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ABSTRACT

Due to the complexity of split delivery vehicle routing problem (SDVRP), a simulation based optimiza-
tion approach is proposed. A simulation model is used to capture the dynamics and uncertainties of the
system and evaluate the system performance. Three split policies, LOS-policy, LDD-policy and LWT-
policy are designed to implement the order split/consolidation. To optimize the route of orders in a con-
solidation, a genetic algorithm is developed and integrated with the simulation model. Experimental re-
sults showed that the average order size has significant impact on consolidation and split policies. Split
delivery outperforms non-split delivery significantly when the average order size occupies about 60% of a
truckload. Large arrival rate of orders also benefits split delivery. Sparse distribution of customers deteri-
orates the performance of split delivery. In various experimental scenarios, LDD-policy is always better
than LOS-policy and LWT-policy.

1 INTRODUCTION

Since the split delivery vehicle routing problem (SDVRP) was introduced by Dror and Trudeau (1989), it
has been attracting the interests of many researchers. Comparing with classical vehicle routing problem
(VRP), the demands of a customer can be split and satisfied by multiple deliveries in SDVRP. Empirical
studies show that split delivery may lead to cost savings (Dror and Trudeau 1989; Archetti et al. 2008).
Nowak et al. (2008, 2009) conducted research on SDVRP and did many sensitive experiments to demon-
strate the relationship between important system parameters and the benefits of split delivery in third-
party logistics. Their research results show that more cost saving can be obtained by split delivery if the
order size of each customer occupies 51% to 60% of truckload. Ho et al. (2004) indicates that split deliv-
ery can save transportation capacity and transportation distance. Split delivery may also be beneficial to
customers. Chen et al. (2007) point out that split delivery can help the customers receive their part of
goods more quickly so as to improve their service satisfaction.

It seems there are some studies that focus on the benefits of split delivery (Dror and Trudeau 1989;
Archetti et al. 2008; Salani et al. 2011; Nowak et al. 2009). However, most current methods solv-
ing/optimizing the SDVRP emphasize analytical analysis via mathematical programming models. For ex-
ample, Jin et al. (2008) proposed a column generation approach for solving SDVRP. Comparing with cut-
ting plane algorithm, their method can obtain better upper and lower bound. Desaulniers (2010) designed
a branch-and-price-and-cut method for SDVRP with time windows considered to minimize the transpor-
tation cost. This optimization approach does very well when the demands are determined and the number
of customers is less than one hundred. Gulczynski et al. (2010) studied a kind of SDVRP with minimum
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delivery amounts. They built a mix integer programming model to optimize the transportation cost. Lin et
al. (2011) developed a multi-objective integer programming model for the emergency supply of critical
items in the aftermath of a disaster. Multi-items, multi-vehicles, multi-periods, soft time windows and a
split and prioritized delivery strategy scenario were considered in their optimization framework. To effec-
tively solve this model, they limited the number of available tours for delivery vehicles. Hertz et al. (2012)
studied a cement delivery problem with a heterogeneous fleet of vehicles and several depots where the
demands of the customers are larger than the capacity of the vehicles. A two-phase integer linear pro-
gramming model was proposed in their paper to solve this split delivery vehicle routing problem.

Due to the complexity of real-life SDVRP, the analytical methods will usually face the curse of di-
mensionality, which makes it hard to solve the large-scale vehicle routing problems. Furthermore, there
exist many uncertain factors such as stochastic order arrivals, fluctuation of order size and transportation
time in the process of logistics service. It is very necessary to consider these uncertainties in the optimiza-
tion model because they have important impacts on system performance (Clara and Robert 2009). To ad-
dress these issues in SDVRP, a simulation-based optimization methodology is proposed in this paper. The
simulation is employed to model the transportation problem, obtain the system performance such as total
cost and service level, and capture the uncertainties and dynamics of the system. A genetic algorithm
(GA) is introduced to optimize the transportation routes. Several split policies are designed to implement
the split and consolidation of customer orders. The rest of this paper proceeds as follows. Section 2 de-
scribes our simulation-optimization framework and the genetic algorithm. Section 3 gives the details of
split policies and the conceptual simulation model. Section 4 shows the simulation experiments and ana-
lyzes the experimental results. We will conclude our research in section 5.

