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ABSTRACT 

Decisions regarding the buying, storing and selling of natural gas are difficult facing the high volatility of 

prices and uncertain demand.  The increasing availability of low-Btu gas complicates decisions faced by 

investors and operational planners of consumers of natural gas. This study examines multiple approaches 

to maximizing profits by optimally scheduling the purchase and storage of two gas products of different 

energy densities and the sales of the same combined with a blended third product.  Three approaches, a 

Branch and Bound-linear programming hybrid, a stochastic search algorithm-linear programming hybrid, 

and a pure random search are developed and tested in simulated environments.  To make each technique 

computationally tractable, constraints on the units of product moved in each transaction are implemented. 

Using numerical data, the three approaches are tested, analyzed and compared statistically and graphically 

along with computer performance information.  The result provides a basis for planners to improve deci-

sion making.   

1 INTRODUCTION 

Investors in natural gas seek to maximize profit by taking advantage of the seasonal low and high prices.  

Decisions regarding buying, storing and selling natural gas are difficult in the face of high variability of 

prices and uncertain demand. Various investment and management strategies exist.  Operational planners 

for commercial and industrial consumers of natural gas use various techniques for planning the buying, 

storage and selling of the product. 

 This paper describes our approach of combining simulation and linear programming to optimize the 

decision process.  While the focus is multi-cavern salt dome storage facilities, which have faster inventory 

turnover rates than the more common reservoir storage facilities, it is recognized that not all gas discussed 

in this paper is stored in such facilities (FERC 2004). 

 With economical stresses and increased emphasis on the protection of Earth’s environment, the use of 

natural gas from alternate sources has increased.  In many cases, such gas contains a lower energy content 

or Btu level, and while it may not be economically feasible to remove the impurities, it may still be desir-

able to use the gas rather than simply burning or ‘flaring’ it (EPA 2012).  Further complicating the prob-

lem is that the price curves of gas from different sources may not be synchronized.    

 Consumers and investors seek a means of executing the planning process in the presence of gases of 

differing energy content levels.  The primary purpose of this research is to acquire knowledge of tech-

niques for optimizing the scheduling of buying, storage and selling of natural gas inventories of differing 

heat contents, specifically to maximize profits or minimize costs in these operations.  Much work has 

been done in the area of scheduling standard pipeline-ready gas, but there exists a gap in the literature re-

garding mixed content gas.  This problem has nuances that differentiate it from existing research on 

mixed-product problems.  Further, the nature of natural gas and how it is stored distinguishes it from most 
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commodities.  For example, one distinctive characteristic of gas storage is that the rate of injection or de-

livery is related to the amount in storage at the time (Holland 2008). 

 The contribution this study makes in two areas lends to its significance.  First, it adds to the research 

in this field by contribution to the study of mix-product natural gas scheduling.  It provides initial infor-

mation regarding the optimization of natural gas storage and scheduling, a logistical and financial prob-

lem that has been studied a long time and will continue to be investigated. 

 Secondly, it adds to the body of environmental studies work.  Methane is the primary component of 

natural gas and is present in other bio-generated gases.  It is considered to be a contributor to global 

warming and is seen as a pollutant when released into the atmosphere.  As more and more low-Btu gas is 

captured to be used rather than released into the environment it is desirable to optimize its distribution and 

consumption. 

Three common numerical approaches that are applied to the valuation of gas in storage:  Monte Carlo 

simulation, numerical partial differential equation techniques and binomial/trinomial trees (Holland 

2007).  Stochastic optimization techniques find widespread use in simulation optimization.  When model-

ing natural gas storage and scheduling, it is common to use a Monte Carlo process to simulate the forward 

price curve, (Blanco 2002; Bjerksund et al. 2011).  

