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ABSTRACT

We present a simulation optimization algorithm called probabilistic branch and bound with confidence
intervals (PBnB with CI), which is designed to approximate a level set of solutions for a user-defined
quantile. PBnB with CI is developed for both deterministic and noisy problems with mixed continuous
and discrete variables. The quality of the results is statistically analyzed with order statistic techniques
and confidence intervals are derived. Also, the number of samples and replications are designed to achieve
a certain quality of solutions. When the algorithm terminates, it provides an estimation of the desired
quantile with confidence intervals, and an approximation level set, including a statistically guaranteed set
in the true desirable level set, a statistically pruned set, and a set which is not statistically specified. We
also present numerical experiments with benchmark functions to visualize the algorithm and its capability.

1 INTRODUCTION

There are three common problems or characteristics encountered in optimizing extremely complex problems:
lack of structure; presence of large uncertainties; and enormously large search spaces (Ho, Cassandras, Chen,
and Dai 2000). These characteristics also result in difficult or costly performance evaluation. Stochastic
global optimization becomes a powerful approach for these complex problems with estimations of the
performance with realizations from black-box simulations or direct observations. Fu (2001) discussed
the role of stochastic global optimization in solving these complex systems and problems with system
noise. Many global optimization search algorithms are introduced such as gradient-based search algorithms,
response surface methodology and random search algorithms. Four key issues are pointed out: stochastic
comparisons, family of solutions versus a single point, continuous versus discrete, and convergence and
statistical validity (Fu 2001). In ordinal optimization, a family of solutions is considered important, which
is also referred to as goal softening (Ho, Cassandras, Chen, and Dai 2000; Ho, Zhao, and Jia 2007). In our
algorithm, we also aim to provide a family of solutions that achieve a desirable level set. We also provide
a statistically validated quality measure of the results.

Hu, Fu, and Marcus (2007) classified simulation optimization methodologies into two categories.
Instance-based algorithms sample new solutions directly from previous solutions, whereas, model-based
algorithms sample new solutions based on a probabilistic model, while its parameter is updated iteratively.
In the instance-based category, instead of moving from one solution to its neighborhood, algorithms with
a partitioning approach systematically partition the solution space in order to narrow down the candidate
solutions with a comprehensive understanding of the solution space. The nested partition (NP) family
(Shi and Ólafsson 2000, Ólafsson 2004) iteratively partitions the solution space and identifies the most
promising subregion. All non-promising subregions are collected in a super region so that the promising
subregion may backtrack to its super region if a better solution appears out of the promising subregion.
Also, NP has been adapted to mixed-integer/continuous problems (Shi and Ólafsson 2009). With a slightly
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different partitioning framework, the widely used algorithm, branch and bound, is introduced into stochastic
optimization problems, called stochastic branch and bound (SB&B) (Norkin, Pflug, and Ruszczynski 1998).
Xu and Nelson (2013) proposed an algorithm, called empirical stochastic branch-and bound (ESB&B),
for discrete decision variable optimization through simulation, rooted with NP and SB&B’s concepts.
ESB&B focuses on finding a better solution within restricted computational resources. ESB&B uses the
best observed solution to find the promising subregion, which is further partitioned in next iteration. Also,
ESB&B calculates an upper confidence bound for each non-promising subregion to allocate further samples
in these subregions. Xu and Nelson (2013) provide a statistical convergence of finding the best solution and
numerically demonstrate the computational savings on test problems. These partition-based algorithms are
mostly focused on finding the best solution, but our proposed algorithm aims to find a family of solutions.

The presented algorithm is an extension of the algorithm introduced in the Winter Simulation Conference
2011, probabilistic branch and bound (PBnB) (Zabinsky, Wang, Prasetio, Ghate, and Yen 2011). PBnB
uses order statistics to determine the quality of each subregion for pruning and branching decisions.
The algorithm dynamically determines the required number of samples and replications in each current
subregions. Unlike other partition-based algorithms, PBnB stops not only further partitioning but also
further sampling to increase the efficiency while maintaining a probability bound on the chance of missing
desirable region. Furthermore, PBnB concentrates on goal softening, so that the remaining subregions can
approximate the target level set of the desirable solutions. The primary difference between Zabinsky, Wang,
Prasetio, Ghate, and Yen (2011) and the extension of PBnB presented here is the interval estimation of
quantile. So we refer to the present algorithm as PBnB with confidence intervals (CI). The CIs are used
to identify the target level set directly instead of only assuring the fact of containing desired solution in
the current subregions. PBnB with CI includes two types of subregions, pruned and maintained regions,
which contain the identified undesirable and desirable solutions, respectively. Each pruning and maintaining
decision is processed only while it is statistically valid, which is shown in the performance analysis section.
Furthermore, the overall quality of the approximated level set is also established with each pruning and
maintaining move. Similar to the previous PBnB, the closeness parameter 0< δ < 1 and error rate 0<α < 1
are used for determining the target solution threshold in terms of quantile of the objective function’s range
distribution and making probability bounds for the quality of approximation (Zabinsky, Wang, Prasetio,
Ghate, and Yen 2011). In addition, a new parameter ε is introduced as the “tolerance” of the volume of
desirable solution within pruned regions and undesirable solution within maintained regions. In this paper,
we implement a two-stage procedure for the replications of each sampled point in the current region for
the probabilistic correctness of ordering and comparisons for pruning and maintaining.

