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ABSTRACT 

Xerox has invented, tested, and implemented a novel class of operations-research-based productivity im-
provement offerings that has been described in Rai et al. (2009) and was a finalist in the 2008 Franz 
Edelman competition. The software toolkit that enables the optimization of print shops is data-driven and 
simulation based. It enables quick modeling of complex print production environments under the cellular 
production framework. The software toolkit automates several steps of the modeling process by taking 
declarative inputs from the end-user and then automatically generating complex simulation models that 
are used to determine improved design and operating points. This paper describes the addition of another 
layer of automation consisting of simulation-based optimization using simulated-annealing that enables 
automated search of a large number of design alternatives in the presence of operational constraints to de-
termine a cost-optimal solution. The results of the application of this approach to a real-world problem are 
also described. 

1 INTRODUCTION 

Xerox has invented, tested, and implemented a novel class of operations-research-based productivity im-
provement offerings, marketed as Lean Document Production (LDP), for the $100 billion printing indus-
try in the United States. The LDP software toolkit automates several steps of the modeling process by tak-
ing declarative inputs from the end-user and then automatically generating complex simulation models 
that are used to determine improved design and operating points for the print shops. In this paper, we de-
scribe the addition of another layer of automation to the LDP toolkit consisting of a simulated annealing 
based simulation optimization that enables automated search of a large number of design alternatives in 
the presence of operational constraints to determine a cost-optimal solution for the print production envi-
ronment.  
 The printing industry is highly fragmented with thousands of print shops that are geographically dis-
tributed. This approach lends itself to being utilized for optimizing print shops across multiple geogra-
phies by users less skilled in the art of simulation modeling and optimization thereby allowing unprece-
dented scalability of a simulation-based optimization toolkit to a wide user-base. Users are able to utilize 
the simulation-based optimization toolkit to make complex design and operational decisions and develop 
optimized designs without having to actually go through the arduous task of building the simulation mod-
els and the associated optimization framework around it.  

This paper is organized as follows. In Section 2, a review of prior art is provided. Section 3 provides a 
characterization of the print-production environment. Section 4 describes the problem being addressed in 
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this paper. Section 5 provides an overview of the Lean Document Production solution and the LDP 
toolkit. Section 6 describes the existing procedure of selecting the optimal printing equipment. Section 7 
describes the simulation-based optimization using the LDP toolkit. Section 8 describes some applications 
and case studies using a real-world example. Section 9 describes future work planned in this area. 

2 PRIOR ART 

The problem of constrained simulation optimization over a finite discrete set of decision variables has re-
cently started receiving some attention. Andradóttir, Goldsman, and Kim (2005) presented a two phase 
statistically valid procedure that detects feasibility of systems in the presence of one constraint with a pre-
specified probability of correctness. Batur and Kim (2005) extended Andradóttir, Goldsman, and Kim 
(2005)  procedure to the case of multiple constraints. Szechtman and Yücesan (2008) considered the prob-
lem of feasibility determination in stochastic settings. They provided an algorithm for optimal sampling 
allocations using large deviation theory. Pujowidianto et al. (2009) proposed an optimal computing budg-
et allocation framework for selecting the best design from a discrete number of alternatives in the pres-
ence of a stochastic constraint via simulation experiments. Kabirian and Olafsson (2009) proposed itera-
tive heuristic algorithm with a limitation on simulation budget or probability of correctness for selecting 
the best solution in the presence of stochastic constraints. Luo and Lim (2011) propose a new method that 
converts constrained optimization into the unconstrained optimization by using the Lagrangian function. 

The approaches discussed above either visit all the designs or convert the problem in to a single ob-
jective function to find the best system. Suppose we conduct n simulation replications for each of θ de-
signs, we need nθ total simulation replications. If the precision requirement is high, and if the total num-
ber of designs in a problem is large, then nθ can be very large, making the system evaluation 
computationally intensive using the existing methods. In such cases, random search algorithms such as 
simulated annealing, tabu search and genetic algorithms proves to be the best choice. Simulated annealing 
which was proposed by Kirkpatrick, Gelatt, and Vecchi (1983) has shown successful applications in a 
wide range of combinatorial optimization problems, and this fact have motivated researchers to use simu-
lated annealing in many simulation optimization problems. But these search techniques need to be 
adapted for the stochastic environment associated with discrete-event simulation optimization. 