The practice of treating actual business opportunities as financial instruments is known as “real op-

tions theory.”  Frayer and Uludere (2001) identify five key components of real options: value of asset, ex-

ercise or strike price, time to expiration, volatility and risk-free rate. They modify the Black-Scholes 

model to real options and use it to evaluate a power production facility (Black and Scholes 1973).  Lai, et 

al. (2011) combined real option theory and stochastic-dynamic-programming to achieve a more tractable 

model for valuating liquid natural gas storage. Longstaff and Schwartz (2001) developed an approach 

to valuing American options through simulation using a least-squares approach.  The framework of this 

approach was based on Black and Scholes’ work.  Boogert and Jong (2008) adapted this approach to in-

clude complexities of natural gas storage, such as injection and withdrawal rates and working volume, 

and used Monte Carlo  to model prices.   

 In the next section of this paper the problem will be defined.  Section 3 describes the methodologies 

applies and the results are discussed in the fourth section.  Finally, Section 5 presents conclusions and 

ideas for further investigation.   

2 PROBLEM DEFINITION 

Natural gas has a cyclical demand pattern-- low in the fall, high in the winter as temperatures drop, low 

again in the spring, and then slightly higher in the hotter months as the demand for electricity for cooling 

increases.  To hedge against the cyclical demand pattern, gas is placed into underground storage.  Inves-

tors and operators of gas-consuming facilities seek ways to optimize the decision to buy, sell or hold natu-

ral gas when there exist gases of different energy contents.  Buyers of natural gas, whether as an invest-

ment tool or for consumption, seek to take economic advantage of the cyclical nature of gas prices, 

balancing seasonal cost differentials against storage costs.  In this model, consumption is thought of as an 

exchange of gas for heat or energy and is viewed as a sale at the market spot buy price.   

 The heat content or heat of combustion is the energy released when a substance undergoes combus-

tion with oxygen under standard conditions, 60ºF and 14.696 psia.  This may be known as heat of com-

bustion, heating value or calorific value.  Units are expressed as heating value per unit mass or volume.  

British thermal unit (Btu) per cubic foot is a common measurement of natural gas (NIST 2010).   This 

value is typically expressed in units or energy per unit mass, (which may be expressed as volume for gas-

ses at standard conditions).   

Natural gas, though mostly methane, contains other hydrocarbons such as ethane, propane, and butane 

or other impurities which may increase or, more likely, decrease the heat content.  While the heat content 

may range from 500 to 1500 Btu/ft3, most gas has a heat content value in the range of 900 to 1100 Btu/ft3 

and before being transported via the US interstate pipeline systems, gas must have a heat content of ap-

proximately 1030 Btu/ ft3. 
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Typical natural gas contracts are normally written on a 12-month basis and gas is priced for delivery 

to the Henry Hub in Louisiana (Holland 2007).  The price of gas obtained from other points on the inter-

state pipeline will be offset to reflect the transportation cost from the Henry Hub (NEB 2001). 

 The following notations are used throughout the paper.  Given period i, define 

 

  CA   Cost of GasA 

  CAb   Cost of GasAB 

CAPA   Max Facility Storage Capacity of GasA 

CAPB   Max Facility Storage Capacity of GasB 

  CB   Cost of GasB 

CSA    Storage cost of GasA $/unit/month  

CSAB    Storage cost of GasB $/unit/month  

H    Horizon – number of time periods 

  IA     Max injection rate of GasA 

  IB     Max injection rate of GasB 

INVA   Facility Current Inventory of GasA 

INVB   Facility Current Inventory of GasB 

MDVa  Max deliverable volume GasA   

MDVb  Max deliverable volume GasB 

pa      Profit GasA  

pab      Profit GasAB 

pb    Profit GasB 

  PA   Sales Price of GasA  

  PAb    Sales Price of GasAB 

  PB    Sales Price of GasB 

  rA    Ratio of GasA in GasAB (1- rB) 

  rB    Ratio of GasB in GasAB  (1-rA) 