In Section 2, we describe PBnB with CI in detail. In Section 3, we derive bounds on the algorithm’s
performance. Several numerical results are presented in Section 4, and conclusions in Section 5.

2 Probabilistic Branch and Bound with Confidence Intervals

The primary goal of the algorithm is to identify the exact set of best δ percent solutions, where 0 < δ < 1.
PBnB involves a statistical quantile estimation to decide a “maintaining” set as a good approximation to
the true target level set. This algorithm is designed to solve optimization problems in the following form:

(P)min
x∈S

f (x) (1)

where f (x) = EΞ[g(x,ξx)] is the expected value of a noisy function g(x,ξx), and ξx is the noise term.
Therefore, the objective function f (x) can only be estimated. In this case, the distribution of the noise
term ξx may be different for each x, but it is assumed to be normally distributed since the sample mean is
a typical way to obtain simulation output, and the Central Limit Theorem could be applied (Chen and He
2005). Let y(δ ,S) be the δ quantile for the objective function, which is defined in terms of probabilities as

P( f (X)≤ y(δ ,S)) =
v({x : f (x)≤ y(δ ,S)})

v(S)
≥ δ (2)
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P( f (X)< y(δ ,S)) =
v({x : f (x)< y(δ ,S)})

v(S)
≤ δ (3)

where X is uniformly distributed in S and v(S) denotes the n-dimensional volume of set S. We recognize
that y(δ ,S) can also be expressed as

y(δ ,S) = argmin
y∈{ f (x):x∈S}

{P( f (X)≤ y|X ∈ S)≥ δ}, for 0 < δ < 1, (4)

and we let L(δ ,S) be our desired set of best δ solutions, where

L(δ ,S) = {x ∈ S : f (x)≤ y(δ ,S)}, for 0 < δ < 1. (5)

There are several parameters that are input to the algorithm; the first is δ , 0 < δ < 1, the desired level
of quantile. The user-defined parameter α , 0 < α < 1, controls the quality of the results through probability
bounds involving 1−α . Another user-defined parameter ε identifies a volume measure to quantify the
tolerance of the set approximation to L(δ ,S). Usually, the ε value can be determined by a certain ratio of
the volume of the entire solution set, S, e.g., ε = 0.1v(S). In addition, the branching scheme in PBnB with
CI is specified by parameter B, and each current subregion is partitioned into B equally sized subregions.
A subregion is considered unbranchable, when the n-dimensional volume of a subregion is less than a
user-specified positive value. For example, in the discrete case, a subregion may be unbranchable when it
contains a singleton. For the continuous case, a subregion may be unbranchable when the longest Euclidian
distance within the subregion is less than a pre-determined positive value.

For notational purposes, Σk keeps a list of all current subregions at the beginning of iteration k, and
Σ̃k is the union of the current subregions. Also, Σ̃P

k represents the union of all pruned subregions at the
beginning of iteration k. In addition to pruned subregions, we “maintain” a subregion when it is likely
the entire subregion lies in the target level set L(δ ,S). The set Σ̃M

k denotes the union of all maintained
subregions at the beginning of iteration k. For replication size, we define Ro as a minimal number of
replications, Ro ≥ 1, for new sample points.

PBnB with CI provides two types of results. First, it provides an interval estimate, [ f̂ (Z(r)), f̂ (Z(s))],
of the δ quantile, y(δ ,S). Second, it provides the pruned region Σ̃P

k+1 and the maintained region Σ̃M
k+1, that

are used to approximate the target level set, L(δ ,S), i.e., Σ̃M
k+1 ⊂ L(δ ,S)⊂ S \ Σ̃P

k+1 with high probability
and some tolerable loss ε . In Section 3, we derive performance results to statistically quantify the quality
of the results. Next, we present the PBnB with CI algorithm.

Probabilistic Branch and Bound with Confidence Intervals (PBnB with CI)

Step 0. Initialize: Set user-defined parameters α,δ ,ε,Ro, and B. Partition S into B subregions, σ1, . . . ,σB,
and set Σ1 = {σ1, . . . ,σB}, Σ̃1 = S, Σ̃P

1 = φ , Σ̃M
1 = φ , δ1 = δ , α1 =

α

B , ε1 =
ε

B , R0 = Ro, and k = 1.
Step 1. Sample: For each subregion σi ∈ Σk, i = 1, . . . , ||Σk||, uniformly sample additional points such

that the total number of points in σi is

Ni
k =

⌈
lnαk

ln(1− εk
v(σi)

)

⌉
. (6)