Haddock and Mittenthal (1992) have investigated the feasibility of using a simulated annealing algo-
rithm in conjunction with a simulation model. Alkhamis and Ahmed (2004) have developed a variant of 
simulated annealing algorithm for solving discrete unconstrained stochastic optimization problems by us-
ing a constant temperature and convergence criteria as the number of visits made by the different states in 
the first m-iterations to estimate the optimal solution. Prudius and Andradóttir (2005) have presented two 
variants of the simulated annealing algorithm with a decreasing cooling schedule that are designed for 
solving unconstrained discrete simulation optimization problems. Ahmed, Alkhamis, and Hasan (1997) 
presented the simulated annealing algorithm for solving stochastically constrained simulation optimiza-
tion systems . They perform student t test to check the feasibility of current solution and restricted the 
transition moves to only feasible configurations.  

Unlike ranking and selection procedures, the application of meta-heuristics techniques to simulation 
optimization problems in stochastic settings may not guarantee the probability of correct selection of a so-
lution. But in most of the cases we observe that they converge to optimal or near optimal solutions in rea-
sonable amount of time which is most desirable in many real world applications. In this paper we have 
presented the modified simulated annealing which can handle uncertainty in simulation output and sto-
chastic constraint(s). The algorithm starts with an initial feasible solution and utilizes a decreasing cooling 
schedule for identifying the optimal solution. To estimate the objective functions we make use of all the 
observations obtained so far at that solution. We perform student’s t hypothesis test similar to Ahmed, 
Alkhamis, and Hasan (1997) procedure to determine the feasibility of a solution at current iteration. Un-
like in Ahmed, Alkhamis, and Hasan (1997) procedure, our algorithm does not restrict the neighborhood 
search to feasible moves only. 
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3 CHARACTERIZATION OF WORKFLOW IN PRINT SERVICE CENTER 
ENVIRONMENTS 

Print service center can be classified into three categories based on the activity that they perform-
transaction printing, on-demand publishing, or a combination of both. A transaction-printing environment 
produces documents such as checks, invoices, etc. Each document set is different. Mail metering and de-
livery are part of the workflow. On-demand publishing environments focus on producing several copies 
of identical documents with more finishing options such as cutting, punching and binding. Examples of 
such products include books, sales brochures and manuals. Other environments perform both types of 
document production simultaneously with varying emphasis on each one.  

The document production steps associated with print jobs are indicated in Figure 1. Typically print 
service centers have departments that support individual steps of this workflow. Each department supports 
many different types of internal workflows resulting from the use of different types of software tools, 
printing machines types (e.g., offset, digital) and a variety of finishing equipment (such as cutting, bind-
ing, laminating, shrink-wrapping). For further description of each of the steps, we refer the reader to Rai 
et al. (2009). 

 

 

Figure1: A print production workflow showing the various production operations. 

4 PROBLEM DESCRIPTION 

Print service centers experience many sources of variability. They exhibit high levels of task size varia-
tions, routing complexity and demand fluctuations as shown in Figure 2 that makes them hard to opti-
mize. These service centers are primarily make-to-order service systems that cater to specific requests of 
each incoming customer. The incoming service requests have random arrival and due-date requirements 
that vary from job to job and often exhibits variability within the same job-type. The size of the jobs is of-
ten characterized by highly non-normal distributions and sometimes fat-tail distributions (Rai 2008). 

 

 

Figure 2: Multiple sources of variability in a print production environment such as power law job-size 
distributions, multiple co-existent job types and high demand fluctuation. 
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In addition to the above challenges, print shops also experience long bid times, variability in labor 
and equipment characteristics etc. The LDP tool kit automates the workflow modeling and analysis of 
print service center. In order to optimize the cost and performance of print service center, the user manu-
ally evaluates a limited number of designs and selects the best design among them. While this process al-
lows users to evaluate multiple configuration scenarios manually, it also can tend to be labor-intensive 
and time consuming and could lead to sub-optimal solutions. In this paper we have described an automat-
ed method for selecting the least cost optimal solution for print service center out of a large number of so-
lutions by integrating the optimization algorithm with the LDP solution. 