RABi   Calculated profit of Gas AB in period i 

RAi    Calculated profit of Gas A in period i 

RBi    Calculated profit of Gas B in period i 

  dvola   Change in volume of GasA one period  

  dvolab   Change in volume of GasAB one period  

  dvolb   Change in volume of GasB one period  

 VA    Volume of GasA Injected  

 VB    Volume of GasB Injected 

 VA    Volume of GasA Withdrawn  

 VAB    Volume of GasAB Withdrawn 

  VolMaxA Max leased storage capacity of GasA  

  VolMaxAB Max leased storage capacity of GasB 

  WA     Max withdrawal rate of GasA  

  WAB    Max withdrawal rate of GasAB  

  WB      Max withdrawal rate of GasB  

YA    Number annual inventory turns for GasA 

YB    Number annual inventory turns for GasB 

 

 When using linear programming to find the product mix, the objective function being solved is  

 

  max(padvola + pabdvolab + pbdvolb), 

 

subject to: 
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   dvola + percentAinAB*dvolab <= MDVa 

   dvolb + percentBinAB*dvolab <= MDVb 

   dvola>=0, dvolb>=0, dvolab>=0 

 

where d is change in volume  and p, the profit of that transaction. 

 Throughout this model, a first-in-first-out (FIFO) pricing scheme is used for calculating the cost of 

gas sold.  Cx is a function of the initial cost of inventory and cost of storage.   

 Multiple constraints are applied.  The first is that gas must be in inventory the same month it is sold.  

Since gas can be sold and bought simultaneously, passing through storage, as it were, the inventory need 

not be in place at the beginning of the period but at the end.  The second constraint is that contracted ca-

pacity, CCAP, not be exceeded. 

 There may be situations in which gas of one or both types is in a stream delivered directly from its 

source rather than in storage.  In these cases, the total storage is equal to the maximum deliverable vol-

ume, effectively making the entire inventory pass through each period.  Landfill gas would be such an ex-

ample. 

 One more constraint implements a feature common to many natural gas storage contracts, i.e., 

that gas still in storage at the end of the contracted period is forfeited, effectively creating a product with 

an increasingly short shelf life.  Gas injected at the beginning of a contract has an effective life of twelve 

months, while gas injected into storage two months prior to the end of contract has a shelf life of only two 

months.  The penalty for having gas in storage at the expiration point of the storage contract is the loss of 

that gas at the current market price, the “spot” price. 

The following equation encompassed these constraints and calculates value as  

 

𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥 ∑  ((𝑑𝑊𝑎𝑖
𝑝𝑎𝑖

ℎ

𝑖=1

𝑑𝑣𝑜𝑙𝑎𝑖
− 𝑐𝑎𝑖

𝑑𝑣𝑜𝑙𝑎𝑖
𝑑𝐼𝑎𝑖

) + 

(𝑝𝑎𝑏𝑖
𝑑𝑣𝑜𝑙𝑎𝑏𝑖

𝑑𝑊𝑎𝑏𝑖) +  

(𝑑𝑊𝑏𝑖
𝑝𝑏𝑖

𝑑𝑣𝑜𝑙𝑏𝑖
− 𝑐𝑏𝑖

𝑑𝑣𝑜𝑙𝑏𝑖
𝑑𝐼𝑏𝑖

))) − 

(𝐼𝑛𝑣𝑎ℎ ∗ 𝑆𝑝𝑜𝑡𝑎 + 𝐼𝑛𝑣𝑏ℎ ∗ 𝑆𝑝𝑜𝑡𝑏) 
 

where   Wi and Ii are decision variables, taking a mutually exclusive value of 1 or 0, representing the 

decision to withdraw (sell) or inject (buy) gas, respectively. 