Denote the sample points in σi by xi, j, for j = 1, . . . ,Ni
k and i = 1, . . . , ||Σk||. Let Nk = ∑

||Σk||
i=1 Ni

k
be the total number of sample points in the current region. For each xi, j ∈ σi , j = 1, . . . ,Ni

k and
i = 1, . . . , ||Σk||, perform Rk−1 replications of g(x,ξ r

x ), and evaluate the sample mean and sample
variance,

f̂ (xi, j) =
∑

Rk−1
r=1 g(xi, j,ξ

r
x )

Rk−1
and S2

f̂ (xi, j) =
1

(Rk−1−1)

Rk−1

∑
r=1

(g(xi, j,ξ
r
x )− f̂ (xi, j))

2. (7)
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Step 2. Order Sample Points by Function Value: Order all sampled points xi, j ∈ Σ̃k , for j = 1, . . . ,Ni
k

and i = 1, . . . , ||Σk|| by their estimated function value so that

f̂ (z(1))≤ f̂ (z(2))≤ ·· · ≤ f̂ (z(Nk)), where z(q) = argmin
xi, j∈Σ̃k\

⋃q−1
l=1 z(l)

f̂ (xi, j).

Let di = f̂ (z(i+1))− f̂ (z(i)), where i = 1, . . . ,Nk− 1. Determine d∗ = mini=1,...,Nk−1 di and S∗2 =

maxi=1,...,Nk S2
f̂
(z(i)). Calculate the updated replication number Rk = max

{
Rk−1,

(
zαk/2S∗

d∗/2

)2
}
, where

zαk/2 is the 1−αk/2 quantile of the standard normal distribution. Perform Rk−Rk−1 more replications
for each sample point. Re-estimate the performance of each sample point with Rk replications by

f̂ (xi, j) =
∑

Rk
r=1 g(xi, j,ξ

r
xi, j

)

Rk
. Within each subregion σi ∈ Σk, rank all the sample points xi, j as xi,( j)

representing the jth best point in subregion, according to the estimated function value, and also
update the entire order of all current samples with updated replications, so that

f̂ (xi,(1))≤ f̂ (xi,(2))≤ ·· · ≤ f̂ (xi,(Ni
k)
), and f̂ (z(1))≤ f̂ (z(2))≤ ·· · ≤ f̂ (z(Nk)).

Step 3. Build Interval Estimates: Determine f̂ (z(r)) and f̂ (z(s)), where r and s are selected by

maxr :
r−1

∑
i=0

(
Nk

i

)
(δk)

i(1−δk)
Nk−i ≤ αk

2
and mins :

s−1

∑
i=0

(
Nk

i

)
(δk)

i(1−δk)
Nk−i ≥ 1− αk

2
.

Step 4. Update: For each i, i = 1, . . . , ||Σk||, update the pruning indicator functions Pi and update the
maintaining indicator functions Mi,

Pi =

{
1, if f̂ (xi,(1))> f̂ (z(s))
0, otherwise

and Mi =

{
1, if f̂ (xi,(Ni

k)
)< f̂ (z(r))

0, otherwise.
(8)

Update the pruned set Σ̃P
k+1 and the maintained set Σ̃M

k+1

Σ̃
P
k+1 = Σ̃

P
k

⋃
i:Pi=1

σi and Σ̃
M
k+1 = Σ̃

M
k

⋃
i:Mi=1

σi,

and determine δk+1 by

δk+1 =
δkv(Σ̃k)−∑i:Mi=1 v(σi)

v(Σ̃k)−∑i:Pi=1 v(σi)−∑i:Mi=1 v(σi)
. (9)

Also, set αk+1 =
αk
B , εk+1 =

εk
B . If Pi = 0 and Mi = 0, and if σi is branchable, then partition σi to

σ̄1
i , . . . , σ̄

B
i and update the current set of subregions

Σk+1 = {σ̄ j
i : Pi = 0 or Mi = 0, j = 1, . . . ,B} and Σ̃k+1 =

⋃
i:Pi=0∨Mi=0

(
B⋃

j=1

σ̄
j

i

)
.

Step 5. Stopping Condition: If all subregions σi ∈ Σk are not branchable, terminate the algorithm.
Otherwise, k = k+1 and return to Step 1.

In Step 1 and Step 2, PBnB with CI samples evenly in the current subregions and orders the samples
with their estimated function values. The purpose for evenly sampling is to build quantile confidence
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intervals with order statistics. In order to rank the samples correctly under noise, a two-stage procedure is
applied that is based on a method from Bechhofer, Dunnett, and Sobel (1954), Gibbons, Olkin, and Sobel
(1977). The two-stage procedure to determine the replications are separated in Step 1 and Step 2. The
first-stage replications Rk−1 are evaluated in Step 1. The original ranking procedure assumes that there is
a common variance σ2 but we do not. Step 2 uses the first-stage replications to estimate these differences,
di for i = 1, . . . ,Nk− 1. We use the maximum sample variance to update the replication number for the
second-stage. Consequently, additional replications may be necessary. The interval estimates are built in
Step 3. The estimates f̂ (zr) and f̂ (zs) are used to estimate the quantile and the target level set.

