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ABSTRACT 

Many inputs for simulation optimization models are assumed to come from known distributions. When 
such distributions are obtained from small sample sizes, the parameters of these distributions may be as-
sociated with an “uncertainty set” or ranges. The presence of this uncertainty means that one or more so-
lutions may be optimal depending on which parameters from the set are used. In this paper, we present a 
graphical methodology that combines bootstrap sampling and cross-evaluation techniques to visualize the 
data driven support for alternative solutions for problems in which distribution parameters are estimated 
using small sample sizes. We illustrate the methodology using a voting machine allocation problem. 

1 INTRODUCTION 

Simulation optimization techniques recommend design settings for systems that lack analytical expres-
sions for input/output relations (Rosen, Harmonosky and Traband 2007). This is done through the evalua-
tion of candidate solutions using a simulation model that takes candidate solutions as inputs, along with 
other parameter inputs based on fitted distributions (Fu 2002).  
 In the presence of uncertainty in some of the inputs of the given simulation model (due to say, estima-
tion of a distribution with smaller sample size),   we can imagine that the model parameters derive from 
an “uncertainty set” which spans the values that are reasonably consistent with the available data. When 
this is the case, one or more solutions may be optimal depending on which parameters from the uncertain-
ty set are used. It is both possible that solutions from different uncertainty set parameters may differ great-
ly in performance and the same solution may appear to foster vastly different performance if different pa-
rameters are applied (Delage and Mannor 2010, Dellino, Kleijnen and Meloni 2009). Under such 
circumstances, the objective of the modeler may shift to finding a solution that performs well across the 
many scenarios characterizing the uncertainty set. 
 Research on model uncertainty in simulation optimization is limited and focuses primarily on meth-
ods to obtain a single model-robust solution. Dellino, Kleijnen and Meloni (2009) consider solution ro-
bustness in simulation optimization using meta-model optimization-based approaches to obtain solutions 
that are  relatively insensitive to perturbations in model parameters. Rosen, Harmonosky, and Traband 
(2007) develop simulation optimization models for systems with multiple performance measures taking 
into account end user’s risk preference and uncertainty in the search process for the best solution. In this 
paper, we take a different perspective. Instead of seeking a single solution, we attempt to present the user 
with a visual display of relevant alternative solutions and the degree of support from the data for each so-
lution. Our graphical methodology, called Sufficiency Model-Action Clarification Simulation (SMAC-
SIM), is a modification of the approaches presented in (Allen and Rajagopalan 2011) and (Afful-Dadzie 
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2012)  and combines bootstrap sampling which is used for assessing uncertainty in distribution parame-
ters (Chernick 2008), and cross-evaluation to generate and compare candidate solutions graphically.   
 The remainder of the paper is organized as follows. Section 2 presents the proposed methodology. In 
Section 3, we apply the method to an election systems allocation problem. Section 4 presents conclusions 
and directions for future research. 

2 PROPOSED GRAPHICAL METHODOLOGY 

Figure 1 describes the steps of the proposed sufficiency model-action clarification simulation (SMAC-
SIM) methodology for simulation optimization. We use the vector n to denote the sample sizes for all fit-
ted distributions relevant to our model. 
 
Sufficiency Model-Action Clarification Simulation (SMAC-SIM) Method 

Step 1: (Naïve modeling) Perform input analysis as usual given the available data. Store all estimated 
model parameters in the vector ܷ௢. We refer to ܷ௢ as the naïve model. 

Step 2: (Bootstrap sampling) Sample m datasets each characterized by the original dataset sample size, n. 
For each dataset, refit all the needed distributions to obtain the model parameter sets ܷ ൌ
ሺ ଵܷ, ܷଶ, … , ܷ௠ሻ. 