2 SIMULATION-OPTIMIZATION FRAMEWORK FOR SDVRP

A simulation-based optimization that integrates genetic algorithm (GA) and discrete event simulation
(DES) within an evolutionary computing framework is proposed to optimize the split delivery vehicle
routing problem. Figure 1 shows the overall architecture describing the integration of simulation sub-
system and optimization sub-system. The architecture has two main models that work independently and
interact with each other: a simulation model and an optimization model. Order arrives at RDC (Regional
Distribution Center) randomly. The order information such as order size (weight or volume), due date, lo-
cation and so on will be input into the simulation model, where some split and consolidation policies will
be applied first to determine if this order can be combined with other ones to build a bigger batch and be
delivered together by one carrier. If the split/consolidation can be done immediately, the information of
the orders in this split/consolidation will be transferred to the optimization model where “good” vehicle
routes will be produced by some optimization algorithms (e.g., genetic algorithm). Otherwise, the order
(entity) will be held in a queue and wait for consolidation. When order split and consolidation happens,
the optimization model (implemented here by GA) will first build a population (routes for the orders in
this consolidation). This vehicle routes are then fed back to the simulation model and the transportation
process is simulated as well as the system’s performance such as total cost are obtained and will be trans-
ferred back to the optimization model. If a satisfied route is achieved, the split, consolidation and routing
results will be finally output to the real-life system. Otherwise, the evolution process of GA, i.e. selection,
crossover and mutation will be carried out so that better routes can be found. To interact between the sim-
ulation model and optimization model, an interface is usually needed.
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Figure 1: Overall simulation-optimization framework.

In the design of GA for routing optimization, we adopt decimal numbers to encode a solution/route.
For example, gene string “3, 1, 4, 5, 2” stands for a chromosome (solution/vehicle route) that five orders
are combined together into a batch for transportation by one vehicle. And order 3 will be first delivered,
then order 1, 4, 5. When the last order (order 2) is delivered, the vehicle will come back to RDC. Roulette
method is used to select individuals. Uniform crossover is developed to produce next generation of popu-
lation and genes reverse is introduced as mutation operator for GA (Gen and Cheng 2000).

Simulation is powerful for modeling and analyzing complex systems where uncertainties and dynam-
ic processes are main issues. While genetic algorithm does well in finding good solutions for the problem
defined. As a result, such an integrated approach provides a flexible and effective way for solving com-
plex optimization problems (Pan et al. 2011; Zhou et al. 2013). With this simulation-based optimization
framework, other optimization methods such as Tabu Search, Simulated Annealing can also be integrated
with simulation.

3 SPLIT POLICIES DESIGN AND CONCEPTUAL SIMULATION MODEL

The type of systems under this study is a RDC that carries inventory to serve customers (e.g., retailers)
located within a geographic region. The uncertainties of demands such as arrival time, order size, due date,
and the uncertainties of transportation such as transportation time are considered in our simulation system.
One consolidation policy (Q-policy) and three split policies (LOS-policy, LDD-policy and LWT-policy)
are studied in this paper. In Q-policy, the orders are processed via FIFO (first in first out) rule. Suppose
there are m orders waiting in the consolidation queue when the i order comes in (m>0 and i>1). We
define s, as the size (volume or weight) of the £ order, Q as the total order size (Q=s, +5, +5, +---+s,,),
and C as the truck capacity. If Q< C, the i" order will wait in the consolidation queue according to FIFO
rule. If O =C, the i" order will be consolidated with all the m orders in the queue to form a batch and de-
livered together to the customers in one route. If Q > C, the m orders in the queue will be consolidated
and delivered in a batch and the i order will wait for next consolidation. Q-policy is a classical consoli-
dation policy. So it is regarded as a benchmark of non-split policy to compare with the split policies
(LOS-policy, LDD-policy and LWT-policy) proposed in this paper.

As described above, only quantity factor is considered in Q-policy. To improve the split/consolidation
effectiveness, we design three split policies (LOS-policy, LDD-policy and LWT-policy) in which the
quantity and time factors are considered simultaneously. When an order entity enters the simulation sys-
tem, a new attribute named CanWaitTime is assigned. The attribute CanWaitTime is used to determine
how long the order can be “hold” in the consolidation queue according to its lead time and estimated
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transportation time. When CanWaitTime goes by, the order will be delivered. The other orders in the con-
solidation queue will then be consolidated and delivered together with this order as many as possible. Pan
et al. (2011) indicated the details for estimating CanWaitTime. Due to the space limit, we do not show it
in this paper. LOS-policy, LDD-policy and LWT-policy are all based on the estimation of CanWaitTime.
The difference among these split policies is the mechanism of selecting split order. When split occurs in
LOS-policy, the order with largest order size is selected to be split. While in LDD-policy, the order with
latest due date is selected. In LWT-policy, the order with largest CanWaitTime is selected to be split.