3 METHODOLOGY                                                                                                                                                                  

The research examined the use of simulation optimization techniques in combination with linear pro-

gramming to make optimal scheduling decisions regarding holding times, product mix values, product in-

jection and withdrawal schedules and transactional quantities.  In addition to simplified test data de-

signed to provide clear demonstrations of functionality and accuracy, we used price and cost data from 

past years as input for natural gas data and estimated landfill/low-Btu gas prices based on current trends 

and prices (EIA 2012).   

3.1 System Configuration 

We used the simulation package Awesim and modules written in Microsoft C++ to generate scenarios and 

in some cases used the linear programming package, LP_Solve 5.5 to provide the economical product mix 

and then evaluated the results.    Using Awesim, each entity represented a potential path and contained all 

information required to define each period and to generate values for the next.  This included all cost, 

price and inventory data as well as other parameters.  The entity ‘aged’ through the time horizon, 12 

months in most cases, changing value as different decisions were executed.  At the end of the 12-period 

horizon, that value was compared to that of the best-valued decision path and replaced it if it was better.  
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3.2  Approaches 

Three approaches were developed and compared.  A Branch and Bound (B&B) algorithm combined with 

linear programming (LP), B&B-LP, was developed.  This hybrid was implemented as a recursively creat-

ed trinary decision tree with options to buy, hold or sell gas at each node.  Heuristics were applied to limit 

the number of nodes per branch and thereby make the algorithm more computationally tractable.  

 An evolutionary stochastic search algorithm (SS-LP) in combination with LP was developed.  This 

direct stochastic search algorithm implemented the same heuristics as the B&B-LP hybrid.  Table 1 illus-

trates the progression from a fully direct approach to a fully stochastic one. 

 Finally, in order to compare the computational efficiency of the LP solver versus pure random search 

of the solution space, a Pure Random Search (PRS)-based approach (SS) was developed.  This approach 

did not operate under the same bounds as the B&B-LP and SS-LP algorithms.  It used more relaxed 

search criteria. 

Table 1: Methodologies. 

 

Approach Select Decision Select Product Mix 

Branch & Bound – 

LP Hybrid 

Direct Direct 

Stochastic Search – 

LP Hybrid 

Random Direct 

Stochastic Search Random Random 

3.3 Branch & Bound with LP 

This type of scheduling problem, with decision points made across a finite horizon, lends itself nicely to a 

B&B solution, with each node representing a decision point.  Decision points in the trinary tree were cre-

ated at each period of the 12-month horizon, three being generated from the previous node.  While B&B 

is conceptually simple, it is not without its limitations.  Although it can produce an exact optimum, with 

larger problems the amount of computer time required to find that solution may be too great to be useful.  

Without careful pruning, the number of bud nodes on a tree increases exponentially.  Mousavi et al. 

(2012) found this to be true, that the performance of B&B compared to a genetic or simulated annealing 

algorithm, which produced near-optimal solutions, was significantly poorer. 

 This multi-item, product-mix, multi-period inventory problem is non-deterministic polynomial time, 

NP-Hard, and finding the solution is computationally infeasible.  It cannot be solved efficiently as is, but 

it can be approached by reducing it to a simpler problem through the application of heuristics and bounds.  

A result of this problem restatement is that an approach that provides a near-optimal solution must suf-

fice.  

  

 Algorithm 1: Branch and Bound Optimization with LP 

for each entity loop 

    initialize independent variables & parameters 

    load prices, costs 

    apply variance process to price and cost data (simulate market) 

    (AWESim entity) enter B&B subroutine 

    repeat while at least one entity is in the B&B subroutine 

        case action: ‘hold’ 

            if current inventory<periods remaining * transaction volume  

                then apply action 

            else prune branch 

            end if  
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        case action: ‘buy’ 

            if current inventory<periods remaining * transaction volume 

                and current inventory + purchase <= max storage capacity  

                then apply action 

            else prune branch 

            end if 

        case action: ‘sell’ 

            if current inventory or A and B 

                then invoke LP_Solver 

  apply results to value and inventory levels 

            else process individual sale 

            end if 

        end case 

 

        update status of entity 

        if current entity is horizon (n) 

            compare value to current best value 

            if current value > best values 

                swap values 

            end if 

        else spawn new entity for each action (buy,hold,sell) 

               (entity) enter B&B subroutine 

        end if 

  end repeat 

end loop 

 

 By selecting an action to be taken at a specific time, B&B identified a subregion of the solution set.  

