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ABSTRACT

In the presence of non-Gaussian noise the least squares estimator for the parameters of a regression model
can be suboptimal. Therefore, it is reasonable to consider other norms. Lp-norm estimators are a useful
alternative, particularly when the residuals are heavy-tailed. We analyze the convergence properties of such
estimators as a function of the number samples available for estimation. An analysis based on the Random
Energy Model (REM), a simplified model used to describe the thermodynamic properties of amorphous
solids, shows that, in a specific limit, a second order phase transition takes place: For small sample sizes
the typical and average values of the estimator are very different. For sufficiently large samples, the most
probable value of the estimator is close to its expected value. The validity analysis is illustrated in the
problem of predicting intervals between subsequent tweets.

1 INTRODUCTION

The goal in a regression problem is to build a model that predicts the value of a target (dependent) real-valued
variable, y ∈ R, from the values of a vector of attributes x ∈ RD. The model is induced from the set of
training instances {(xn,yn)}M

n=1, in which the value of the dependent variable is known. To address this
problem one generally assumes a family of models h(x;θ) expressed in terms of the vector of parameters
θ . Typically, the value of θ is determined by solving an optimization problem. One of the commonly used
cost functions is the Lp-norm error

θ
∗ = argmin

θ

1
M

M

∑
n=1
|yn−h(xn;θ)|p . (1)

This problem is usually referred to as Lp regression because the error function is the Lp-norm of the
residuals, which are differences between the model predictions and the observed values. Least squares
(p = 2), Minimum Absolute Deviation (p = 1) and Chebyshev (p = ∞) regression are particular instances of
this class of estimators. Some questions naturally arise when this type of regression problem is addressed.
Specifically, how should the order of the norm for the regression error be determined for a particular empirical
sample? Some efforts in this direction have been made in the literature. In (Money, Affleck-Graves, Hart,
and Barr 1982, Nyquist 1983) some heuristics are given to estimate the optimal p in terms of the kurtosis
and other higher order moments of the distribution of residuals. Another issue is, given a choice of p,
how large need the sample be to ensure that estimates of the regression coefficients are reliable? This is
the question addressed in this research. If the residuals are i.i.d. random variables, the Lp-norm is simply
an empirical estimate of the moment of order p of the probability distribution of the absolute value of the
residuals. Some authors have observed that empirical estimates of moments can be rather unreliable when
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the data are heavy-tailed (Crovella and Lipsky 1997). The empirical estimates become more unstable for
larger values of p (Angeletti, Bertin, and Abry 2012). These observations directly apply to the estimation of
the Lp-norm of the residuals in regression. When these estimates are inaccurate, the value of the optimizer
(1) is unreliable as well.

The effects of the finite size of the sample in the reliability of the estimators of the regression parameter
is analyzed using an analogy with the computation of the partition function in the Random Energy Model
(REM) (Derrida 1981). This model, which is described in Section 2, was introduced in the area of disordered
systems in physics to describe the properties of amorphous solids. The analysis of the behavior of the
partition function in the REM can be also applied to the characterization of the asymptotic properties of
the empirical estimate of the Lp-norm error. Specifically, we consider the properties of this estimator in
the limit of large samples M and large p with 2logM/p2 constant. The quantity of interest is the bias
of the logarithm of this empirical estimate. The presence of a non-zero bias in this quantity indicates
that the typical and the expected values are different. This, in turn, implies that the Lp-norm estimate is
unreliable. In Section 3 the analysis of the partition function in the random energy model is adapted to
the Lp-norm regression problem. Assuming that the residuals are approximately lognormal i.i.d. random
variables this analysis is used to derive the minimum sample size needed to obtain reliable estimates of the
model parameters. Lognormal models for data are common in economics (Aitchison and Calvert Brown
1957, Crow and Shimizu 1988), insurance and finance (Frachot, Moudoulaud, and Roncalli 2003), in
computer systems and networks (Downey 2001, Mitzenmacher 2004, Downey 2005a) and in social patterns
of interaction (Naruse and Kubo 2006). Even though explicit expressions are give for the lognormal case
only, the derivations can be readily extended to other subexponential distributions with finite moments. The
validity of the analysis is illustrated in linear regression problems using simulated and real data. Finally,
section 4 presents a summary of the results and conclusions of the present investigation.