4 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

To test and validate the conceptual model proposed, we use general-purpose simulation platform
MATLABO to develop executable models for experimental studies. M-function embedded in
MATLABO is employed to implement the genetic algorithm and regarded as an interface to integrate
simulation with optimization. We omit the implementation details in this paper since they are mainly real-
ized by computer programming with C language in MATLABO.

4.1 Benchmark and its Simulation Results

We first present an exemplary case that twenty customers are clustered in the religion of RDC. Table 1
gives the input parameters of current operations (benchmark). Using the integrated model that combines
simulation with optimization, we analyze the system performance of Q-policy and the three split policies
proposed under an uncertain environment. Some important performance indices are defined as follows:

* Total late cost = Unit late cost x Total late time;

* Total fixed cost = Fixed cost per truckload x Number of truckload;

* Total transportation cost = Unit transportation cost x Total transportation distant x Total transportation
quantity;

* Total cost = Total transportation cost + Total late cost + Total fixed cost;

* Average fixed cost = Total fixed cost + Total size of orders;

* Average late cost = Total late cost + Total size of orders;

» Average transportation cost = Total transportation cost + Total size of orders;

» Average total cost = Average fixed cost + Average late cost + Average transportation cost.

Table 1: Simulation input parameters.

parameter value
Truck capacity (C) 5 tons
Unit transportation cost 3 RMB/(ton - km)
Order size UNIF(2.5, 3.5) ton
Fix cost 3000 RMB/truckload
Arrival interval time EXPO(1/20) hour
Lead time TRIA(6, 8, 10) hour
Unit late cost 10 RMB/hour late
Truck speed TRIA(40, 70, 100) km/hour

Note: UNIF - uniform distribution; EXPO - exponential distribution; TRIA - triangle distribution; RMB -
The Chinese currency unit.

Table 2 shows the simulation results of the benchmark. As shown in Table 2, LDD-policy has the
minimal average total cost (1420.077 RMB/ton) while Q-policy has the maximal average total cost
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(1556.494 RMB/ton). LOS-policy and LWT-policy are not as good as LDD-policy in average late cost,
average transportation cost and average total cost. However, both of them outperform the non-split policy
(Q-policy) in average total cost. These results demonstrate that split delivery can also reduce average total
cost under uncertain environment. By comparing average fixed cost with average transportation cost and
average late cost, we can see that the main reason of the decrease in average total cost of split delivery is
as follows. Truckload via split delivery may increase the transportation distance of orders in one route
(there are more orders in the consolidation due to order split), which leads to higher average transporta-
tion cost and average late cost. However, truckload can result in fewer vehicles so that the average fixed
cost declines obviously, which makes the average total cost in split delivery lower. In the benchmark, the
average order size is about half of the truck capacity. Consequently, it is hard to form order consolidation
in Q-policy and most orders will be delivered separately. So the average late cost and average transporta-
tion cost of Q-policy is the smallest one and the average fixed cost of Q-policy is the largest one among
these four policies.

Table 2: Simulation results of the benchmark.

Average Transpor-

tation Cost Average Fixed Average Late Cost

Consolidation/split Average Total

policies Cost (RMB/ton) (RMB/ton) Cost (RMB/ton) (RMB/ton)
Q-policy 1556.494 556.6113 999.8815 0.001443
LOS-policy 1471.185 828.3003 604.2635 38.62097
LDD-policy 1420.077 781.7886 600.9658 37.32263
LWT-policy 1476.917 823.978 600.2229 52.71572

4.2  Effects of Split Policies Under Different Conditions

To analyze the effects of split policies under different conditions, some sensitivity experiments about or-
der size, arrival rate, and geographical distribution of customers are done in our study. All the experi-
ments are based on the benchmark. When a system parameter is changed to do the experiments, the other
parameters keep unchanged.

Table 3 compares the average total cost of Q-policy and the three split policies when average order
size changes (the distribution pattern and the variance of order size keep unchanged). As we can see, or-
der size has significant impact on system performance. With the decrease of average order size, the aver-
age total cost goes up because there are more orders in a consolidation need to be delivered when the or-
der size is small, which increases the transportation cost and late cost apparently. While in Q-policy, a
peak value appears when the average order size is 3 tons (60% of truckload). The reason is as follows.
Most orders with 3 tons has to be delivered separately (the truck capacity is 5 tons), which leads to low
loading rate and high fixed transportation cost. However, orders with small size (e.g., 2 tons) are easier to
be consolidated and orders with large size (e.g., 4 tons) result in higher loading rate, which makes the av-
erage total cost decrease when order size is small or large in Q-policy. Table 3 also indicates that split de-
livery is not always profitable, especially when the order size is very small. When the average order size
occupies about 60% truckload, split delivery reaches its best performance. In general, LDD-policy is bet-
ter than LOS-policy and LWT-policy under the condition of different average order size.
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Table 3: Average total cost of consolidation and split policies at different order size.

