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ABSTRACT

Optimal development of oil and gas fields involves determining well locations in oil reservoirs and well
control through the production time. Field development problems are mixed-integer optimization problems
because the well locations are dened by integer-valued block indices in the discrete reservoir model, while
the well control variables such as bottom hole pressures or injection rates are continuous. Reservoir
simulation software is used to evaluate production performance given a well placement and control plan. In
the presence of reservoir uncertainty, we sample and simulate multiple model realizations to estimate the
expected eld performance. We present a retrospective optimization using dynamic simplex interpolation
(RODSI) algorithm for oil field development under uncertainty. The numerical results show that the RODSI
algorithm efficiently finds a solution yielding a 20% increase (compared to a solution suggested from
heuristics) in the expected net present value (NPV) over 30 years of reservoir production for the considered
Brugge case.

1 INTRODUCTION

Simulation optimization (SO) has gained increasing attention in the operations research and industry
communities (Fu et al. 2005; Fu 2002; Pasupathy and Henderson 2011; Pichitlamken and Nelson 2003).
Much research in simulation optimization has been focused on either continuous (Jin and Schmeiser 2003,
Kushner and Yin 1997) or integer (Wang et al. 2012; Hong and Nelson 2006) optimization problems.
Nonetheless, SO problems with both integer and continuous decision variables arise in various applications
(Martin et al. 2006; Cameron and Durlofsky 2012). In design of supply chain systems (Glasserman and
Wang 1998, Truong and Azadivar 2003), for example, the decision variables can be numbers of distribution
centers, numbers of transportation vehicles, reorder points and quantities, service times and others. In oil
and gas field development, well locations (integer valued within a discrete reservoir model) and well controls
(e.g., bottom hole pressures or production rates are continuous decision variables) are often considered
jointly (Cameron and Durlofsky 2012; Bellout et al. 2012).

Development of mixed integer simulation optimization (MISO) algorithms is difficult due to the mixture
nature of the solution space and stochasticity of the objective function. In the case of oil field development,
for example, it is not uncommon that a reservoir simulator uses hours of computing time to compute the field
performance for one solution. To account for geological uncertainty, hundreds or more model realizations
could be considered for each solution evaluation and the optimization method could evaluate hundreds
to thousands of solutions dependent on the methods employed. In addition, petroleum field development
usually involves both integer-valued variables (e.g., well locations are integer labeled drilling blocks as
the field has been discretized to reservoir blocks) and continuous variables (e.g., bottom hole pressures).
Finding the optimal development plan including well locations and control for oil fields can significantly
increase production revenues for energy companies. Thus practically robust and efficient solution methods
for MISO problems are much desired in petroleum industry.
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MISO is a less studied (Hemker et al. 2008; Keskin et al. 2010) subject in operations research compared
to continuous or discrete simulation optimizations. We propose a new retrospective optimization using
dynamic simplex interpolation (RODSI, described in Section 2) that can be applied to many real-world
MISO applications in various areas such as environmental sciences (e.g., CO2 sequestration, subsurface
water resources), financial engineering, and healthcare systems (e.g., service scheduling, treatment planning,
facilities and operations).

1.1 Mixed-Integer Simulation Optimization Problem Statement

We consider mixed-integer simulation optimization (MISO) problems where the objective function and
some constraint functions are implicitly defined by stochastic simulation. A formal statement of MISO
problems considered in this work is provided as follows.

(P)max g(x) = lim
m→∞

ĝ(x,m), x ∈ Zd1 ×Rd2 ,

Subject to ci(x)≤ 0, i = 1,2, . . . , l,

h j(x)≤ 0, j = 1,2, . . . ,n.

Let X denote the feasible region in (P) and d = d1 +d2. Here the feasible region X is a subset in the
d-dimensional mixed space specified by a number of deterministic constraints ci(x)≤ 0, i = 1,2, . . . , l and
stochastic constraints h j(x) ≤ 0, j = 1,2, . . . ,n. The objective function g and stochastic constraints hi(x)
can only be observed through simulation processes G and H respectively. Specifically, G and H provide
consistent estimates ĝ and ĥ j for g and h j respectively; that is, limm→∞ ĝ(x,m) = g(x) with probability 1
(w.p.1) and limm→∞ ĥ j(x,m) = h j(x) w.p.1, for every x ∈X, j = 1,2, . . . ,n, where m denotes some measure
of computational effort that often is the sample size of computer simulations and ĝ(x,m) = 1

m ∑m
k=1 G(x,ωk).