In Step 4, the pruned and maintained sets are determined comparing best and worst function values
in each subregion with the interval estimates. The purpose of the δ update is to relocate the quantile in
the current region such that y(δk,S \ {Σ̃P

k ∪ Σ̃M
k }) = y(δ ,S), under certain assumptions stated in Theorem

1. Since the pruned and maintained regions are not further sampled, the consequence is a non-uniform
sampling over the entire sample space S. Therefore, we need to relocate the quantile δk to account for this.

PBnB with CI follows a straight-forward stopping condition as in (Zabinsky, Wang, Prasetio, Ghate,
and Yen 2011). This stopping condition assures the algorithm will terminate in a finite number of iterations.
Users may wish to terminate earlier, such as when the interval size f̂ (z(s))− f̂ (z(r)) is small enough.

3 Performance Analysis

In this section, we analyze the performance of PBnB and derive confidence intervals and probability bounds
to indicate the quality of our quantile estimation [ f̂ (Z(r)), f̂ (Z(s))], the pruned set Σ̃P and the maintained set
Σ̃M. First, we assume that the objective function is deterministic, without the influence of noise. We derive
the relocation of quantile in Theorem 1 and use it to derive a confidence interval on y(δ ,S) in Theorem
2. Second, the quality of pruned and maintained region are discussed with no noise. In Theorem 3, we
consider a single pruned subregion’s quality, and Theorem 4 derives the probability bounds for the entire
pruned region at iteration k. Similarly, a single maintained subregion’s quality is derived in Theorem 5, and
Theorem 6 derives the probability bounds for entire maintained region at iteration k. Third, the impact of
the noisy function is discussed in Theorem 8. Corollaries 9, 10, and 11 propose noisy versions of Theorems
2, 4, and 6, respectively.
Theorem 1 For any iteration k≥ 1, suppose all previous pruning is correct, that is, f (x)> y(δ ,S) for all
x ∈ Σ̃P

k , and all previous maintaining is correct, that is, f (x)≤ y(δ ,S) for all x ∈ Σ̃M
k . Then, the δk updated

according to (9) can be used to determine the original quantile y(δ ,S), that is

y(δ ,S) = y(δk, Σ̃k). (10)

Proof. We consider the iterative effect on δk as subregions are pruned, or maintained, according to (8).
We use the superscript k to denote the subregions pruned {σ k

i : Pi = 1} or maintained {σ k
i : Mi = 1} on

iteration k. By (9),

δk =
δk−1v(Σ̃k−1)−∑i:Mi=1 v(σ k−1

i )

v(Σ̃k−1)−∑i:Pi=1 v(σ k−1
i )−∑i:Mk−1

i =1 v(σ k−1
i )

=
δk−1v(Σ̃k−1)−∑i:Mi=1 v(σ k−1

i )

v(Σ̃k)

and by applying δk =
δk−1v(Σ̃k−1)−∑i:Mi=1 v(σ k−1

i )

v(Σ̃k)
repeatedly

=
δ1v(Σ̃1)−∑

k−1
l=1 ∑i:Mi=1 v(σ l

i )

v(Σ̃k)
=

δv(S)−∑
k−1
l=1 ∑i:Mi=1 v(σ l

i )

v(Σ̃k)

using the initial setting of δ1 and Σ̃1, and ∑
k−1
l=1 ∑i:Mi=1 v(σ l

i ) = v(Σ̃M
k ) since it denotes the volume of all

maintained subregions at the end of the k−1 iteration, therefore,
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=
δv(S)− v(Σ̃M

k )

v(Σ̃k)
. (11)

From (4), we can express y(δ ,S) as

y(δ ,S) = argmin
y∈{ f (x):x∈S}

{P( f (X)≤ y|X ∈ S)≥ δ}= argmin
y∈{ f (x):x∈S}

{
v({x ∈ S : f (x)≤ y})

v(S)
≥ δ

}

and subtracting v(Σ̃M
k )

v(S) from both sides and then multiplying v(S)
v(Σ̃k)

on both sides,

= argmin
y∈{ f (x):x∈S}

{
v({x ∈ S : f (x)≤ y})− v(Σ̃M

k )

v(Σ̃k)
≥

δv(S)− v(Σ̃M
k )

v(Σ̃k)

}

= argmin
y∈{ f (x):x∈S}

{
v({x ∈ S : f (x)≤ y})− v(Σ̃M

k )

v(Σ̃k)
≥ δk

}

by (11), and since f (x)> y for all x ∈ Σ̃P
k and f (x)≤ y for all x ∈ Σ̃M

k

= argmin
y∈{ f (x):x∈S}

{
v({x ∈ S\{Σ̃P

k ∪ Σ̃M
k } : f (x)≤ y})

v(Σ̃k)
≥ δk

}

= argmin
y∈{ f (x):x∈S}

{
v({x ∈ Σ̃k : f (x)≤ y})

v(Σ̃k)
≥ δk

}
= argmin

y∈{ f (x):x∈S}
{P( f (X)≤ y|X ∈ Σ̃k)≥ δk}

= argmin
y∈{ f (x):x∈Σ̃k}

{P( f (X)≤ y|X ∈ Σ̃k)≥ δk}= y(δk, Σ̃k)

since Σ̃k ⊂ S.