2 METHODS

2.1 The Random Energy Model

The random energy model (REM) was introduced by Derrida in the area of statistical mechanics to describe
the thermodynamic properties of disordered systems (Derrida 1981). Consider a system with M = 2K

configurations. The energy of the ith configuration is Ei. In the REM, the energy levels {Ei}M
i=1 are i.i.d.

random variables whose probability density function is fE(e). The partition function at temperature β−1

for a particular realization of the system is defined as

ZM(β ) =
M

∑
i=1

e−βEi (2)

Thermodynamic quantities of the system such as average energy, energy fluctuations, heat capacity, etc.
can be obtained from Z̃M(β ) by taking derivatives with respect to the temperature (Mézard and Montanari
2009).

To make the connection with the Lp-norm it is preferable to work with a normalized partition function

Z̃M(β ) =
1
M

M

∑
i=1

e−βEi . (3)

Note that the normalized partition function corresponds to the empirical estimate of the moment-generating
function that can be made using the sample {Ei}M

i=1. Since the residuals of the Lp regression problem can
be viewed as a sequence of random i.i.d. random variables, a direct connection can be established between
the REM and the Lp-norm error: The absolute value of the residuals are non-negative random variables that
can be expressed in the form of Boltzmann factors e−βEi . The number of configurations M corresponds to
the sample size in the estimation in the regression problem.
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For the subsequent derivations, it is useful to define the following asymptotic relation between sequences
of random variables, which is valid to leading order in the exponent.

Definition 1 Let AM and BM be two sequences

AM
.
= BM ⇔ lim

M→∞

1
M

logAM = lim
M→∞

1
M

logBM. (4)

In this work if one of the sides is a sequence of random variables, the convergence is understood in
probability (see (Mézard and Montanari 2009) for further details). This definition applies also when the
variables are indexed by K = logM/ log2 and the limit M→ ∞ is taken.

The first step of the derivation of the REM is to define an entropy function in terms of N(ε,ε +δ ), the
number of configurations whose energies are in the interval I = [Kε,K(ε +δ )], with K = log2 M. This
is a binomial random variable whose first two moments are

E [N(ε,ε +δ )] = 2KPI (ε,ε +δ ) (5)

V [N(ε,ε +δ )] = 2KPI (ε,ε +δ )(1−PI (ε,ε +δ )) . (6)

In terms of the function

gE(z) =
1
K

log fE(z), (7)

the probability of finding a configuration whose energy is in the interval (ε,ε +δ ) is

PI (ε,ε +δ ) =
∫ K(ε+δ )

Kε

fE(e)de =
∫

ε+δ

ε

K exp [KgE(z)]dz .
= exp

[
K max

z∈[ε,ε+δ ]
{gE(z)}

]
(8)

This last expression is obtained by saddle point integration (Bender and Orszag 1978).
The microcanonical entropy density function (in this work, to simplify the terminology, the entropy

function) is defined as

N(ε,ε +δ )
.
= exp

[
K max

y∈[ε,ε+δ ]
sa(y)

]
(9)

or, equivalently,

lim
K→∞

1
K

logN(ε,ε +δ ) = max
y∈[ε,ε+δ ]

sa(y). (10)

Using expression (5), to leading order in the exponent,

sa(y) = log2−gE(y). (11)

The following proposition allows us to establish a relationship between the partition functions and the
entropy functions.

Proposition 1 If sa(y) exists and the limit in (10) is uniform in y then

Z̃M(β )
.
= exp

[
K max

y
{sa(y)−βy}

]
.
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These results are a particular application of Large Deviation Theory (LDT), a branch of statistics that
describes the asymptotic properties of extreme events. Further details on LDT can be found in (Touchette
2009, Dorlas and Wedagedera 2001).

