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ABSTRACT

Random search is a core component of many well known simulation optimization algorithms such as nested
partition and COMPASS. Given a fixed computation budget, a critical decision is how many solutions
to sample from a search area, which directly determines the number of simulation replications for each
solution assuming that each solution receives the same number of simulation replications. This is another
instance of the exploration vs. exploitation tradeoff in simulation optimization. Modeling the performance
profile of all solutions in the search area as a normal distribution, we propose a method to (approximately)
optimally determine the size of the sampling set and the number of simulation replications and use numerical
experiments to demonstrate its performance.

1 INTRODUCTION

Many existing stochastic simulation optimization algorithms belong to the class of convergent random
search algorithms. Examples of globally convergent random search (GCRS) algorithms include the Model
Reference Adaptive Search (MRAS) Algorithm of Hu, Fu, and Marcus (2007), and in particular its stochastic
simulation counterpart SMRAS (Hu, Fu, and Marcus 2008), and the Nested Partition (NP) algorithms of
Shi and Ólafsson (2000) and Pichitlamken and Nelson (2003). Examples of locally convergent random
search (LCRS) algorithms include the COMPASS algorithm of Hong and Nelson (2006) and the AHA
algorithm of Xu, Hong, and Nelson (2013).

A common step of GCRS and LCRS algorithms is to randomly sample a set of feasible solutions
from a search area to be estimated via simulation. Most algorithms assign a fixed computing budget for
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each iteration, typically measured in the number of total simulation replications assuming that simulating
any feasible solution takes about the same amount of time. While procedures such as Optimal Computing
Budget Allocation (OCBA) (Chen et al. 2000) may be used to adaptively allocate simulation replications to
sampled solutions as did in the Industrial Strength COMPASS algorithm of Xu, Hong, and Nelson (2010),
it is still common to assign the computing budget equally among sampled solutions. In this setting, a
very important question is how many solutions should be sampled from the search area. Given a fixed
simulation budget, this also determines the number of simulation replications each solution receives.

Obviously, sampling more solutions allow the algorithm to perform more exploration of the search
area and increases the chance that a better solution will be sampled. However, the noise in simulation
output means that the smaller the number of simulation replications allocated to each sampled solution,
the smaller the probability that the best solution sampled is actually identified as the best. Therefore,
given a fixed computation budget, there is a tradeoff between the size of the sampling set (exploration)
and the number of simulation replications (exploitation) allocated to estimate the quality of each sampled
solution. Achieving the right balance between exploration and exploitation in this regard requires optimally
determining the random search sample size. Past research on GCRS and LCRS algorithms largely focused
on the convergence property of the algorithms and did not consider how to determine the optimal sampling
set size. This problem remains an open research question in simulation optimization research.

The main challenge in determining the optimal sampling set size is to identify an appropriate objective
function. When the set of solutions to be estimated via simulation is given, Ranking & Selection algorithms
such as the NSGS algorithm of Nelson et al. (2001) focus on determining the number of simulation
replications allocated to each solution to guarantee the probability of correct selection (PCS), i.e., correctly
selecting the actual best solution among the given set of solutions. OCBA also uses PCS as the objective
function with a goal to optimally allocate simulation replications to maximize PCS.

In simulation optimization, the goal of random search is to maximize the quality of the solution selected
by the algorithm as the best solution. The size of the sampling set has direct effect on the quality of the
best solution in this set and thus PCS alone is not an appropriate objective function. Lee and Chew (2005)
proposed to minimize the expected value of the sample best solution in a random search iteration for a
minimization problem. However, the objective function was not analytically tractable and they used Monte
Carlo simulation to demonstrate the effect of different sampling set sizes on the quality of the sample best
solution. But they did not give an analytical method to determine the optimal sampling set size.

In this paper, for a given simulation budget, we present an analytical approach to (approximately)
optimally determine the size of the sampling set and thus the number of simulation replications allocated to
each solution assuming that each solution receives the same number of simulation replications. As to the best
of our knowledge, this represents a first effort in simulation optimization research to optimally manage this
inherent exploration and exploitation tradeoff in random search based simulation optimization algorithms.
In the rest of the paper, we describe the problem in Section 2 and then present the optimization model
and derive an (approximately) optimal solution to the optimization model in Section 3. We demonstrate
the performance of our result via numerical experiments in Section 4 and present concluding remarks and
future research directions in Section 5.