The stochastic parameters ω are sampled from the parameter space Ω associated with the MISO problem.
The goal of (P) is to seek a maximizer x∗ of the limiting function g in X.

1.2 Local Optimality for MISO

In this paper, we develop new MISO methods for identifying a local maximum of (P), given the following
neighborhood definition. Let x = (x1,x2),x1 ∈Zd1 ,x2 ∈Rd2 be a feasible solution in X. The δ -neighborhood
Nδ (x) of x includes all the points y = (y1,y2) ∈ X so that ∥x1 − y1∥ ≤ 1,∥x2 − y2∥ ≤ δ , where y1 ∈ Zd1 ,
y2 ∈ Rd2 and ∥ · ∥ represents the Euclidean distance. A feasible solution x∗ is a local maximum of (P) if
there exists a δ > 0 such that g(x∗)≥ g(y) for any y ∈ Nδ (x∗).

We develop RODSI to efficiently solve MISO problems of (P) for local optima. RODSI generates a
sequence of sample-path problems Pk with objective functions ĝ(x,mk) and increasing sample sizes mk.
RODSI solves Pk sequentially via a local search based on DSI for a sequence of approximate local optima
Xk. Some discussion on general RO algorithm performance and convergence properties can be found in
(Wang et al. 2013; Wang and Schmeiser 2008; Wang 2012).

In this work, we focus on the RODSI design and numerical demonstration of RODSI using a petroleum
field development example. Specifically, we will focus on efficient sampling methods for generating
representative RO sample-path problems Pk and effective strategy for scaling issues between integer and
continuous variables.

2 RODSI ALGORITHM DESIGN

A generic RODSI framework is described in (Wang 2012), where some convexity assumptions on the
objective function were made for global convergence. In this paper, we consider MISO problems with
nonconvex objective functions of g.
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Figure 1: Flowchart of RODSI.

2.1 Sampling Parameters

RODSI uses a conceptually simple framework — during the kth retrospective iteration, the DSI based local
search attempts to identify an approximate local maximal solution Xk of the sample-path function ĝ(x,mk).
RODSI considers the following sample-path problems Pk iteratively.

(Pk) : Find Xk ∈ X such that ĝ(x,mk)≤ ĝ(Xk,mk), ∀x ∈ Nδ (Xk), for some δ > 0. (1)

Where the feasible region X is defined by both deterministic constraints ci(x)≤ 0, i = 1,2, . . . , l, stochastic
constraints ĥ j(x,mk) ≤ 0, j = 1,2, . . . ,n, and the mixed-integer space {Zd1 ×Rd2}. As can be seen from
(1), the problem Pk involves generating a sample-path function using the sample ξk = {ω1,ω2, . . . ,ωmk} of
sample size mk. Effective means to determine mk and ξk are critical to RODSI performance.

While RODSI has a RO framework similar to other retrospective algorithms (Jin and Schmeiser 2003;
Chen and Schmeiser 2001; Wang et al. 2012), RODSI differs from previous retrospective algorithms in
that RODSI considers integer and continuous variables jointly and uses a new local search based on the
stochastic dynamic simplex interpolation.

Figure 1 shows the flowchart for a generic RODSI design. This algorithm has three major components:
(i) construction of sample-path problems Pk, (ii) application of DSI with a selected simplex size ∆r and
simplex orientation Or, and (iii) solving Pk using a local search method via DSI. The construction of Pk
involves determining the important algorithm parameters including the sample size mk and the sample of ξk.
We propose a hierarchical sampling theme that statistically determines sample sizes mk and representative
samples ξk based on the properties of the considered stochastic parameters. Detailed discussion of stochastic
hierarchical sampling and its application for the Brugge case will be provided in Section 4.

Note that the RODSI logic in Figure 1 does not have a stopping rule in place. In practice, however,
RODSI must terminate after a finite number of optimization iterations. The possible stopping rules could
be specified by the limit of computing budget, a maximum number k of sample-path problems solved, or
finding a solution that can not be improved by subsequent sample-path problems with large enough sample
sizes.
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2.2 DSI Based Local Search

Recent work (Wang 2012) extends simplex linear interpolation (SLI) to SLI with varying dimensions for
mixed-integer optimization problems. In this work, we design a new dynamic simplex interpolation (DSI)
method for MISO problems. DSI differs from Wang (2012) in that DSI allows stochastic change of the
orientations of simplex. RODSI change simplex orientations across iterations to provide local optimum
convergence.

