∗
b)[w

∗
b (X, ψ̂)− β̂∗0;b1k]. (12)

4. Combining CK and (12), we compute the CS output at the new point:

ŶCS(x0, b) = β̂0 + Σ̂M (x0, ·)>Σ̂
−1
M (w − β̂01k) + [w∗b (x0, ψ̂)− Ŷ (x0, ψ̂

∗
b)]. (13)

5. Finally, we use the B samples to compute

σ̂2[ŶCS(x0)] =

∑B
b=1[ŶCS(x0, b)− Ŷ CS(x0)]

2

B − 1
with Ŷ CS(x0) =

∑B
b=1 ŶCS(x0, b)

B
.

Figure 2 illustrates CS. Part (a) displays ŶCS(x0, b) for b = 1, · · · , 5. To obtain a CI for σ2[Ŷ (x0, ψ̂)],
we replace tB−1 in (11) (which assumes B IID variables) by χ2

B−1 = (B − 1)σ̂2[ŶCS(x0)]/σ
2[ŶCS(x0)]

(which applies for the classic variance estimator σ̂2[ŶCS(x0)]); this gives a two-sided asymmetric (1− α)
CI:
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Figure 3: Illustration of CIs for BK versus CS for various B

P{(B − 1)σ̂2[ŶCS(x0)]

χ2
B−1;1−α/2

≤ σ2[Ŷ (x0, ψ̂)] ≤ (B − 1)σ̂2[ŶCS(x0)]

χ2
B−1;α/2

} = 1− α. (14)

Part (b) of the figure displays σ̂2[ŶCS(x0)] = σ̂2CS and its 95% CIs if B = 100; it also displays σ̂2CK. Based
on this part we conjecture that σ̂2CS tends to exceed σ̂2CK; part (c) displays results if B = 20,000, which
confirms our conjecture.

Furthermore, we conjecture that σ̂2BK tends to exceed σ̂2CS because CS implies conditional sampling.
Figure 3 displays σ̂2CS and σ̂2BK and their CIs, for various values of B. Actually, this figure suggests that
for B ↑ ∞ the two estimators tend to the same asymptotic value; for small samples, CS does not give
a significantly smaller value. On hindsight, these results seem reasonable; i.e., both CS and BK use ψ̂,
which is the sufficient statistic of the GP computed from the same (X,w). We feel that CS is simpler than
BK—both computationally and conceptually.

5 EFFICIENT GLOBAL OPTIMIZATION (EGO)

EGO searches for the global optimum, sequentially. To guide its search, EGO uses the expected improvement
(EI) criterion. This EI is computed as follows, if the EGO goal is to minimize the simulation output w.

1. Fit a Kriging metamodel Y (x) to the old I/O data (X,w).
2. Find the minimum output observed (simulated) so far: fmin = min1≤i≤k w(xi).
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3. Find x̂opt, which denotes the estimate of x0 that maximizes EI(x) = E [max(fmin − Y (x), 0)].

Assuming Y (x) ∼ N
(
Ŷ (x), σ̂2CK(x)

)
, Jones et al. (1998) derive

EI(x) =
(
fmin − Ŷ (x)

)
Φ

(
fmin − Ŷ (x)

σ̂CK(x)

)
+ σ̂CK(x)φ

(
fmin − Ŷ (x)

σ̂CK(x)

)
(15)

with Ŷ (x) and σ̂CK(x) defined in (7) and (8), and Φ and φ denoting the cumulative distribution
function and the probability density function of the standard normal variable z.

4. Run the simulation model with x̂opt found in step 3, and obtain w(x̂opt).
5. Fit a new Kriging metamodel to the old I/O data of step 1 and the new I/O of step 4. Update k

and return to step 2 if the stopping criterion is not yet satisfied.

Like all sequential procedures, EGO needs to select an initial sample size k and a stopping criterion.
If EGO starts with a “too small” k, then the Kriging metamodel is a poor approximation which gives
poor guidance of the search for the optimum. As a stopping criterion Jones et al. (1998) use EI <
0.01 fmin; Kleijnen et al. (2012) use EI < 10−20, which is scale dependent; Huang et al. (2006) require
that their stopping criterion is satisfied d + 1 times in a row. We think that in expensive simulation, a
practical stopping criterion may be exhaustion of the computer budget or meeting the deadline for reporting
the estimated optimal I/O to the client. We shall report some numerical results, in the next section.
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Figure 4: EGO for the example in Forrester et al. 2008, p. 83

Figure 4 illustrates EGO through the following test function that is also used by Forrester et al. 2008,
p. 83:

w(x) = (6x− 2)2 sin(12x− 4) with 0 ≤ x ≤ 1. (16)