2 PROBLEM DESCRIPTION

We consider using random search on a general simulation optimization problem. Without loss of generality,
we assume the objective is to minimize the expected value of a performance measure estimated via simulation.
We use an equal simulation allocation rule, assigning the same number of simulation replications to each
solution in the sampling set to be estimated via simulation. The computation budget is given a priori and
fixed, measured in the total number of simulation replications and denoted as T . Such a setting is common
in many GCRS and LCRS simulation optimization algorithms (Shi and Ólafsson 2000, Hong and Nelson
2006, Xu, Hong, and Nelson 2013). The size of the sampling set is denoted by k and the number of
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replications for each solution is then given by n = T/k. For simplicity, we will treat k and n as continuous
numbers in our analysis.

We model the sample mean of n IID simulation observations of a randomly sampled solution as

J̃ = J+ω. (1)

In Equation (1), J denotes the true performance of a randomly sampled solution. We assume that the
simulation noise ω has a common distribution across all sampled solutions. The sample average of the
solution is J̃. We first randomly sample k solutions from the search space. Once all k sampled solutions
have been simulated n times, we choose the solution with the smallest sample mean as the best solution
found. However, due to the simulation noise, we might not be able to correctly select the best solution
from the k sampled solutions as the best solution found. Therefore, a reasonable objective is to minimize
the expected value of the true performance of the observed best solution with the best computation budget
allocation decision (k,n). In what follows we introduce other notations that we will use throughout the
paper:

J̃[1̃]: the observed performance of the observed best solution.
J[1̃]: the true performance of the observed best solution.
z[1]: the first order statistic of a standard normal random variable.
φ(·): the probability density function of the standard normal distribution.
Φ(·): the cumulative distribution function of the standard normal distribution.

Then we have the following problem:

min
k,n

E[J[1̃]]

s.t. kn = T. (2)

This problem is difficult to solve without any additional information on the distribution of J and ω . We
assume that ω is normally distributed, which is a common assumption in literature. To facilitate analysis,
we assume that J is also normally distributed. Such an assumption is reasonable when the performance of
all solutions in the search area follows a S-curve, which is quite common in a large number of engineering
and management problems (Ho, Zhao, and Jia 2007). We make these assumptions explicit below:

1. The true performance J follows a normal distribution with a mean of 0 and standard deviation σJ .
2. The noise ω follows a normal distribution with a mean of 0 and standard deviation σω0/

√
n.

3. J and ω are independent.

In the rest of the paper, unless explicitly written, we will not emphasize the dependence of σω on n
for notational simplicity.

3 MODEL DERIVATION AND ANALYTICAL SOLUTIONS

Based on the three assumptions in Section 2, the sample average of n IID simulations J̃ also follows a
normal distribution:

J̃ = J+ω ∼ N(0,σ2
J +σ

2
ω) = N(0,σ 2

J +σ
2
ω0
/n),

and thus the conditional mean of the true performance given the sample mean value J̃ = v is given by
(Tong 1989)

E
[
J|J̃ = v

]
=

σ 2
J

σ2
J +σ2

ω

v.
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Assume D is a set of alternative designs, notice that

f (Ji = u|J̃i = v, J̃ j > v, j ∈ D\ i) =
f (J̃i = v, J̃ j > v, j ∈ D\ i|Ji = u) f (Ji = u)

f (J̃i = v, J̃ j > v, j ∈ D\ i)

=
f (J̃i = v|Ji = u) f (Ji = u) f (J̃ j > v, j ∈ D\ i)

f (J̃i = v) f (J̃ j > v, j ∈ D\ i)

= f (Ji = u|J̃i = v),

which means

E
[
J[1̃]|J̃[1̃] = v

]
=

∫
u f (Ji = u|J̃i = v, J̃ j > v, j ∈ D\ i)du

=
∫

u f (Ji = u|J̃i = v)du

= E
[
J|J̃ = v

]
.

Therefore, the expected true performance of the observed best can be expressed as follows:

E[J[1̃]] = EJ̃[1̃]

{
E
[
J[1̃]|J̃[1̃] = v

]}
=

σ 2
J

σ2
J +σ2

ω

E[J̃[1̃]].