Since the algorithm stopped sampling in pruned and maintained subregions, the collection of all sampled
points are not uniformly distributed over S. Theorem 1 allows us to use uniformly sampled points in the
current region Σ̃k to estimate the objective function quantile over the entire set S. We use Theorem 1 in
Theorem 2 to derive a confidence interval for y(δ ,S) using results from order statistics (Conover 1999).
Theorem 2 Consider any iteration k of PBnB on (P) where there is no noise. A confidence interval on
the true objective function quantile y(δ ,S) is given by

P( f (Z(r))≤ y(δ ,S)≤ f (Z(s)))≥ 1−αk (12)

where Z(1), . . . ,Z(Nk) are Nk samples ordered with function values uniformly sampled from the current region
Σ̃k at iteration k, 0 < αk < 1, and r and s satisfy

P( f (Z(r))> y(δk, Σ̃k))≤
r−1

∑
i=0

(
Nk

i

)
(δk)

i(1−δk)
Nk−i =

αk

2
(13)

P( f (Z(s))≥ y(δk, Σ̃k))≥
s−1

∑
i=0

(
Nk

i

)
(δk)

i(1−δk)
Nk−i = 1− αk

2
. (14)

We say that we have 1−αk confidence that f (Z(r))≤ y(δ ,S)≤ f (Z(s)).
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Proof. At the beginning of any iteration k, the current set of subregions is Σk. According to PBnB,

each subregion in the current set Σ̃k is uniformly sampled for Ni
k =

⌈
lnαk

ln(1− εk
v(σi)

)

⌉
samples, i = 1, . . . , ||Σk||.

Since each v(σi) is the same, the total Nk = ∑i=1,...,||Σk||N
i
k samples are uniformly sampled from the current

region Σ̃k. With uniform sampling, we can build the quantile confidence interval, Conover (1999), that is

P( f (Z(r))≤ y(δk, Σ̃k)≤ f (Z(s)))≥ 1−αk,

where r and s satisfy (13) and (14). From Theorem 1, y(δ ,S) = y(δk, Σ̃k). Then our 1−αk confidence
interval of y(δ ,S) is

f (Z(r))≤ y(δk, Σ̃k) = y(δ ,S)≤ f (Z(s)).

The confidence interval derived in Theorem 2 provides a statistical measure of quality of the quantile
estimation. We now consider the quality of the pruned and maintained regions. Theorem 3 provides a
bound on the quality of a single pruned subregion σp. Theorem 4 extends the bound to consider all pruned
subregions from iteration 1 to iteration k in Σ̃P

k+1.
Theorem 3 Consider any iteration k of PBnB on Problem (P) where there is no noise, and suppose σp

has been pruned on the kth iteration. Also, suppose y(δ ,S)≤ f (Z(s)). Then, the volume of the incorrectly
pruned region, i.e., v(L(δ ,S)∩σp), is less than or equal to εk with probability at least 1−αk, that is

P(v(L(δ ,S)∩σp)≤ εk|y(δ ,S)≤ f (Z(s)))≥ 1−αk. (15)

Proof. The probability that the volume of the incorrectly pruned region is less than or equal to εk is

P(v(L(δ ,S)∩σp)≤ εk|y(δ ,S)≤ f (Z(s))) = P(v({x : f (x)≤ y(δ ,S),x ∈ σp})≤ εk|y(δ ,S)≤ f (Z(s))). (16)

Using (3), and letting δp =
εk

v(σp)
, and since X is uniformly sampled in σp, we have

P( f (X)< y(δp,σp)) =
v({x : f (x)< y(δp,σp),x ∈ σp})

v(σp)
≤ δp =

εk

v(σp)
,

then multiplying v(σp) on both sides, we have

v({x : f (x)< y(δp,σp) ,x ∈ σp})≤ εk. (17)

Applying (17) to (16), and manipulating the probabilities, we get

P(v({x : f (x)≤ y(δ ,S),x ∈ σp})≤ εk|y(δ ,S)≤ f (Z(s)))

≥ P
(

v({x : f (x)≤ y(δ ,S),x ∈ σp})≤ v({x : f (x)≤ y(δp,σp) ,x ∈ σp})|y(δ ,S)≤ f (Z(s))
)

−P
(

v({x : f (x)≤ y(δ ,S),x ∈ σp}) = v({x : f (x)≤ y(δp,σp) ,x ∈ σp})|y(δ ,S)≤ f (Z(s))
)
.