(a) Dynamic simplex linear interpolation. (b) Dynamic simplex interpolation at a local optimum.

Figure 2: Dynamic simplex interpolation on a mixed solution space.

To illustrate the basic ideas of DSI, we look at a 2-dimensional example shown in Figure 2. Suppose
that we consider an MISO problems with one integer-valued variable x1 and one continuous variable x2
and they are both positive. The objective function is assumed to be evaluated exactly. As shown in Figure
2(a), the feasible region X for this case contains an infinite number of rays in the positive quadrant of R2.
We first apply SLI in X with the simplex size ∆1 = (1,2) (i.e. the positive quadrant of R2

+ is partitioned
into triangles of dimensions 1 and 2 for x1-axis and x2-axis respectively). The function value at any point
y ∈R2

+ \X in the SLI(∆1) constructed space is the convex combination of the function values at the vertices
of the corresponding triangle that contains the point y. This continuous surface constructed by SLI(∆1)
allows us to use a gradient-based (or more precisely subgradient based for grid points (Clarke 1990)) local
search to quickly find a local optimum; let us assume that such a continuous search procedure always returns
a local optimum that is a grid point of SLI(∆1). In Figure 2(b), suppose we obtain a candidate solution p
after the first gradient continuous search via SLI(∆1). The grid looks quite coarse and a finer SLI will likely
locate a better solution near the current candidate solution p. We apply a second SLI with the simplex size
∆2 = (1,1), the SLI(∆2) based continuous search checks solutions within a smaller simplex (triangle) with
vertices (p,C,D), but no better solution found. Note that the second SLI is used to generate smaller simplex
with a different orientation within a local rectangle of size ∆1. Such a change of simplex orientation allows
the search routine to evaluate solutions located in different directions to the current candidate p. For this
example case, we apply SLI four times with different simplex sizes ∆ and orientations O and find that
p is the best solution among the visited 8 solutions (p,A,B,C,D,E,F,G). If we apply a sequence of SLI
with simplex sizes ∆ (for those corresponding to continuous variable) asymptotically decreasing to 0, we
expect that the final solution returned is a local optimum to the original MISO problem (P). Note that we
only change the simplex sizes corresponding to the continuous variables. For integer-valued variables, the
the corresponding simplex dimensions remain one. This guarantees that the grid points generated by any
SLI(∆) are always feasible in X.

The above example shows how to apply a number of dynamic SLI to find an approximate local optimum
quickly. DSI is computationally efficient because late SLI is only applied locally in real time and is only
performed when the search algorithm requests. We notice that DSI may generate non-continuous surfaces
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with varying simplex sizes and orientations, but for a local optimum search, it will not be a problem for
most cases.

The proposed DSI based continuous search is embedded (as the RODSI’s core optimizer) in the
retrospective optimization framework for solving sample-path problems Pk.

3 BRUGGE OIL FIELD DEVELOPMENT

The Brugge oil field (Peters et al. 2010) is a synthetic 3-dimensional model constructed based on a North
Sea reservoir that has been widely used as example case in petroleum and energy resources engineering. The
3-dimensional discretized reservoir model consists of 139×48×9 blocks and each block is of dimensions
100× 100× 6 meters. The field has 10 fixed injection wells with full completion (from the top block
through the bottom block of the reservoir). These 10 injection wells inject high-pressure water down to the
reservoir and push the oil and water out from the production wells. In development of the Brugge oil field
(Wang et al. 2012; Wang et al. 2010; Peters et al. 2010), we need to determine the drilling locations and
operation control of 11 new vertical production wells. The objective for this field development project is
to find such optimal well locations and control so that the net present value (NPV) of the field production
through the period of 30 years will be maximized.

We now discuss the stochastic nature of the problem. In the general case, many aspects of the reservoir
model are uncertain (Mattax and Dalton 1990; Caers et al. 2010). Major uncertainties include the type of
geological depositional system and associated parameters, the presence and location of large-scale faults
and fractures, and the spatial correlation structure of rock properties such as porosity and permeability.
The parameters quantifying the efficiency of the displacement of oil by the injected water (e.g., residual
oil saturation, endpoint relative permeabilities), as well as the depth of the oil-water contact, can also be
uncertain. In an attempt to account for these and other uncertainties, multiple realizations of the reservoir
model are constructed. Depending on the number and ranges of the parameters considered, there can be
tens, hundreds or thousands of model realizations. Predicted reservoir performance is then reported in terms
of expected values and cumulative distribution functions for essential quantities such as oil production rate
as a function of time.