The sample average (3) is an unbiased estimator of E[e−βEi ] for any sample size, M. However, the
typical value of (3) can actually be very different from the average. If the typical and the average values
differ (3) is an unreliable estimate of E[e−βEi ]. To quantify the discrepancy between the expected value
of the normalized partition function and the typical value estimated from a finite-size sample one can use
the bias of the logarithm of the normalized partition function

BM = logE[e−βEi ]− log Z̃M. (12)

The random variable BM quantifies the discrepancy between average and typical behavior of (3). To
understand why this is the case, let fM(z) be the density function of Z̃M. As M increases fM(z) becomes
more concentrated around its mode z∗M. Since logz varies smoothly in the region where fM(z) is peaked,
in the limit M→ ∞ the expectation of log Z̃M is approximately

E
[
log Z̃M

]
=

∫
fM(z) logz dz≈ logz∗M. (13)

On the other hand

E[e−βEi ] = E[
1
M

M

∑
i=1

e−βEi ] = E[Z̃M]. (14)

Therefore,

E[BM] = logE[e−βEi ]−E[log Z̃M]≈ logE[Z̃M]− logz∗M,

which is a measure of the difference between the mode and the mean of fM(z). In the next section explicit
expressions for the entropy are given for lognormal samples.

2.1.1 Lp-Norm Error for Lognormal Residuals

In this section we derive explicit expressions for the bias in the logarithm of Z̃M, the normalized partition
function in the random energy model, when the energy levels {Ei}M

i=1 are normally distributed ( Ei ∼
N (µ,σ)). This means that the Boltzmann factors

{
e−βEi

}M
i=1, whose average is the normalized partition

function, are lognormally distributed. Without loss of generality, one can that assume µ = 0 because µ

appears only as a multiplicative constant e−β µ in the Boltzmann factors.
To make the connection between REM and the Lp-norm regression, the Boltzmann factors, which are

non-negative, are identified with the absolute values of the residuals of the regression model

|ri| ↔ e−βEi . (15)

Since we are interested in the behavior of the Lp-norm error, we also need to consider the distribution
of the pth power of the absolute value of residuals. However, if |ri| = exp [σY ] ,Y ∼ N(0,1) follows a
lognormal distribution whose parameters are (µ = 0,σ) , the quantity |ri|p = exp [pσY ] is also lognormal
with parameters (µ = 0, pσ). For this reason, it is sufficient to analyze how the regression error varies for
different values of p with σ = 1,

Z̃(p)
M =

1
M

M

∑
i=1
|ri|p =

1
M

M

∑
i=1

exp [pYi] , Yi ∼N (0,1)

as a function of p and M.
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To analyze the behavior of Z̃(p)
M we use the results derived in the previous section. In contrast to the

Boltzmann factors that appear in the computation of the partition function of the REM (Derrida 1981), the
parameters of the distribution of residuals are independent of M. Therefore one has to consider an appropriate
rescaling. The asymptotic limit in which results are valid is p→∞ and M→∞ with logM/p2→ constant.

To carry out the analysis in this limit, one first computes the probability of finding samples in the
interval [Kε,K(ε +δ )] to leading order in the exponent. From the definition of the given in (11) the entropy
function for lognormal i.i.d. random variables is

sa(y) = log2− Ky2

2 p2 (16)

The range of admissible values of y is restricted to the interval |y| ≤
√

2 p2 log2
K so that the entropy function

sa(y) is non negative. Depending on the location of the maximum of the exponent in Prop. 1 one can
distinguish two regimes: The first one appears for small samples M < Mc(p), where the critical sample size
is Mc(p) = ep2/2. Asymptotically, the dominant contribution to the estimator (16) comes from the upper

bound of the interval yu =

√
2 p2 log2

K . The second regime corresponds to large samples M > Mc(p), in

which the dominant contribution comes from the local maximum of the exponent y∗ =
p2

K
. In this regime,

and in the limit of large M and p with logM/p2 constant, the sample average is close to the saddle point
estimate of the pth moment.

The change of behavior occurs in y∗ = yu and it corresponds to a second order phase transition in the
asymptotic behavior of Z̃(p)

M

Z̃(p)
M

.
=


exp
[

p2

2

]
,λ (M, p)> 1

exp
[√

2 p2 logM− logM
]
,λ (M, p)< 1,

(17)

where

λ (M, p) =
2logM

p2 (18)

The transition is marked by a discontinuity in the second derivative of E
[
log Z̃M

]
at the transition point

in the limit p→ ∞ and M→ ∞ with logM/p2→ constant. As in standard phase transitions, there is no
mathematical discontinuity for finite M and p.

p′ σ = 1 σ = 2
1 3 8
2 8 2981
3 91 65.65×106

4 2981 78.96×1012

5 268338 51.84×1020

Figure 1: Different values of the critical sample size Mc(p′,σ) as a function of the order of the regression
p′ and the parameter σ such that p = σ p′.