It is easy to derive that if x is continuous, then this function has one local minimum at x = 0.01 and one
global minimum at xopt = 0.7572 with output w(xopt) = −6.02074; also see the curves in the left part of
the figure, the blue curve is the true function and the red one is the Kriging metamodel. Forrester et al.
2008, p. 92 start with k = 3 old points, and stop after sequentially adding seven new points. After each
new point they re-estimate θ; see θ̂ in the left part. Below (6) we have already pointed out that the GP
log-likelihood function is complicated, and uses some constrained maximization algorithm. Forrester et al.
(2008) use their own genetic algorithm, and we use MATLAB’s DACE; moreover, DACE needs an initial
value for θ, which may affect θ̂. Different algorithms may give different MLEs; e.g., Forrester et al. (2008)
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display θ̂ = 1 if k = 3 and θ̂ = 12.51 when k = 10, whereas our figure displays θ̂ = 74 when k = 3 and θ̂ =
14 when k = 10. So, when k is “small”, the Kriging metamodel is a “poor” approximation; i.e., θ̂ shows
much variation around the true θ. For k = 10 the difference between Forrester et al. (2008)’s θ̂ and our θ̂
is small. Obviously, θ̂ determines EI in (15); the right-hand part of the figure displays EI as k increases;
our results are similar to Forrester et al. (2008)’s results, except for k = 3 where we have two hills instead
of one hill.

6 EXPERIMENTS WITH THREE EGO VARIANTS

We use numerical experiments to evaluate three EGO variants; namely, EGO with σ̂CK(x) as in (8) and
EGO with σ̂CK(x) replaced by either σ̂BK(x) or σ̂CS(x). We measure the performance of these variants
through the number of simulated input combinations needed to estimate the true optimal input combination.

In the preceding sections we observed σ̂2CK < σ̂2BK ≈ σ̂2CS. However, EGO searches for the point with
the maximum predictor variance, if for simplicity we temporarily assume that the predicted values for the
candidate points are the same. If (for example) σ̂2CK(x) = c(x)σ̂2CS(x) with c(x) = c > 1, then the same
combination (say) xopt maximizes both σ̂2CK(x) and σ̂2CS(x). In general, however, σ̂2CK(x) in (15) may or
may not lead to a new point that differs from the new point selected through EGO with σ̂CS(x) or σ̂BK(x).
Our experiments show that the three EGO variants may indeed select different points.

We detail one example—namely, (16), which implies d = 1—and we summarize three more examples
with d is 2, 3, or 6. Because σ̂2BK(x) and σ̂2CS(x) imply sampling, we also obtain macroreplications, which
use different non-overlapping PRN streams while fixing all other experimental factors (e.g., B). Altogether,
we obtain 20 macroreplications; obviously, we do not need macroreplications for EGO with σ̂2CK(x).

So we must select a value for B. Chilès and Delfiner 1999, p. 453 point out that selecting a specific
value B of CS observations depends on the problem. In the general context of bootstrapping, Efron and
Tibshirani 1993, p. 52 write: “B = 25 is usually informative; B = 50 is often enough to give a good
estimate of the standard error ... very seldom B = 200 is needed”. We select B = 100 (we could have
started with a “smaller” B, and next add more bootstrap observations and observe how σ̂BK(x) or σ̂CS(x)
converges).

We verify our computer code, comparing our results for EGO with σ̂CK(x) and σ̂BK(x) with Kleijnen
et al. (2012). We apply Den Hertog et al. (2006)’s third algorithm, adding new points one-at-a-time
(erroneously Kleijnen et al. (2012) state that the second algorithm was applied); we select this algorithm
because we use EGO with a fixed set of candidate points x0;t with t = 1, ..., k0 when searching for x̂opt
in Step 3 of EGO. So we may ignore the correlation between the outputs of two new points x0;t and x0;t′

(t, t′ = 1, ..., k0). This verification gives acceptable results.
In the example with d = 1, we select k0 = 98; namely, 100 equi-spaced points, excluding the two

extreme points, 0 and 1. We compare EGO with σ̂CK(x), σ̂BK(x), and σ̂CS(x). The latter two give similar
(but not identical) estimates of θ and EI, for a given k. Of course, these estimates change as k increases,
and vary among macroreplications. Altogether, these estimates are similar to the ones for σ̂CK(x) in Figure
4. To save space we do not detail these results, which are only intermediate; i.e., we now proceed to the
final results.