For the Brugge case, we consider four major uncertain parameters: permeability, facies (presence of
faults), fluvial property (channels), and porosity. The key property that impacts fluid flow is the rock
permeability (essentially a conductivity measure relating flow rate to pressure gradient), which can vary
by many orders of magnitude over the field (Figure 3). Facies and fluvial properties are categorical with 2
and 3 possible values respectively for this case. All of these four reservoir parameters are highly uncertain
due to the complex geological structure of the Brugge field and the limited data available. To sufficiently
capture the reservoir uncertainty for the Brugge field, 104 reservoir realizations were generated by sampling
data from these considered geological parameters. Figure 4 shows five model realizations of the first layer
of the Brugge reservoir. As for many realistic reservoirs, the geological properties of the Brugge field
(e.g., the permeability field shown in Figure 3) are highly heterogeneous over the reservoir and the optimal
location of wells is not obvious to determine.

We consider drilling 11 new production wells in the Brugge field. For each production well, two
decision variables (I,J) are considered for this optimization problem, where (I,J) represent the integer
coordinates for the drilling block for the well. All of the 11 production wells are fully completed, i.e. the
wells are perforated from a top block at layer 1 through a bottom block at layer 9. For any production well
l, the location variables (Il,Jl) must be within the field region {[1,139]× [1,48]}∩Z2. We also consider
the well-distance constraints ∥(Il,Jl)−(I j,Jj)∥ ≥ 5 between well l and well j, i.e. the wells must be at least
5 blocks away from each other within the Brugge field. We also consider stochastic constraints defined by
the permeability values. The blocks with significant low permeability (e.g., lower than 10−5 millidarcy)
will be considered infeasible location to drill a well.

We also consider continuous variables of well control in the Brugge case. Specifically the bottom hole
pressures of the production wells are considered to be decision variables, which vary every 10 years for
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(b) 3D model of Brugge permeability.

Figure 3: Brugge 3-dimensional permeability field of realization 1.

each production well. Suppose that for production well 1, the control variables (y1,y2,y3) represent the
bottom hole pressures for the production periods of year 1 to year 10, year 11 to year 20, and year 21 to
year 30, respectively for the three 10-year intervals. For this case, the bottom hole pressures for the 10
injection wells are fixed to be a constant of 2611 psi. With this setting, we have a total of 55 continuous
variables. The control variables for the bottom hole pressures of production wells are constrained to the
interval [300,1800] psi.

Thus the total number of optimization variables for this problem is 55 including 22 integer-valued well
location variables and 33 well control variables. We formulate the constrained MISO problem associated
with the optimal development of the Brugge oil field as follows.

max
x∈X

g =
1

104

104

∑
i=1

G(x,ωi) =
1

104

104

∑
i=1

[
T

∑
j=1

poqo
i, j − pw1qw1

i, j − pw2qw2
i, j

(1+λ ) j

]
,

where po is the oil price ($80/bbl, 1 barrel is equal to 42 gallons), pw1 and pw2 are the water production
and injection costs (both taken to be $5/bbl), λ = 0.0234 is the discount rate per unit time, qo

i, j, qw1
i, j and qw2

i, j

are the oil and water production rates and the water injection rate, respectively, for the ith model realization
and the jth time period. Water production is a cost because equipment and energy are required to produce,
separate, and dispose of water. We use the ECLIPSETM reservoir simulator in this study. One call of G gives
one observation of production quantities of qo

i, j,q
w1
i, j ,q

w2
i, j , j = 1,2, . . . ,T , given an x and the ith realization of

model ωi, which in turn provides one observation of g. It takes about 5 minutes to complete a simulation
run of G for a single realization of the Brugge model, running on a Windows PC with a 2.66Ghz CPU
and 1.95G of RAM. For this case, we use a cluster with 20 nodes for faster optimization runs.
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4 NUMERICAL EXPERIMENTS

We discuss some implementation detail of RODSI and present the numerical results of applying RODSI
to the optimal development of Brugge field.