That subregion was further searched by the LP routine to find the best combination of products to sell.   

3.4 Stochastic Search with LP 

In the second approach, the use of a stochastic search (SS) routine to select sub-regions from the solution 

set replaced the B&B algorithm.  The decision to buy, sell or hold was then selected from a uniform ran-

dom distribution with each decision receiving equal weight, i.e., there was no bias toward either of the 

three decision actions.  Like the first approach, though, this one also used LP to optimize that selection. 

 

 Algorithm 2: Stochastic Selection with LP 

for each entity (trial) 

   initialize independent variables & parameters 

   load prices, costs 

   apply variance process to price and cost data 

   (entity) enter SS-LP subroutine 

   repeat for each iteration 

      repeat for s=1 to max solution samples 

         repeat for n=1 to horizon 

            generate action (stochastic process) 

            case action: ‘hold’ 

               if current inventory<periods remaining * transaction volume  

               then apply action 

               else prune branch 

 case action: ‘buy’ 

               if current inventory<periods remaining * transaction volume 

                and current inventory + purchase <= max storage capacity  

               then apply action 

               else prune branch 
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 case action: ‘sell’ 

    if current inventory or A and B> 

    then invoke LP_Solve  

  apply results to value and inventory levels 

    else process individual sale 

 end case 

 if value of plan > best plan 

 then set best plan=current plan 

 end repeat 

       end repeat 

   end repeat 

end loop 

3.5 Stochastic Search 

The stochastic search routine alone was used as the third method.  Full-horizon decision paths were gen-

erated and evaluated based on random selections from the solution set, with the best result being tracked.  

Rather than using LP, the volume moved in each transaction was the result of a random process. 

 

 Algorithm 3: Stochastic Selection (SS) 

for each entity (trial) 

   initialize independent variables & parameters 

   load prices, costs 

   apply variance process to price and cost data 

   (entity) enter SS subroutine 

   repeat for s=1 to max solution samples 

      repeat for n=1 to horizon 

     generate inventory delta gas A   -100 (sell) to 100 (buy)  

     % (in units of 25%) 

     generate inventory delta gas B   -100 (sell) to 100 (buy) % 

     generate inventory delta gas AB   -100 (sell) to 0% 

       case action: ‘buy’ 

            update entity inventory, value 

       case action: ‘sell’ 

            update entity inventory, value 

       end case 

       if value of plan > best plan 

          then set best plan=current plan 

    end repeat 

   end repeat 

end loop 

 

 Random Search (RS) or Pure Random Search (PRS) can be used and works on an infinite parameter 

space when it is not possible to evaluate every possible solution.  This is the general case of random solu-

tion searches, being performed without any heuristics or rules for reducing the set of solutions.  The pro-

cess ends after a predetermined number of searches have been completed, a limit of computer resources 

has been reached or an acceptable solution has been found.  This process performs best when a neighbor-

hood can be defined in the solution space (Olafsson and Kim 2002).  PRS has the advantage of avoiding 

local maxima.  While it has been applied primarily to discrete problems, its closely related technique, 

sample path optimization, is practiced on continuous problems (April et al. 2003).  While it can be shown 

that RS will converge to a near-optimal solution (Shi et al. 2000), one problem with this approach is the 

slow speed at which convergence is reached (Tekin and Sabuncouglu 2004). 
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 The existence of other, more guided approaches notwithstanding, this approach does find use in prac-

tice.  Poland, et al. (2011) applied a PRS algorithm to a smart home sensor placement problem and found 

that in 98.4% of test cases this approach produced superior results.   