Because E[J̃[1̃]] =
√

σ2
J +σ2

ωE[z[1]], the optimization formulation given in Equation (2) has the following
form when both the true performance and simulation noise are normally distributed (Lee and Chew 2005):

min
k,n

E[J[1̃]] =
σJ√

1+
σ2

ω0
nσ2

J

E[z[1]]

s.t. kn = T. (3)

Unfortunately, there does not exist a closed form for E[z[1]]. Therefore, the problem stated in Equation
(3) cannot be solved analytically. Lee and Chew (2005) used Monte Carlo simulation to estimate E[z[1]]
and investigate the effect of using different sampling set sizes k on the true performance of the observed
best solution. However, such a simulation-based procedure is computationally intensive and is not easy to
implement in a simulation optimization algorithm.

Our goal is to obtain a closed-form (approximately) optimal solution that is easy to implement in
a simulation optimization algorithm and yields insight into the exploration vs. exploitation tradeoff. To
this end, we find a very accurate approximation for E[z[1]] and use the approximation formula to obtain a
closed-form optimal solution.

Using the probability density function of z[1] (David and Nagaraja 2003), we have

E[z[1]] =
∫

∞

−∞

xk[1−Φ(x)]k−1
φ(x)dx. (4)

Let y = Φ(x), then Equation (4) can be rewritten as

E[z[1]] = k
∫ 1

0
Φ
−1(y)(1− y)k−1dy. (5)

Let G(k)=
∫ 1

0 Φ−1(y)(1−y)k−1dy. We plot G(k) for 3≤ k≤ 1000, which covers all commonly used sampling
set sizes in many GCRS and LCRS algorithms. We used the Matlab cftool and found that a power function
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(−a(k+b)−c, a,c∈R+,b∈R) provides the best fit of G(k), with parameters a= 1.594,b= 3.671,c= 0.8951.
The coefficient of determination (adjusted R2) is 1.0000. Figure 1 plots both G(k) and the approximation.

Figure 1: Comparisons of G(k) and −a(k+b)−c

Using the approximation function for G(k) and eliminating the variable n from Equation (3), we
reformulate the original optimization problem as

min
k

E[J[1̃]] =−aσJ
(k+b)−c√

k−2 +
σ2

ω0
T σ2

J
k−1

, (6)

where a = 1.594,b = 3.671,c = 0.8951.
Remark 1 Notice that a, b, and c are obtained for the case when 3≤ k≤ 1000. Their values will change
slightly if the range of k changes. However, the values a = 1.594,b = 3.671,c = 0.8951 provides a quite
robust approximation in a wide range of k, as can be seen from Table 1.

Table 1: Approximation function parameter robustness test

Range of k [3,50] [3,100] [3,500] [3,1000] [3,5000]
Adjusted R2 0.9993 0.9997 0.9998 1.0000 0.9999

We then minimize E[J[1̃]] given in Equation (6). The first order derivative of E[J[1̃]] with respect to k
is given as follows:

dE[J[1̃]]

dk
=

aσJ(k+b)−c
√

k−2 +Rk−1

[
c

k+b
− 2+Rk

2(k+Rk2)

]
, (7)

where R = σ2
ω0
/(T σ2

J ). Solving the first order condition, we obtain two roots. One root is positive and the
other is negative, which we do not consider because k has to be positive. So the only meaningful solution
to the first order condition is:

k∗ =
1− c

(2c−1)R
+

b
2(2c−1)

+

√
b2R2 +4b(3c−1)R+4(1− c)2

2(2c−1)R
. (8)
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Let

δ = 2

√
2(2− c)

3c

and

η =
b(2+δ )

2δ (c−1)+δ 2(2c−1)
.