Associating the volume of a level set with its quantile value, we know that v({x : f (x) ≤ y(δ ,S)}) is
associated with y(δ ,S), and v({x : f (x)≤ y(δp,σp),x ∈ σp}) is associated with y(δp,σp). Hence,

= P
(

y(δ ,S)≤ y(δp,σp)|y(δ ,S)≤ f (Z(s))
)
−P

(
y(δ ,S) = y(δp,σp)|y(δ ,S)≤ f (Z(s))

)
= P

(
y(δ ,S)< y(δp,σp)|y(δ ,S)≤ f (Z(s))

)
,

and by the condition of f (Z(s)) and the pruned assumption, we have y(δ ,S)≤ f (Z(s))< f (X(p),(1)), therefore,
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≥ P
(

f (X(p),(1))≤ y(δp,σp)
∣∣y(δ ,S)≤ f (Z(s))

)
= 1−P

(
f (X(p),(1))> y(δp,σp)

∣∣y(δ ,S)≤ f (Z(s))
)
,

and since we uniformly sample N p
k independent samples in σp,

≥ 1− (1−δp)
N p

k .

Since we desire the probability to be greater than 1−αk, we let

1− (1−δp)
N p

k ≥ 1−αk⇒ N p
k ≥

lnαk

ln(1−δp)
.

Since we let δp =
εk

v(σp)
, and we choose N p

k =
⌈

lnαk
ln(1−δp)

⌉
=

⌈
lnαk

ln(1− εk
v(σi)

)

⌉
, we have that (15) holds.

Theorem 4 Consider any iteration k of PBnB on (P) where there is no noise. The volume of the
incorrectly pruned region is less than or equal to ε with probability at least (1−α)2

P(v(L(δ ,S)∩ Σ̃
P
k+1)≤ ε)≥ (1−α)2. (18)

The proof is fairly straightforward, using Theorem 3 and Bernouli’s inequality.
Similarly, Theorem 5 derives a bound on the quality of a single maintained subregion σm using the

parameter αk and tolerance εk at iteration k. Theorem 6 extends the bound to consider all maintained
subregions from iteration 1 to iteration k in Σ̃M

k+1. The proofs are analogous to those of Theorems 3 and 4.
Theorem 5 Consider any iteration k of PBnB on Problem (P) where there is no noise, and suppose
σm has been maintained. Also, suppose y(δ ,S) ≥ f (Z(r)). Then, the volume of the correctly maintained
region, i.e., v(L(δ ,S)∩σm), is greater than or equal to v(σm)− εk with probability at least 1−αk,

P(v(L(δ ,S)∩σm)≥ v(σm)− εk|y(δ ,S)≥ f (Z(r)))≥ 1−αk. (19)

Theorem 6 Consider any iteration k of PBnB on (P) where there is no noise. The volume of the correctly
maintained region is at least v(Σ̃M

k+1)− ε with probability at least (1−α)2,

P(v(L(δ ,S)∩ Σ̃
M
k+1)≥ v(Σ̃M

k+1)− ε)≥ (1−α)2. (20)

The previous analyses (Theorems 1-6) assume the objective function is not noisy, so a precise evaluation
f (x) is sufficient. In Theorem 7, we allow the objective function to have noise and provide rigorous probability
bounds for correctly ordering the estimated function values f̂ (z(i)) on the kth iteration. Theorem 8 combines
all iterations from 1 to k and gives a probability bound of 1−α on the correct ordering.

We use the analysis of a two-stage replication approach, by Bechhofer, Dunnett, and Sobel (1954), in
Theorem 7, which has following assumption:

(A1) The noisy function is normally distributed with an unknown common variance σ2, and at each
solution zi ∈ S, the variance can be expressed as aiσ

2 where ai is a known constant for each i.
In PBnB with CI, the constants ai are not known, hence, we implement a modified two-stage replication

approach (described after Theorem 7).
Theorem 7 (cf. Bechhofer, Dunnett, and Sobel (1954)) With Assumption (A1), the probability of correct
ordering all samples in the current region at iteration k is

P( f̂ (Zk
(1))≤ f̂ (Zk

(2))≤ ·· · ≤ f̂ (Zk
(Nl)

)| f (Zk
(1))≤ f (Zk

(2))≤ ·· · ≤ f (Zk
(Nk)

))≥ 1−αk, (21)

given that we have aiR0 as the first stage replication number for each sample point to estimate the common
variance by S2

0 =
1

Nk
∑

Nk
i=1

1
ai

S2
f̂
(z(i)) and set up the minimum difference desired to be separated as d∗, and

sampling Rk = max{aiR0,2(
hS∗0

d∗/2)
2} in the second stage of the procedure, where h is a value in the H c.d.f.

of a multivariate student t’s distribution with Nk−1 dimensions such that H(h) = 1−αk.
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For any iteration k, we take a conservative approach to achieve the 1−αk probability of correct
ordering by separating each estimated performance mean f̂ (z(i)) with its neighbor by the smallest difference
d∗ = mini=1,...,Nk−1 di of any two neighbors. We also use the largest variance S∗2 = maxi=1,...,Nk S2

f̂
(z(i)) so

that all ordering is conservative. The implemented two-stage procedure for any iteration k is
1. Implement Rk−1 replications to estimate the function value f̂ (x) and sample variance S2

f̂
(x) and calculate

the differences di between ordered samples f̂ (z(i)) and f̂ (z(i+1)) for i = 1, . . . ,Nk−1.