4 RESULTS 

The B&B-LP algorithm provided, not surprisingly, the most accurate results.  Within the constraints 

placed on it, the process enumerated and evaluated each possible path in the 12-period horizon. In 25 tri-

als, the correct solution was found each time.  The number of samples evaluated was based on the maxi-

mum number of candidate paths enumerated by the trinomial tree, 312 = 531,441.  With the bounds placed 

on the algorithm, and considering the samples per second evaluated by the other approaches, it is unlikely 

that the solution set was fully enumerated.  These results are shown graphically in Figure 1. 

 

 

Figure 1: Best Solution Per Approach and Sample Size. 

 The SS-LP hybrid performed best when sampling 20000 solutions per iteration. It consistently found 

the optimum solutions with a STDDEV of 0.0. 

The SS algorithm was created with the option of generating specific volumes of gas to be bought or 

sold, with a range from -100% to 100% of the maximum transfer amount, and was initially generated in 

25% increments.  In practice, it turned out that this expanded the solution space to the point that the SS 

approach could not reliably converge to a near-optimal solution in a reasonable time.  Figure 2 graphical-

ly compares the accuracy and rate of convergence with that of the baseline, B&B-LP. 

 The Branch & Bound-LP hybrid was the best of the three approaches used in this project.  It returned 

the optimal solution and, when compared to the SS-LP and SS algorithms that actually executed long 

enough to generate a reliable optimum or near-optimum solution, it was the least computationally expen-

sive. 

5 CONCLUSIONS AND FUTURE RESEARCH 

This project has sought to extend current research by examining methods of optimizing the decisions that 

are made by gas investors and facility operators.  The specific focus was the combination of gases of dif-

ferent energy contents, or Btu levels.  This topic grows in importance as businesses seek to optimize re-

sources and as environment pressures dictate the consumption of gas of lesser quality. 
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 Simulation optimization is commonly employed to solve or find reasonable solutions to problems 

such as this.  Gas market environment was simulated using Monte Carlo techniques and three approaches 

were used to optimize profit in that market. 

 The B&B-LP hybrid was, within the constraints of the program, the most accurate, always returning 

an optimal solution and in the best time.  This accuracy was generated at the expense of flexibility and 

perhaps oversimplification.  Heuristics were applied to reduce the number of decision points at each node, 

exponential growth being the nemesis of dynamic programming. 

 

 

Figure 2: Accuracy of Non-Branch and Bound Approaches. 

 The advantage of the Stochastic Selection-Linear Programming (SS-LP) algorithms was its flexibil-

ity.  It was not as efficient computationally as the B&B-LP approach, but it was more readily modified to 

new constraints.   While the simplest and most flexible approach, the generic Stochastic Selection (SS) 

algorithm proved to be too computationally expensive to use without some constraints.  For example, per-

centage of shipping volumes were selected from a set of three options, -100%, 0, and +100%. 

 Quality of Solution Conclusions. Each of the three algorithms produced optimal solutions in both test 

cases.   The B&B-LP model found the optimal solution in the shortest time.  Not surprisingly, the accura-

cy of the stochastic solution search routines was directly proportional to the number of sample solutions 

examined.  The SS–LP model provided the optimal solution with a STDEV of 0.0 when 20,000 solutions 

were examined.  The SS model exhibited the same performance.  

 The energy industry and natural gas in particular is a global concern and, as it faces changes from 

economic, technological and environmental stimuli, there will be new and important areas of research.  

This project has examined and offered an useable approach, an approach superior to one based solely on 

historical performance,  to a problem that has become more prominent in the industry and will continue to 

receive attention.   

 One enhancement to the model might be to include the present value of money (PVM), in the cost 

function.  The inclusion of futures prices and the introduction of a geometric Brownian motion function to 

the price variable module may also prove profitable. 
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