We can demonstrate that, if T ≥ ησ2
ω0
/σ2

J (to ensure that k∗ resides in [2,δ/R]), E[J[1̃]] reaches its minimum
in [2,δ/R] when k equals to k∗. Therefore, we have the following proposition:
Proposition 1 Assume the true performance J ∼ N(0,σJ) and the noise ω ∼ N(0,σω), given the total
computation budget T , if T ≥ ησ2

ω0
/σ2

J , then E[J[1̃]] is (approximately) minimized when k equals to k∗ (so
k∗ is the optimal sampling set size).
Remark 2 Notice that for most common cases where σω0/σJ is not too big, ησ 2

ω0
/σ2

J is relatively small
and approximately equals to 2.74σ 2

ω0
/σ2

J when 3 ≤ k ≤ 1000. In these cases, it is easy to verify that k∗

resides in [2,δ/R] when T is reasonably large. Furthermore, T ≥ ησ 2
ω0
/σ2

J is only a sufficient condition
for the optimality of k∗, and for all the scenarios we test in our numerical experiment in Section 4, E[J[1̃]]
always achieves its minimum when k = k∗, even though the condition is not satisfied for some of them.

4 NUMERICAL EXPERIMENTS

In this section, we provide results of numerical experiments to validate the performance of the analytical
(approximately) optimal sampling set size we propose. During one iteration of a typical random search
based simulation optimization algorithm such as COMPASS (Hong and Nelson 2006) and AHA (Xu, Hong,
and Nelson 2013), one needs to randomly sample a set of feasible solutions from a given search area,
simulate, and then record the observed best solution. Our method can be applied to help determine the
number of solutions to sample and the number of replications assigned to them for these algorithms. We
assume σJ and σω0 are known and consider eighteen scenarios with their parameter values given as follows:

1. Total computation budget (T ). Set T to two values: {100,500}.
2. Standard deviation of the true performance J (σJ). Set σJ to three values: {0.25,1,2}.
3. Standard deviation of the noise ω0, i.e., the noise in one replication. Set σω0 to three values:

{0.6,1.2,4.8}.

Let k∗c denote the the optimal sampling set size obtained using Equation (8), and k∗s denote the optimal
sampling set size obtained by running Monte Carlo simulations and enumeration. For each experiment, we
sample k solutions from the distribution of the true performance, i.e., N(0,σ2

J ), and for each solution, we
generate a noise from N(0,σω0/

√
n) to represent the noise of the sample mean of n IID replications. The

noise is added to the true performance value to produce the observed performance value of the solution.
These k solutions are then ranked by their observed performance values, and the true performance value
of the observed best is recorded.

We repeat this experiment 100000 times to estimate the expected true performance value of the observed
best solution. For each pair of (k,n), we repeat the same procedure and k∗s is determined by finding the
minimum expected true performance of the observed best. Results obtained from Equation (8) and from
simulation experiments are presented in Table 2. In the table, E[J[1̃]]

∗
c and E[J[1̃]]

∗
s are the estimated expected

value of the true performance of solutions found using k∗c and simulations, respectively. It is clear from
the table that our closed-form formula obtains results very close to those of simulation experiments in
various scenarios, which shows that our method is quite effective and is able to find approximately optimal
solutions in a wide range of scenarios.
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Table 2: Comparisons between analytical solutions and simulation results

Sce. T σJ σω0 k∗c E[J[1̃]]
∗
c k∗s E[J[1̃]]

∗
s Error

1 100 0.25 0.6 18 -0.3186 19 -0.3187 0.03%
2 100 0.25 1.2 10 -0.2109 9 -0.2121 0.57%
3 100 0.25 4.8 5 -0.0656 4 -0.0659 0.46%
4 100 1 0.6 100 -2.1492 100 -2.1492 0.00%
5 100 1 1.2 39 -1.7236 39 -1.7236 0.00%
6 100 1 4.8 10 -0.8473 8 -0.8494 0.25%
7 100 2 0.6 100 -4.8035 100 -4.8035 0.00%
8 100 2 1.2 100 -4.2983 100 -4.2983 0.00%
9 100 2 4.8 18 -2.5489 19 -2.5493 0.02%
10 500 0.25 0.6 45 -0.4491 45 -0.4491 0.00%
11 500 0.25 1.2 20 -0.3369 20 -0.3369 0.00%
12 500 0.25 4.8 7 -0.1369 7 -0.1369 0.00%
13 500 1 0.6 405 -2.6148 406 -2.6179 0.12%
14 500 1 1.2 123 -2.2211 123 -2.2211 0.00%
15 500 1 4.8 20 -1.3528 20 -1.3528 0.00%
16 500 2 0.6 500 -5.8207 500 -5.8207 0.00%
17 500 2 1.2 405 -5.2297 406 -5.2358 0.12%
18 500 2 4.8 45 -3.5844 48 -3.5909 0.18%

We also investigate the impact of different values of k on the performance E[J[1̃]]. Given the total
computation budget T , we set k to T/5, b

√
Tc, and T . We then compare the true performance of the

observed best solutions in these cases to what we have using k∗c in Table 3. We also report the percentages
of the improvement in performance in the table. It is clear that choosing the right sampling set size leads
to significant increase in the performance of the random search algorithm.