2. Implement additional replications Rk−Rk−1 where Rk = max{Rk−1,(
zαk/2S∗

d∗/2 )2}.
For the implemented two-stage procedure, we drop the assumption of a common variance with aiσ

2

and only assume the noise is normally distributed. In Step 2 of the implemented two-stage procedure we
use zαk/2, the 1−αk/2 quantile of the standard normal distribution, together with d∗ and S∗ so that the
correct ordering of two function values separated by d∗ with S∗2 variance is achieved with probability at
least 1−αk. Since all other orderings have distance greater than d∗ and variance smaller than S∗2, they
also achieve a probability of being ordered correctly of least 1−αk. The following Theorem 8 considers
the assumptions and rigorous situation in Theorem 7 to derive a rigorous bound for iteration 1 to k.
Theorem 8 With Assumption (A1), the probability of correct ordering from iteration 1 to iteration k is

P

(
k⋂

l=1

(
f̂ (Zl

(1))≤ f̂ (Zl
(2))≤ ·· · ≤ f̂ (Zl

(Nl)
)| f (Zl

(1))≤ f (Zl
(2))≤ ·· · ≤ f (Zl

(Nl)
)
))
≥ 1−α, (22)

where Zl
( j) is the jth ordered sampled point at iteration l.

Proof. The ordering on each iteration is independent, so we can apply Theorem 7 to yield

P

(
k⋂

l=1

(
f̂ (Zl

(1))≤ f̂ (Zl
(2))≤ ·· · ≤ f̂ (Zl

(Nl)
)| f (Zl

(1))≤ f (Zl
(2))≤ ·· · ≤ f (Zl

(Nl)
)
))
≥

k

∏
l=1

(
1− α

Bl

)
, (23)

and then apply Bernoulli’s inequality repeatedly to yield the final result.

With the effect of the noisy function, we can now derive noisy versions of Theorem 2, Theorem 4, and
Theorem 6 in Corollary 9, Corollary 10, and Corollary 11, to quantify the quality of solution with noise.
Corollary 9 Consider any iteration k of PBnB on (P) where (A1) is assumed. The probability of all
confidence intervals correctly capturing the objective function quantile y(δ ,S) from iteration 1 to k is

P
(
∩k

l=1

(
f̂ (Zl

(r))≤ y(δ ,S)≤ f̂ (Zl
(s))
))
≥ (1−α)2. (24)

Similarly, Theorems 4 and 6 for pruned and maintained regions’ quality holds for the noisy case given
the ordering of all samples in the current region is correct. As in Corollary 9, we derive the quality of pruned
and maintained regions with noise using conditional and marginal probabilities and invoking Theorem 8.
Corollary 10 Consider any iteration k of PBnB on (P) where (A1) is assumed. The volume of the
incorrectly pruned region is bounded by

P(v(L(δ ,S)∩ Σ̃
P
k+1)≤ ε)≥ (1−α)3. (25)

Corollary 11 Consider any iteration k of PBnB on (P) where (A1) is assumed. The volume of the
correctly maintained region is bounded by

P(v(L(δ ,S)∩ Σ̃
M
k+1)≥ v(Σ̃M

k+1)− ε)≥ (1−α)3. (26)

Combining Corollaries 9, 10, and 11, we can bound the level set L(δ ,S) by Σ̃M
k+1 ⊂ L(δ ,S)⊂ S\ Σ̃P

k+1

with (1−α)3 probability that at most ε volume is incorrectly pruned and maintained in Σ̃P
k+1 and Σ̃M

k+1.
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4 Numerical Experiments

In this section, we illustrate the capability and performance of PBnB with CI on two test problems. We
consider the problem (P) defined in (1) with f (x) = EΞ[g(x)+ ξx] where g(x) is a test function and ξx
is the additive noise depending on x. The feasible region S for continuous problems is defined as the
hyper-rectangle with box constraints, li ≤ xi ≤ ui, where xi is the ith component in feasible region S. We
choose two test functions, the Rosenbrock function and Sinusoidal function, which are widely used in the
global optimization literature (Ali, Khompatraporn, and Zabinsky 2005). We present the results in two
dimensions to visualize the partitioning and level set approximation easily. We set the parameters as follows:
δ = 0.1, α = 0.05, and ε is 2.5 percent of the volume of S. Also, B = 2 and the unbranchable subregion is
defined as the longest Euclidian distance in the subregion less than one percent of the longest Euclidean
distance of S. For both test functions, we tested with no noise, ξx = 0, and with noise, ξx = N(0,1).