Step 3: (Multiple optimizations) For each ݅ ൌ 1,2, … ,݉, perform simulation optimization to generate the 
associated optimal solution ߨ௜ and the performance value ݖ௜ using inputs from model ௜ܷ. The resulting so-
lutions are written П ൌ ሺߨଵ, … ,  .௠ሻߨ

Step 4: (Probability estimation) Identify the q distinct solutions among the ݉ solutions from Step 3 and 
tabulate the fraction of models associated with each of the ݍ unique solutions. These fractions are Monte 
Carlo probability estimates that the associated solutions are derived from the bootstrap sampling distribu-
tion.  

Step 5: (Cross evaluation) Evaluate each of the q distinct solutions from Step 4 using all the ݉ models 
from Step 2 and new random seeds to derive ݉ fresh performance estimates. These are the Monte Carlo 
estimates for mean performance. 

Step 6: (Visualization) Compare the q distinct solutions using box-and-whisker plots based on the ݉ 
Monte Carlo estimates for each distinct solution from steps 4 and 5. 

Figure 1: Steps of the sufficiency model-action clarification simulation (SMAC-SIM) methodology. 

 The procedure in Figure 1 is similar to the fractional factorial data analysis method in Allen and Ra-
jagopalan (2011). In  Allen and Rajagopalan (2011), a Bayesian mixture model was applied to derive the 
m datasets which are the sub-models being mixed. The bootstrap sampling procedure in Step 2 is arguably 
simpler and more generally relevant. This follows because sampling from the naïve model is often easily 
accomplished without restriction to available conjugate prior model formulations.  

3 CASE STUDY: VOTING-MACHINE ALLOCATION PROBLEM 

In this section, we describe the case study example relating to voting machine allocation via simulation 
optimization in preparation for the illustration of the SMAC-SIM methodology in the next section. We 
begin by reviewing the literature related to voting machine allocation. Next, we overview the three loca-
tion problem, describe the input data and fitted distributions, the model formulation, and the simulation 
optimization.  
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3.1 Background Related to Voting Machine Allocation 

Long waiting times experienced in recent general elections have drawn attention to the efficient allocation 
of election resources across voting locations (Yang, Fry, and Kelton 2009). Reducing waiting times which 
are non-increasing in number of servers or machines is important because it is a major factor to voter 
turnout (Spencer and Markovits 2010; Mebane 2005; Stein and Vonnahme 2012). 
 Edelstein and Edelstein (2010) list a number of issues that makes voting-machine allocation challeng-
ing and difficult to solve. Like any queuing problem, factors such as number of machines, arrival rate, 
voting times and expected voter turnout all play a major role in estimating waiting times of voters at a lo-
cation. The arrival rate to polling stations is difficult to estimate because it is random and non-stationary 
with peaks in early morning, lunch time and after work hours (Edelstein 2006; Spencer and Markovits 
2010). There is also uncertainty in voting times and turnout rates which are major factors in the voting-
machine allocation problem. 
 The most popular voting allocation method used by many election boards in the U.S is apparently the 
“proportional allocation” method in which resources are allocated in proportion to the expected number of 
voters at each location (Edelstein 2006). This method seems appropriate when the number of ballot issues 
is uniform across locations. When differences exist in the number of ballot issues across locations, it in-
troduces differences in voting times and the proportionality method results in unequal waiting times 
across the locations (Yang, Fry, and Kelton 2009).  
 A number of authors including Allen and Bernshteyn (2006a), Allen and Bernshteyn (2006b), Yang, 
Fry, and Kelton (2009), and Yang, Allen, Fry, and Kelton (2013) used simulation optimization models to 
analyze voting-machine allocation problems but did not consider uncertainty in distributions of inputs in 
their simulations.  