Notice that in this paper, σJ and σω0 are assumed to be known when we calculate the optimal sampling
set size. In practice, σJ and σω0 are not known a priori. But we can employ a sequential procedure to
estimate σJ and σω0 similar to the sequential OCBA procedure; see Chapter 3 in Chen and Lee (2010).

5 CONCLUSION

The objective of this study is to determine the optimal sampling set size for random search when we have a
fixed computation budget and each sampled solution receives the same number of simulation replications.
Modeling the performance profile of all solutions in the search area as a normal distribution, we derive a
formula to (approximately) optimally determine the size of the sampling set. Numerical experiments show
that our formula is very accurate and either give the optimal sampling set sizes or sampling set sizes very
close to the optimal ones.

In future study, we will apply our result to determine the optimal sampling set size for GCRS and
LCRS simulation optimization algorithms such as NP (Shi and Ólafsson 2000) and AHA (Xu, Hong, and
Nelson 2013). The immediate extension is to design a sequential procedure that allows the estimation of
σJ and σω0 as the search progresses.

We will also study how to extend our results into the case of non-equal simulation replication allocation.
Procedures such as OCBA (Chen et al. 2000) have been used in the simulation optimization solver ISC (Xu,
Hong, and Nelson 2010) to increase the PCS using a fixed computation budget. However, the sampling set
size was predetermined. How to jointly determine both the sampling set size and the adaptive allocation
of simulation replications will be a major research task to be undertaken.
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Table 3: Comparisons of different sampling set sizes

Sce. T σJ σω0 E[J[1̃]]
k = k∗c k = T/5 diff. k = b

√
Tc diff. k = T diff.

1 100 0.25 0.6 -0.3186 -0.3178 0.25% -0.3053 4.17% -0.2402 24.61%
2 100 0.25 1.2 -0.2109 -0.1971 6.54% -0.2109 0.00% -0.1276 39.50%
3 100 0.25 4.8 -0.0656 -0.0545 16.82% -0.0618 5.78% -0.0338 48.50%
4 100 1 0.6 -2.1492 -1.8035 16.08% -1.5088 29.79% -2.1492 0.00%
5 100 1 1.2 -1.7236 -1.6417 4.75% -1.4350 16.75% -1.6039 6.95%
6 100 1 4.8 -0.8473 -0.7875 7.06% -0.8473 0.00% -0.5103 39.78%
7 100 2 0.6 -4.8035 -3.7021 22.93% -3.0582 36.33% -4.8035 0.00%
8 100 2 1.2 -4.2983 -3.6062 16.10% -3.0166 29.82% -4.2983 0.00%
9 100 2 4.8 -2.5489 -2.5427 0.24% -2.4427 4.16% -1.9217 24.61%
10 500 0.25 0.6 -0.4491 -0.4279 4.70% -0.4259 5.15% -0.2925 34.86%
11 500 0.25 1.2 -0.3369 -0.2638 21.69% -0.3364 0.15% -0.1547 54.07%
12 500 0.25 4.8 -0.1369 -0.0736 46.27% -0.1152 15.82% -0.0380 72.24%
13 500 1 0.6 -2.6148 -2.4223 7.36% -1.8935 27.59% -2.6047 0.39%
14 500 1 1.2 -2.2211 -2.2081 0.59% -1.8511 16.66% -1.9432 12.51%
15 500 1 4.8 -1.3528 -1.0554 21.99% -1.3486 0.31% -0.6189 54.25%
16 500 2 0.6 -5.8207 -4.9704 14.61% -3.8091 34.56% -5.8207 0.00%
17 500 2 1.2 -5.2297 -4.8446 7.36% -3.7870 27.59% -5.2094 0.39%
18 500 2 4.8 -3.5844 -3.4235 4.49% -3.4075 4.94% -2.3400 34.72%
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