As in Theorem 2 and Corollary 9, PBnB with CI provides an interval estimation of the quantile,
y(δ = 0.1,S), every iteration. Table 1 shows the numerical estimation of the 2-dimensional Rosenbrock
and Sinusoidal function with no noise. The sampling number based on PBnB with CI is able to reduce
the length of the confidence interval iteratively. The reduction can be observed by the iterative confidence
interval from the two test functions in Table 1.

The level set approximation results of PBnB with CI are shown in Figure 1. From left to right, the
panels show the non-noisy Rosenbrock function, the noisy Rosenbrock function, the non-noisy Sinusoidal
function, and the noisy Sinusoidal function. Each rectangle represents a subregion in the algorithm. The
number in a subregion represents the iteration that the subregion is pruned or maintained. The white
rectangles are pruned, the light gray (green in color) rectangles are maintained, and the dark gray (blue
in color) rectangles are the last current subregions. In Figure 1, we can see the best 10 percent level set,
L(δ = 0.1,S), of the Rosenbrock function is approximated almost perfectly for both non-noisy and noisy
functions. We can see the best 10 percent level set, L(δ = 0.1,S), of the non-noisy Sinusoidal function
is approximated almost perfectly but the noisy version is not. The primary reason is that N(0,1) noise is
relatively large for the function value of the Sinusoidal function, where the difference between the optimal
solution and the 10 percent quantile is about 1.25. In contrast, the difference between the optimal solution
and the 10 percent quantile for the Rosenbrock function is about 9.45.

The number of sampled points for the Rosenbrock function are 287,968 and 289,754 for the non-noisy
and noisy versions. Also, the number of sampled points for the non-noisy and noisy Sinusoidal function
are 252,563 and 855,877. The test functions include real-valued variables, but the algorithm is still not
very efficient on the number of points sampled. It is a result of a conservative approach on designing the
sample size to achieve volume loss at most ε of incorrect pruning and maintaining with (B−1) subregions
for each iteration. Also, in order to comprehensively represent a subregion by order statistics, the number
of samples is determined regardless of the size of the subregion. The benefit of using order statistics is that
we need very few assumptions on the objective function, and the order statistics can be efficient for a very
large feasible region. A disadvantage of order statistics is that a small feasible region may be practically
enumerated. Our future research is to improve the efficiency of the algorithm by implementing an adaptive
design of the sample size.

5 Conclusion

We developed the PBnB with CI algorithm to identify a family of solutions to stochastic global optimization
problems. The algorithm is designed to solve problems with mixed continuous and discrete variables. The
basic framework of PBnB with CI is to iteratively partition the domain to subregions, and prune or maintain
the subregion using an interval estimation of quantile. The algorithm dynamically allocates computational
resources within each iteration. The algorithm provides an 1−α confidence interval of the desired quantile
[ f̂ (z((r)), f̂ (z((s))], and a pruned set Σ̃P and a maintained set Σ̃M with probability bounds and tolerable loss.
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Table 1: Length of confidence interval on y(δ ,S) for non-noisy Rosenbrock and Sinusoidal functions.

Rosenbrock Sinusoidal
Iteration CI lower bound CI upper bound Half-width CI lower bound CI upper bound Half-width

1 8.3832 32.3042 11.9605 -2.6236 -2.0226 0.3005
2 8.3465 25.4378 8.5457 -2.3382 -2.0864 0.1259
3 6.611 17.4311 5.4101 -2.369 -2.1011 0.1340
4 7.9182 15.0424 3.5621 -2.36 -2.1492 0.1054
5 8.4537 12.7701 2.1582 -2.3034 -2.1773 0.0631
6 8.5411 11.7635 1.6112 -2.3183 -2.2125 0.0529
7 9.1013 11.2579 1.0783 -2.3036 -2.2189 0.0423
8 9.2688 10.8394 0.7853 -2.2884 -2.2349 0.0268
9 9.2972 10.2729 0.4879 -2.2814 -2.2454 0.0180

10 9.4958 10.0955 0.2999 -2.2722 -2.2483 0.0120
11 9.6386 10.0187 0.1901 -2.2651 -2.2499 0.0076
12 9.7014 9.9399 0.1193 -2.2636 -2.2527 0.0054
13 9.7544 9.8896 0.0676 -2.2625 -2.255 0.0038
14 9.7806 9.8632 0.0413 -2.2624 -2.2571 0.0027

Figure 1: Rosenbrock function (ξx = 0, ξx = N(0,1)) and Sinusoidal function (ξx = 0 and ξx = N(0,1)).

The analysis in Theorems 2, 4, and 6 assumes f (x) is no noise, and then the influence of noise on the
probability bounds are provided in Corollaries 9, 10, and 11.

There is potential to further improve the algorithm considering some issues highlighted in the discussion
of the numerical results. First, the sample size and replication number could be reduced since the current
design is conservative. Since we prune and maintain subregions with a tolerance of losing part of the good
region and bad region, this could be taken into consideration in the accuracy of quantile relocation. In
addition, the partitioning scheme (e.g., parameter B) could be dynamically adjusted.
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