3.2 Model Overview 

 We include parametric uncertainty in our simulation but focus on a relatively small allocation problem 
involving only three locations for the purpose of illustrating SMAC-SIM. Others, including Yang, Allen, 
Fry, and Kelton (2013) consider much larger problems involving hundreds of locations and thousands of 
resources (machines). Further, we assume the polls are open 13 hours plus the time it takes until all voters 
in line at 7:30 pm have voted.  
 Once a voter arrives to an assigned location, the voter joins a single first in first out (FIFO) queue un-
til a voting machine becomes available. The model also assumes that all available voting machines to be 
allocated are identical. Our implementation of the simulation model is in Excel VBA and builds on the 
code developed for Yang, Allen, Fry, and Kelton (2013). We refer to our resources as “voting machines” 
because our voting time data derived from direct recording equipment (DRE) machines and ballot from 
the 2008 Ohio presidential election.  

3.3 Data and Input Distributions 

Next, we describe the relevant data in detail needed to simulate the arrival and service processes. The 
three locations are associated with short, medium, and long ballot lengths respectively. We assume the lo-
cation with the short ballot has 1,500 registered voters, the location with the medium ballot, 1,200 regis-
tered voters and the  location with the long ballot,  2,000 registered voters. The data on voting times 
comes from a mock voting exercise conducted in July 2008 in Franklin County, Ohio as part of a study to 
analyze the impact of the number of ballot issues on expected voter waiting time.  

The service or voting time data in Table 1 was collected using a usability data capture tool from a 
project conducted on behalf of the Franklin County Board of Elections. The service time is the time re-
quired by the voter while they are monopolizing the machine or resource. The study involved 30 female 
and 30 male of voting age who used actual equipment and ballots to vote in a mock election. In terms of 
voting experience, 20%  of the participant had never voted before, 60% had voted between 1 and 4 times 
in previous elections, while 20% had voted in at least 4 presidential elections. 35% of the participants 
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were African Americans with the rest made up of other races. In addition, 40% of the participants had a 
college degree. Each location was assigned 20 voters. Table 1 shows the voting times for each voter for 
each of the 3 locations. 

 
Table 1: Voting times of 20 voters at 3 locations from a mock voting exercise  

Voter Long Medium Short 

1 6.88 14.89 6.94 
2 7.70 7.30 4.52 
3 4.18 7.36 4.46 
4 6.24 5.55 5.00 
5 12.79 14.83 6.47 
6 12.45 7.06 6.54 
7 18.73 5.58 5.81 
8 8.42 8.55 7.93 
9 8.88 16.35 4.94 

10 6.34 9.71 5.46 
11 8.56 4.61 3.84 
12 5.01 9.62 5.21 
13 8.43 7.72 3.68 
14 6.77 6.90 4.25 
15 20.05 12.10 6.48 
16 15.88 12.69 13.68 
17 10.90 9.35 7.95 
18 18.97 7.92 4.09 
19 12.91 12.01 7.33 
20 12.77 9.76 6.47 

 
Following Yang, Allen, Fry, and Kelton (2013), we apply the lognormal distribution for modeling the 

service times. The lognormal distribution is expressed in terms of the parameters  μ௜ and ߪ௜ for locations i 
= 1,2, and 3. Here, we estimate the parameters from our data using the maximum likelihood estimators of 
the lognormal distribution : 

 

௜ߤ̂                                         ൌ
∑ ୍୬௫ೖೖ

௡
                ݅ ൌ 1,2,3.                                                      (1) 

 

పෝߪ                                     
ଶ ൌ

∑ ሺ୍୬௫ೖିఓෝ೔ሻమೖ

௡
       ݅ ൌ 1,2,3.                                                       (2) 

The “naïve” estimates based on the data in Table 1 and the formulas in equations (1) and (2) are: ̂ߤଵ= 
 .ොଷ=1.32ߪ ଷ= 1.75, andߤ̂ ,ොଶ=1.47ߪ	,ଶ= 2.19ߤ̂ ,ොଵ=1.51ߪ ,2.27

3.4 The Min-Max Optimization Model 

The underlying optimization model in our simulation comes from  the “minimax” optimization formula-
tion from Yang, Allen, Fry and Kelton (2013) and Allen and Bernshteyn (2006a). Specifically, the objec-
tive is to choose a machine allocation that minimizes the maximum expected voter waiting times across 
all locations, written formally as: 