We select as stopping criterion EI < 10−20, so we do not stop “early”; i.e., we can observe possible
convergence, as Figure 5 illustrates. Like Huang et al. (2006) we display fmin(k) = min1≤i≤k w(xi),
which denotes the estimated optimal simulation output after k simulated input combinations; horizontal
lines mean that the most recent simulated point x̂opt(k) does not give a lower output than a preceding point.
This figure shows fmin(k) for BK and CS relative to CK. More specifically, the black step function with
circles represents fmin(k) for CK. The colored step functions represent fmin(k) for BK (left-hand panel)
or CS (right-hand panel). Actually, a colored step function may represent more than one macroreplication;
e.g., for Forrester et al. (2008)’s function we obtain 20 macroreplications, but in the two panels we cannot
distinguish 20 colored step functions. All three EGO variants give the same estimated optimal I/O for
k =11; namely, x̂opt = 0.76 and ŵopt = w(x̂opt) = -6.017 (the true values for continuous x were listed
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below (16): xopt = 0.7572 and wopt = −6.02074). For expensive simulations with small sample sizes,
this asymptotic solution is not relevant; the detailed data behind the figure reveal that CK performs better
than both BK and CS in one macroreplication when k = 4, three mecroreplications when k = 9, and two
macroreplications when k = 10.
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(a) EGO with σ̂BK(x)
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(b) EGO with σ̂CS(x)

Figure 5: Estimated optimal output after k simulated input combinations

Finally, we perform additional experiments with three more popular test functions; namely, the six-
humped camel-back with d = 2, and the Hartman-3 and Hartman-6 functions with d = 3 and d = 6. We
shall report details in a next paper. Based on these experiments, we conclude that EGO with CK seems
quite robust; i.e., EGO with CS or BK only tends (but does not guarantee) to perform better in expensive
simulation with small samples.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper we studied the problem that CK gives estimates of the variance of its predictor for a new point by
simply plugging-in the estimated GP parameters ψ̂ so this variance is biased. As a new solution we propose
CS, which improves BK; i.e., CS is computationally and conceptually simpler. We find experimentally that
CS gives predicted variances that do not differ significantly from BK, but that tend to exceed the classic
estimate. We use CS in EGO’s EI criterion, but CK seems quite robust.

In a next paper, we shall give details on examples with d > 1, and CIs for the Kriging predictors that are
either parametric using the estimated variances of the Kriging predictors (σ̂2CK, σ̂2BK, σ̂2CS) or distribution-free
using CS with the percentile method in Efron and Tibshirani 1993, p. 52. In future research, we shall
also adapt EGO for random simulation with replications, using distribution-free bootstrapping. We may
also apply mathematical methods that update ψ̂ when adding one new point, such that computations do
not start from “scratch”; see Emery (2009) and Frazier et al. (2009).
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Forrester, A., A. Sóbester, and A. Keane. 2008. Engineering Design via Surrogate Modelling: A Practical

Guide. 1 ed. Wiley.
Frazier, P., W. Powell, and S. Dayanik. 2009. “The Knowledge-Gradient Policy for Correlated Normal

Beliefs”. INFORMS Journal on Computing 21 (4): 599–613.
Huang, D., T. T. Allen, W. I. Notz, and N. Zeng. 2006. “Global Optimization of Stochastic Black-Box

Systems via Sequential Kriging Meta-Models”. Journal of Global Optimization 34:441–466.
Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black-Box

Functions”. Journal of Global Optimization 13:455–492.
Journel, A., and C. J. Huijbregts. 2003. Mining Geostatistics. The Blackburn Press.
Kleijnen, J. P., W. Van Beers, and I. Van Nieuwenhuyse. 2012. “Expected improvement in efficient global

optimization through bootstrapped Kriging”. Journal of Global Optimization 54:59–73.
Kleijnen, J. P. C. 2008. Design and Analysis of Simulation Experiments. Springer-Verlag.
Loeppky, J. L., J. Sacks, and W. J. Welch. 2009. “Choosing the Sample Size of a Computer Experiment:

A Practical Guide”. Technometrics 51:366–376.
Lophaven, S. N., H. B. Nielsen, and J. Sondergaard. 2002. DACE: a MATLAB Kriging toolbox, version

2.0. Lyngby, Denmark: IMM Technical University of Denmark.
Wackernagel, H. 2003. Multivariate Geostatistics: An Introduction with Applications. New York: Springer-

Verlag.

AUTHOR BIOGRAPHIES

JACK P.C. KLEIJNEN is Professor of “Simulation and Information Systems” at Tilburg University,
where he is a member of both the Department of Information Management and the Operations Re-
search Group of the Center for Economic Research (CentER) in the Tilburg School of Economics and
Management (TiSEM). His research concerns the statistical design and analysis of experiments with sim-
ulation models, in many scientific disciplines (e.g., management, economics, and engineering). He was
a consultant for several organizations in the USA and Europe. He serves on many international edi-
torial boards and scientific committees. He spent several years in the USA, at universities and private
companies. He received a number of national and international awards; e.g., in 2008 he received a knight-
hood and in 2005 an LPAA. His e-mail address is kleijnen@tilburguniversity.edu and his web page is
http://www.tilburguniversity.edu/webwijs/show/?uid=kleijnen.

EHSAN MEHDAD is a Ph.D. student at Tilburg University. His research interests are in discrete-event
simulation, metamodels (Kriging) and simulation optimization. His email address is emehdad@gmail.com.

979