4.1 RODSI Implementation

We determine RODSI parameters as follows. The sample sizes mk and sample ξk have been selected based
on the hierarchical approach described below. The simplex sizes ∆r are reduced by a half iteratively and
the orientations Or are randomly selected. The nonlinear optimizer in RODSI is a DSI based local search.

4.1.1 Sampling Parameters

For the Brugge case, with some simple statistical analysis, the most important reservoir parameter is
permeability followed by facies and fluvial properties; the rock porosity turns out least important. The
permeability field was generated based on three types of constructions (Peters et al. 2010): deterministically
with a porosity/permeability regression (KS), deterministically with a porosity/permeability regression per
facies (KM, facies must be enabled for KM) and stochastically using co-Kriging on porosity (KP). Therefore
we can sample permeability realizations from these three major groups. The facies classify reservoir models
into two groups: enabled (FY) versus not enabled (FN). The fluvial property, if facies enabled (FY), has two
possible values for this case, labeled with SF and SS respectively. Note that there are correlations among
these three parameters, both permeability and fluvial are dependent on the facies property. Therefore, for
this case, the population of model realizations can be classified into three groups based on permeability
construction, five groups based on the combination of permeability and facies, and eight groups considering
the permeability, facies, and fluvial properties.

R.22−L.1 R.46−L.1 R.62−L.1 R.74−L.1

 

 

−2

0

2

4

6

8

10

Figure 4: Permeability variations among five stochastic realizations of the Brugge field (first layer).

We consider a hierarchical sampling approach based on the three most important parameters. For
the first sample-path problem P1 we sample realizations based on permeability construction. Because the
permeability field can be sampled based on three construction techniques, it is natural to generate three
realizations with each from one construction of KS, KM or KP. We merge two groups of KS and KM
as they are similar in terms of production performance; so we consider two major groups of KS/KM and
KP. For P1, thus we let m1 = 2 and ξ = {ω1,ω2}. With a simple simulation verification, we see two
randomly selected realizations from KS/KM and KP respectively are quite representative of the population
of 104 realizations (generated by reservoir engineers to cover most parameter uncertainties) in terms of field
production performance. For a more-accurate estimation of g, within P2, we sample more realizations based
on two parameters: permeability and facies. Thus, for P2 we set m2 = 5 and the sample ξ2 consists of five
realizations from the jointly-sampled realizations, i.e. one from KS-FY, KS-FN, KM-FY, KP-FY, and KP-FN
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Figure 5: Simulation results for hierarchical subsets of realizations using initial well locations. Cumulative
oil recovered versus time in years is plotted.

respectively. For P3, we consider the three most important parameters of permeability, facies, and fluvial
properties. Therefore we set m3 = 8 and ξ3 selects one realization from each of 8 combinations of these
three parameters. Figure 5 shows that the cumulative productions for sampled subsets of realizations based
on such hierarchical sampling. The production profiles of the selected subsets of realizations approximate
those of the population realizations well and better when the sample sizes get larger. For better accuracy
and possible better solutions, RODSI generates and solves the last P4 with 32 realizations including three
realizations from each of the eight groups of realizations.

4.1.2 Scaled Gradient Search for MISO

For many MISO problems associated with oil field development problems, the derivatives of objective
function corresponding to the integer valued versus continuous variables can have orders of magnitude
difference. For this Brugge case, the derivatives of integer variables are in the order of 108 whereas those
of continuous variables are in the order of 104. This scaling issue is significant so that a usual gradient
search will not be effective for the search in the control variable space because the search in the integer
subspace is dominating. To overcome this challenge, we scale the derivatives for integer and continuous
variables accordingly, that is, scaling up the continuous variable derivatives four orders of magnitude. With
such a treatment, the scaled gradient search will proceed within both steep integer variable subspace and
flat continuous variable subspace.

4.2 Numerical Results

We apply the RODSI algorithm described above to the Brugge case. The initial solution was given
based on engineering heuristics. Figure 6 shows the optimization progress through one run of RODSI.
The performance curve in Figure 6(a) reports the current maximal average NPV versus the number of
simulation calls performed. This run of RODSI solves four sample-path problems and thus RODSI returns
four RO iterate solutions. Together with the initial solution, we evaluate these five solutions with the
total of 104 realizations. The true improvement in NPV from the RODSI returned solutions for this
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Brugge field production is plotted in the Figure 6(b). The results suggest that RODSI returns the final
solution with about 1.85 billion dollars increase of average NPV. We also notice that the sampling errors
δk = |ĝ(Xk,mk)− g(Xk)|,k = 0,1,2,3,4 (the gap between the approximation and the true evaluation of
average NPV) reduce progressively as the sample sizes mk increase.
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(a) RODSI optimization progress for Brugge case.
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Figure 6: RODSI performance on Brugge field development.
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Figure 7: Optimized well placement for Brugge field.