         ݉݅݊௫೔ ܼሺܺሻ            
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subject to 
    ∑ ௜ݔ ൌ ேܯ

௜ୀଵ                (3) 
௜ݔ     ൒ ܾ௜, ௜ݔ ∈ ሼ1,2,3… ሽ           
    ܼሺܺሻ ൌ ௜∈ேݔܽ݉ ௜ܹ ሺܺሻ           

 
where N is the number of locations or polling stations, M is the total number of available voting machines 
to be allocated, and ௜ܹሺܺሻ, ݅ ∈ ܰ is the average waiting time in location ݅. ܾ௜ is the minimum number of 
voting machines required at location ݅, and ݔ௜ is a positive integer. We assume that ∑ ܾ௜

ே
௜ୀଵ ൑  so that ܯ

feasible solutions exist. Also, ܺ ൌ ሺݔଵ, ,ଶݔ … , ,ேሻᇱݔ ௜ሺ݅ݔ ∈ ܰሻ is the number of voting machines allocated 
to location i, such that ݓ௜ሺݔ௜ሻ, ݅ ∈ ܰ is the waiting time at location ݅ with ݔ௜ voting machines.  

3.5 Algorithm Description of the Min-Max Formulation 

To solve the simulation optimization problem, we apply the greedy constant sample size heuristic from 
Yang, Allen, Fry and Kelton (2013). To review, the heuristic solution method is: 

Step 1. Assign initial values to ݔ௜ for each location ݅ (by default set ݔ௜ ൌ 1  for all ݅).  

 Counter ൌ ∑ ௜ݔ
ே
௜ୀଵ  ≤ M 

Step 2. If Counter ൌ M stop. Otherwise go to Step 3. 
Step 3. Run the simulation with r replications to generate estimates for the expected waiting times at 

each location. Let ݔ௜ ൌ ௜ݔ ൅ 1 for the location	݅ with the largest estimated expected waiting time 
in queue. Set Counter = Counter + 1, and go to Step 2. 

Yang, Allen, Fry and Kelton (2013) provide a rigorous guarantee for the solution quality associated 
with this heuristic computed at the time of termination. 

4 APPLICATION AND RESULTS 

In this section, we apply the SMAC-SIM method to the three location voting machine problem using 
three assumptions or cases relating to service (voting) time data availability. All three cases share the 
same inputs for the simulation model except data on voting times which differ in quantity. The first is 
based on the 20 data per location in Table 1. The second and third are based on hypothetical cases in 
which 500 and 1,000 service times per location are available, respectively. We note here that, using only 
the naïve model for the simulation optimization leads to an optimal allocation of 37-23-15 representing 37 
machines at the location with long ballot, 23 machines at the location with medium ballot, and 15 ma-
chines at the location with shorter ballot. The average of the expected waiting time across the 3 locations 
is 61.22 minutes, with a maximum of 67.14 minutes at the location with long ballot length. 

4.1 SMAC-SIM Application with 20 Data Points Per Location 

Data on voting times for the first case (Case #1) is shown in Table 1 which is made up of 20 samples of 
voting times for each of the three locations. In Step 1, we fit a naïve distribution to the n = 20 samples of 
voting times from Table 1 and call this, together with the other input distributions and parameters, model 
ܷ௢. In Step 2, we generate m = 20 models where for each model, the distribution parameter for the voting 
time is estimated from the 20 bootstrap samples of the naïve distribution from Step 1. In Step 3, we per-
form simulation optimization for each of the m = 20 models to generate 20 optimal solutions. In Step 4, 
we identify that there are q = 7 unique allocations and tabulate the probability estimates associated with 
the unique allocations. Step 5 evaluates each of the q = 7 unique allocations using all the m = 20 models 
and tabulates the 20 associated expected waiting time values for each unique allocation. In Step 6, multi-
ple box-and-whisker plots are generated from the 20 expected waiting times for each of the  q = 7 unique 
allocations. The box-and-whisker plots are shown in Figure 2, ordered by the estimated probabilities from 
smallest to highest.   
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 In Figure 2, we see that allocations 37-23-15 and 34-23-18 were each suggested by 1 model (5%) as 
the optimal allocation. The other allocations listed are supported by more than a single model resulting in 
higher estimate probabilities. For example, 4 models all generated the same allocation 36-21-18 as puta-
tively optimal.  