Nevertheless the change of behavior of the sample estimates is accurate described by (17) for sufficiently
large values of these parameters. In particular, for a sample of size M, there is a critical value pc(M) =
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√
2logM, such that, for values of p > pc(M) the sample average ceases to be an accurate approximation of

the expected value of the lognormal random variable. Alternatively for a fixed value p, the critical sample
size is

Mc(p) = e
p2
2 (19)

From (17) one can explicitly compute BM in the regime λ (M, p)< 1

BM(p) =
p2

2
−
√

2 p2 logM+ logM. (20)

3 EXPERIMENTS

In this section we investigate the dependence of the bias in the logarithm of the the Lp-norm error estimate as
a function of sample size for a real-world problem in which the residuals of a linear model are approximately
lognormal. The results of this investigation are used to illustrate the validity of the analysis of this bias
using the correspondence to the random energy model carried out in the previous section. There are
numerous studies in which the presence of heavy-tailed distributions in different Internet-based phenomena
is discussed (Downey 2005b). To illustrate the analysis presented in the previous section we consider
the distribution of inter-arrival times between subsequent Internet tweets. The dataset analyzed consists
of 470K geolocalized tweets using the public Twitter API. To eliminate noisy data produced by bots and
automated accounts, all tweets with only one location in our dataset and those that change their location
faster than the speed of sound are removed. To extract robust information of the temporal patterns of each
user, we keep the 200 most active users in our dataset. This filtering reduces the number of tweets to around
30K. We then study the times between consecutive tweeting actions. For each of user, the inter-tweet times
are normalized using the mean and standard deviation of all the tweets from that user. Empirically, one
observes that inter-tweet times τn are reasonably well approximated using a lognormal distribution. The
time series of inter-tweet times exhibits low values for the autocorrelations at delay one (0.06) and even
smaller for longer delays. Therefore, residuals rn are also reasonably well approximated by a lognormal
distribution.

The protocol for the experiments is as follows: Let τn be the time between the (n−1)-th and the n-th
tweets. A linear autoregressive model of order one is fitted to the inter-event times

τn = aτn−1 + εn, n = 1,2, . . . (21)

The optimization problem in a is solved using Golden Section Search algorithm provided by the Python’s
library for scientific computation SciPy (Kiefer 1953, Jones, Oliphant, Peterson, et al. 2001). Once the
optimal value of a = â is found, the residuals rn = τn− âτn−1 are computed. We then make estimates of
the Lp-norm error from a sample of size M for different values of M.

εT (â; p,M) =
1
M

M

∑
n=1
|rn|p. (22)

To determine the minimal sample size that should be used to compute reliable estimates of εT (a; p,M) a
lognormal distribution is fitted to the set of model residuals {rn}M

n=1 using Maximum Likelihood Estimation
(MLE). For M < 3000, the estimates are repeated for different subsamples of size M and then averaged.
The value of â that minimizes the error function is influenced by both the sample size M and the order p.
In consequence, different estimates of σ are obtained when different values of M and p are considered.
The bias BM also becomes a function of these parameters,

BM(p, σ̂) = logE[rn](σ̂)− logεT (σ̂ ; p,M) (23)
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The behavior of BM(p, σ̂) as a function of M is depicted in figure 2a. As expected the bias BM decreases
as M increases. This is an intuitive result because larger samples should provide more accurate estimates
of the error.

The vertical lines in figure 2a mark the values estimated for the critical sample size (the size above
which the bias of the logarithm Lp-norm estimator becomes negligible) for different values of p

Mc(p, σ̂) = exp
{

1
2

p2
σ̂

2
}
. (24)
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Figure 2: (a) Solid dotted lines display the dependence BM on the sample size for different values of p
regressions whereas vertical dashed lines exhibit the transition points predicted by (17). b) Evolution of
the critical sample size Mc(p) as a function of M for different values of p.