Consolidation/split Average order size (tons)
policies 1 2 2.5 3 3.5 4
Q-policy 1969.06 1443.022 1450.125 1556.494 1335.238 1168.572
LOS-policy 2333.498 1681.074 1555.272 1471.185 1409.383 1359.329
LDD-policy 2315.653 1649.632 1511.854 1420.077 1359.435 1319.942
LWT-policy 2345.526 1708.289 1579.912 1476.917 1402.802 1373.067

The comparison of different split/consolidation policies at different arrival rate is shown in Table 4.
The simulation results indicate that the change of arrival rate has no significant impact on non-split policy
while it affects the performance of split policies apparently. With the increase of arrival rate, more orders
enter the simulation system and it is easier to form consolidation/split. As a result, the average total cost
drops down in split delivery. Similarly, the LDD-policy is the best among these three split policies.

Table 4: Average total cost of consolidation and split policies at different arrival rate.

Consolidation/split Average arrival rate (number of arrival orders per hour)
policies 2 4 6 8 10 20
Q-policy 1555.011 1561.04 1559.193 1554.343 1554.119  1556.494
LOS-policy 1515.595 1512.588 1507.162 1501.319 1488.777  1471.185
LDD-policy 1492.502 1486.754 1471.561 1457.617 1449.926  1420.077
LWT-policy 1523.43 1500.864 1511.293 1491.767 1486.437 1476917

To analyze the effects of geographical distribution of customers, we keep the number of customers
(i.e. twenty customers) unchanged while the area coverage extends from 300 kilometers to 500 kilometers.
The customers is scattered among this area randomly. Namely, the distribution of customers is sparser.
Table 5 shows the average total cost of consolidation and split policies in both compact geographical dis-
tribution (benchmark) and sparse distribution of customers. As we can see, due to the longer transporta-
tion distance in sparse distribution, the average total cost goes up no matter which policy is adopted. The
simulation results also demonstrate that in sparse distribution, non-split delivery outperforms split deliv-
ery because there are more orders need to be delivered and the longer transportation distance leads to
higher transportation cost and late cost when orders are split into several parts. LDD-policy is still better
than LOS-policy and LWT-policy in sparse distribution.

Table 5: Average total cost of consolidation and split policies at different geographical distribution of cus-
tomers.

geographical distribu- Consolidation/split policies
tion of customers Q-policy | LOS-policy | LDD-policy | LWT-policy
Compact distribution 1556.494 1471.185 1420.077 1476.917
Sparse distribution 1698.378 1797.895 1785.34 1824.43

5 CONCLUSIONS

This paper focuses on the issues of split delivery vehicle routing problem (SDVRP). To overcome the
shortcomings of traditional analytical methods when solving this kind of complex problem, a simulation-
based optimization approach is proposed. Our contribution lies in two folds. On the one hand, we design a
general-purpose simulation-optimization framework that integrates discrete-event simulation with genetic
algorithm to solve SDVRP. Simulation is used to model the complex logistics system, capture the dynam-
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ic characteristics and obtain the system performance. Genetic algorithm is developed to find a “best” ve-
hicle route for the consolidated orders by evolution computing with the guidance of system’s performance
obtained via simulation. With this framework, other optimization methods can also be employed. On the
other hand, three split policies, LOS-policy, LDD-policy and LWT-policy are proposed. The results of
simulation experiments indicate that split delivery is not always effective. Some important conclusions
are summarized as follows: (1) the average order size has significant impact on consolidation and split
policies. When the average order size occupies about 60% truckload, split delivery is better than non-split
delivery apparently. (2) The average arrival rate of orders is more sensitive to split policies than non-split
policies. The larger the arrival rate is (i.e. the more the orders enter the logistics system), the better per-
formance can be obtained via split delivery. (3) Sparse distribution of customers makes the effectiveness
of split delivery deteriorate and even worse than non-split delivery. (4) Among the three split policies
proposed in this paper, LDD-policy outperforms the other split policies in various simulation scenarios.
As for the future research, we are interested in studying the choice behavior of customers in SDVRP. For
example, some customers may accept split delivery while others may not. Some customers may be will-
ing to receive their goods in several batches if they can get a discount in price, while others may not. If
customers have these personalized services, what is the influence to the distribution system and how to
balance the economic performance of split delivery and customer satisfaction?
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