 

 
Figure 2: SMAC-SIM plots of expected waiting times for voting-machine allocation policies. The num-
bers separated by a hyphen represent the number of machines allocated to the 3 locations long, medium 
and short in the order given. For instance, allocation 37-23-15, will allocate 37 machines to location the 
location with long ballot, 23 to the location with medium ballot and 15 to the location with the shorter 
ballot. The accompanying percentage in bracket represents the number of models for which the allocation 
was optimal. 

 
 The box-and-whisker plots characterizes the expected mean performance for each allocation under all 
20 models. For example, regardless of which model occurs in reality, the maximum expected waiting time 
under allocation 37-23-15 would not exceed 100 minutes, and the minimum expected waiting time would 
be as low as 30 minutes. One could choose to place more confidence in say allocation 38-20-17 than allo-
cation 37-23-15 for the fact that allocation 38-20-17 has a shorter maximum expected waiting time and a 
tighter bound (of about 50 minutes) to allocation 37-23-15.  
 The width of the box-plot represent the estimated range of the effect of parameter uncertainty on ex-
pected waiting time that could be removed by additional data collection. Roughly about 25 minutes in un-
certainty could be removed by additional data collection.  
 A large number of solutions on the x-axis is an indication of high parametric uncertainty. When that 
happens it may be advisable to collect additional data to reduce the uncertainty (see section 4.2). Yet, if 
one or more of the optimal solutions is predicted to achieve desirable performance regardless of which 
model is accurate, one might logically recommend that allocation without further additional data collec-
tion.  
 Comparing the SMAC-SIM results in Figure 2 to the one from the naïve model, we see that, the per-
formance of allocation 37-23-15 (which is also the allocation suggested by the naïve model) clearly 
shows a different picture than that from the naïve model. Here, we see that if the worst possible scenario 
was to occur, allocation 37-23-15 would lead to an expected waiting time of nearly 100 minutes at one of 
the 3 locations. This is in sharp contrast to the 67.14 minutes predicted by the naïve model.    
 In the next subsection, we examine how the number of optimal allocation (solution) choices as well as 
associated performance interval reduces as more data become available. 
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4.2 SMAC-SIM Application with 500 Data Points Per Location 

Next, we derive the SMAC-SIM plot for a hypothetical case in which the naïve model is the same but we 
imagine that the sample size which derived it was n1 = n2 = n3 = 500. In Step 4, we identify only q = 4 
unique allocations. The derived SMAC-SIM plot is shown in Figure 3. Note that with more data, alloca-
tion 37-21-17 is now suggested by 30% of the models compared to 10% from Case #1 to be optimal. Al-
location 37-23-15(which is also suggested by the naïve model) is now not among the likely optimal mod-
els. Also, only 3 of the allocations from Case #1 is now considered among the likely optimal allocations. 
Allocation 39-20-16 is not even suggested in Case #1. We also see that the widths of the plots are now 
tighter signifying a reduction in uncertainty. From Figure 3, it look as if though the 4 allocations would 
perform approximately the same. 

 

Figure 3: SMAC-SIM plots of expected waiting times for voting-machine allocation policies. The num-
bers separated by a hyphen represent the number of machines allocated to the 3 locations long, medium 
and short in the order given. For instance, allocation 39-20-16, will allocate 39 machines to the location 
with long ballot, 20 machines to the location with medium ballot and 16 machines to the location with 
shorter ballot. The accompanying percentage in bracket represents the number of models for which the 
allocation was optimal.  