Since the parameters of the lognormal fit to the residuals change with the sample size, the value of
these thresholds is determined in a self-consistent manner: Mc(p, σ̂) is such that the value of σ estimated
from a sample of that size coincides σ̂ . This self-consistent procedure is described in Algorithm 1.

Algorithm 1 Calculate Mp in Lp regression

P← [1,2, ...,maxp]
ts← load(data)
for p in P do

X ← ts[1 : length(ts)−1]
Y ← ts[2 : length(ts)]
error,residuals← lp.minimize(model,X,Y)
µ,σ ← lognormal.fit(residuals)
min size← exp

[
(σ p)2/2

]
if (length(ts)−1)≤ min size then

converged← True
else

converged← False
end if

end for
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Figure 2b displays the dependence of the values estimated for the critical sample size as a function
of M, for different values of p. The results for large M are consistent with the behavior that should be
expected: The number of instances needed to obtain reliable Lp norm estimates increases in a non-linear
manner for increasing p. The values of the critical sample sizes estimated for L1 and L2-norm regression
are fairly small. This means that we are not in the asymptotic regime and that the estimate (24), which
is derived in the limit M→ ∞ pσ → ∞ and logM/(pσ)2→ constant, can be inaccurate. In contrast, the
estimates for L3 and L4 are fairly accurate, as illustrated by the results in 2a. From this figure one can
also observe that there is a non-zero asymptotic bias. This is due to the fact that the residuals observed
actually show deviations from the lognormal distribution. To remove this effect, we generate a synthetic
regression problem simulating the process

τn = a τn−1 + εn, τ1 = 1, (25)

where εn = exp [σYn] and Yn is a standard Gaussian random variable. To make the simulation closer to the
inter-tweet data, we use σ = 0.95 and a = 0.1 in the simulation. The protocol for the estimation of BM and
Mc(p, σ̂) is the same as in the previous set of experiments. Figure 3 displays the dependence of BM(p, σ̂)
with M. The estimates of the critical sizes Mc(p, σ̂) are marked as vertical lines for p = 2,3,4. In these
simulations, for a fixed M the bias becomes larger as the value of p increases. One also observes that the
values of the critical sample size are ordered Mc(p+1, σ̂)> Mc(p, σ̂). Also in this case, the assumption
that we are in the asymptotic regime holds approximately only for p = 3,4. Finally, the value of the bias
tends to zero as M→ ∞.
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Figure 3: The solid lines display the dependence of BM(p, σ̂) on M for different values of p. The dashed
lines indicate the transition points predicted by (17)

4 CONCLUSIONS

In this work we have considered the problem of determining the minimum sample size needed to obtain
robust estimates of the Lp-norm error in linear regression problems. To this end we have adapted the
techniques used to analyze the random energy model (REM), a model for disordered solids introduced in
(Derrida 1981). Taking advantage of the correspondence between the computation of the partition function
in a REM model with M different configurations and the estimation of the Lp-norm error from an i.i.d.
sample of size M, we show that two different regimes should be expected: For sample sizes smaller than a
critical size M�Mc(p,σ) the typical value of the Lp-norm error in a particular instance of the regression
task is very different from the expected value. This difference between typical and average behavior
disappears for M�Mc(p,σ). In the limit M→∞ and p→∞ with logM/p2→ constant, a phase transition
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occurs between these two regimes. The transition is analyzed in terms of the bias of the logarithm of the
empirical estimate of the Lp-norm. A small bias in this quantity signals that typical and average values of
the estimated parameters are close to each other. A large bias in the logarithm indicates that the average
behavior is different from the one typically observed, which makes the estimator unreliable in individual
instances of the regression problem. Finally, the validity of this analysis is illustrated in experiments with
data from a real-world application (the time-series of inter-tweet intervals) and in simulated data.
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ALBERTO SUÁREZ is a professor in the Computer Science Department of the Universidad Autnoma de
Madrid (Spain). He has worked on relaxation theory in condensed media, stochastic and thermodynamic
theories of nonequilibrium systems, lattice-gas automata, and automatic induction from data. His current
research interests include machine learning, quantitative and computational finance, time series analysis
and information processing in the presence of noise. His email address is alberto.suarez@uam.es

1056