Figure 7 shows the initial well locations and RODSI optimized well locations. The optimization
procedure moves the wells toward the reservoir boundary to obtain higher NPV. The initial well controls
of bottom hole pressure are set to be the same 750 psi through three 10-year intervals for all the 11
production wells. The optimized control values of 11 production wells from year 1 to year 10 are
[762,763,762,779,766,767,763,757,766,769,767], from year 11 to year 20 [763,766,767,766,762,767,
767,763,767,763,783], and the last 10 years from year 21 to year 30 [767,763,769,766,766,782,763,763,
768,763,767].

5 CONCLUDING REMARKS

In this work we implemented a retrospective optimization using dynamic simplex interpolation (RODSI)
algorithm for mixed-integer simulation optimization problems. The promising results for our target appli-
cation – optimizing the placement of oil wells and well operations in a medium-sized realistic model under
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uncertainty – suggest that RODSI can be used for this class of problems to provide significant improvement
in net present value. Future work will include algorithm convergence analysis and performance comparisons
with other methods.

ACKNOWLEDGMENTS

We thank Dr. David Echeverri from T.J. Watson IBM for valuable comments and suggestions on this work.
Cluster computing for reservoir simulation and optimization has been provided by the high-performance
computing center at Norwegian University of Science and Technology (NTNU).

REFERENCES

Bellout, M. C., D. E. Ciaurri, L. J. Durlofsky, B. Foss, and J. Klep. 2012. “Joint Optimization of Oil Well
Placement and Controls”. Computational Geosciences 16 (4): 1061–1079.

Caers, J., C. Scheidt, and K. Park. 2010. Modeling Uncertainty of Complex Earth Systems in Metric Space.
Springer-Verlag, Berlin-Heidelberg.

Cameron, D. A., and L. J. Durlofsky. 2012. “Optimization of Well Placement, CO2 Injection Rates,
and Brine Cycling for Geological Carbon Sequestration”. International Journal of Greenhouse Gas
Control 10:100–112.

Chen, H., and B. W. Schmeiser. 2001. “Stochastic Root Finding Via Retrospective Approximation”. IIE
Transactions 33:259–275.

Clarke, F. H. 1990. Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics,
Philadelphia.

Fu, M. C. 2002. “Optimization for Simulation: Theory vs. Practice (Feature Article)”. INFORMS Journal
on Computing 14 (3): 192–215.

Fu, M. C., F. W. Glover, and J. April. 2005. “Simulation Optimization: a Review, New Developments,
and Applications”. In Proceedings of the 2005 Winter Simulation Conference, edited by M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, and J. A. Joines, 83–95. Orlando, FL, USA: Institute of Electrical and
Electronics Engineers, Inc.

Glasserman, P., and Y. Wang. 1998. “Leadtime-Inventory Trade-offs in Assemble-to-Order Systems”.
Operations Research 46:858–871.

Hemker, T., K. R. Fowler, M. W. Farthing, and O. V. Stryk. 2008. “A Mixed-Integer Simulation-Based
Optimization Approach with Surrogate Functions in Water Resources Management”. Optim Eng 9:341–
360.

Hong, J. L., and B. L. Nelson. 2006. “Discrete Optimization via Simulation Using COMPASS”. Operations
Research 54 (1): 115–129.

Jin, J., and B. W. Schmeiser. 2003. “Simulation-Based Retrospective Optimization of Stochastic Systems”.
In Proceedings of the 2003 Winter Simulation Conference, edited by S. Chick, P. J. Sánchez, D. Ferrin,
and D. J. Morrice, 543–547. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Keskin, B. B., S. H. Melouk, and I. L. Meyer. 2010. “A Simulation-Optimization Approach for Integrated
Sourcing and Inventory Decisions”. Computers and Operations Research 37 (9): 1648–1661.

Kushner, H. J., and G. G. Yin. 1997. Stochastic Approximation Algorithms and Applications. Springer-Verlag,
New York.
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