4.1 SMAC-SIM Application with 1,000 Data Points Per Location 

Next, we derive the SMAC-SIM plot for a hypothetical case in which the naïve model is the same but we 
imagine that the sample size which derived it was n1 = n2 = n3 = 1,000. Here, Step 4 identifies only q = 3 
policies. As shown in Figure 4, the optimality of allocation 37-21-17 is still not assured (only 55% likely 
to be the optimal allocation) but the possible relative losses for accepting this allocation are likely mini-
mal because of the narrow ranges in the simulated waiting times values from Step 5. Also, the loss in per-
formance from employing allocation 38-21-16 over allocation 37-21-17 are predicted to be minimal, even 
while allocation 38-21-16 has only an 20% likelihood of being optimal. 

1 CONCLUSION AND FUTURE WORK 

In this paper, we have presented a new methodology called Sufficiency Model-Action Clarification Simu-
lation (SMAC-SIM) which provides insight about the impact of parametric uncertainty on the optimal so-
lutions from simulation optimization models. Using box-and-whisker plots, the performance of multiple 
relevant optimal solutions and their estimated optimality probabilities are displayed. We illustrated the 
proposed method using a three location voting allocation problem. The results dramatize the limitation of 
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using only 20 service time data points per location. The resulting uncertainties in the performance of the 
recommended allocations vary widely enough to, potentially, justify additional data collection. This fol-
lows because the ranges on the SMAC-SIM in Figure 2 might be considered unacceptably wide. For ex-
ample, if the 36-21-18 allocation were applied, some of the relevant model supported by the data indicate 
expected waiting times of 100 minutes could be possible.  
 

 
Figure 4: SMAC-SIM plots of expected waiting times for voting-machine allocation policies. The num-
bers separated by a hyphen represent the number of machines allocated to the 3 locations long, medium 
and short in the order given. For instance, allocation 38-21-16, will allocate 38 machines to the location 
with long ballot, 21 machines to the location with medium ballot and 16 machines to the location with 
shorter ballot. The accompanying percentage in bracket represents the number of models for which the 
allocation was optimal. 

 
 One benefit of the SMAC-SIM approach and the associated plots is that it could help the decision 
maker choose solutions  that are in some sense,  robust to any possible scenario. For example, from Fig-
ure 2 we  conclude that the allocation 38-20-17 offers relatively good model robustness in that none of the 
20 models derived from bootstrap sampling predict longer than 90 minutes of expected waiting times.  
 The SMAC-SIM approach and the derived plots also provide insight into the need for additional data 
collection and the amount of performance gains that could be derived from additional data. More solu-
tions on the x-axis is an indication of higher parameter uncertainty. As more data becomes available, the 
number of suggested solutions reduces and the difficulty in choosing among competing solutions lessons. 
When more data is also available, the width of the box plots becomes tighter and expected performance 
results becomes more definitive. The SMAC-SIM approach is fully automated. In particular, the process 
for determining the alternative optimal solutions is fully incorporated in the simulation optimization pro-
cess.   
 A number of topics remain for future research. First, one could consider uncertainty in assumed pa-
rameters as well as distribution choices in addition to distribution parameters. Secondly, formulations that 
explicitly include data collection as an option can be developed. These can be attempted using for exam-
ple, a Bayesian prior posterior formulation to capture the likely value of additional data collection. Third-
ly, a shortcoming of the bootstrap sampling approach is that it does not provide general finite-sample 
guarantees. Therefore, alternative sampling approaches may be needed when sufficiently large samples 
cannot be obtained. One possible alternative to bootstrap sampling could be based on randomly dividing 
the input data into three or more groups, fitting models to each group and basing simulations off the de-
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rived parameters. The derived simulation outputs would be independent with respect to the randomness in 
the input data. Under approximate normality assumptions, policy options could then be evaluated with 
rigorous confidence intervals. 
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