5 THE LDP SOLUTION FOR PRINT SERVICE CENTER ENVIRONMENT 

To address the complexity of operations associated with the print production processes, the service center 
resources are organized in autonomous cells (Rai et al. 2009). As a result, the most common jobs can be 
finished autonomously inside (at least) one of these cells. Figure 3 shows how traditional print service 
centers are organized based on a departmental structure operated by specialized workers and compares it 
to the redesigned operational framework based on autonomous cells where diverse pieces of equipment 
are collocated and operated by cross-trained workers.  

 

 

Figure 3: Figure showing how a departmental configuration of a print service center is transformed into a 
cellular structure utilizing autonomous cells and the corresponding two-level architecture for the Lean 
Document Production Controller . 

To orchestrate the flow and control of jobs through the parallel hierarchical cell structure, the Lean 
Document Production Controller (LDPC) uses a 2-level architecture (Figure 3) for production manage-
ment. The LDPC has: 

 
 A service center controller module (Service centerCM)—high-level controller, in charge of global 

service center management.  
 Several cell controller modules (CellCMs)—low-level controllers, in charge of local management 

inside cells.  
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5.1 Simulation 

Simulation is performed to assess the results of improvements resulting from changes in workflow group-
ing, operator cross-training, grouping diverse equipment into autonomous cells and scheduling policies. 
Building discrete-event simulation models is often a time-intensive effort especially when various scenar-
ios have to be investigated to determine improved solutions. To facilitate the model building process, the 
LDP tool semi-automatically builds the simulation models from a declarative user-interface (see Figure 
4). This allows for fast and efficient evaluation of a large number of what-if scenarios and greatly aids in 
determining an improved solution out of a large search space.  

The user specifies the equipment characteristics, elements of the cell, scheduling policies, number of 
operators and their skill level, and workflow/job characteristics as inputs to the simulation model using 
the LDP user-interface(see Figure 4). Before the shop is simulated, the user  schedules the jobs automati-
cally using the two level scheduling architecture described above. Next the tool simulates the print service 
center and results the performance metrics such as average turnaround time, number of late jobs, operator 
and equipment utilization etc., as shown in Figure 4.  

 

 

Figure 4: Illustrates the user interface for defining the printing equipment, operators and shop policies, 
and simulation results for a sample print service center. 

6 EXISTING PROCEDURE FOR SELECTING OPTIMAL EQUIPMENT DESIGN IN PRINT  
SERVICE CENTER 

The selection of optimal printing equipment in the print service center is currently carried out manually 
and exhaustively. The user first defines the necessary equipment type, cost and other characteristics 
(speed, setup time, failure and repair rates etc.,) in each cell, The job workflow characteristics and other 
shop operating policies (job sequencing policy, batching and work in progress etc.,) are collected from the 
shop and loaded in to the LDP tool. An equipment design is defined as a combination of different number 
of equipment types in each cell.  The user has to create different equipment designs that he is interested 
on by varying the number of equipment’s of each type in each of the cell. Each of these equipment design 
is simulated N number of times in order to account for the simulation randomness. Then, the mean per-
formance measure of interest and total cost of the equipment is computed. Finally the user selects the 
equipment design that has the least cost and meets the desired print service center performance goal as 
specified by the user. This process of evaluating multiple design configuration is labor-intensive, time 
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consuming and can lead to sub-optimal solutions. Figure 5 illustrates the detailed process flow diagram of 
existing procedure.    

 

 

Figure 5: Illustrates the existing procedure for selecting optimal equipment configuration using LDP tool 
in print service center. 

7 SIMULATION BASED OPTIMIZATION USING THE LDP TOOLKIT  

The main idea in this study is to integrate the optimization routine and simulation module within the LDP 
toolkit that embodies many elements of shop specification and modeling automation. This enables the au-
tomatic search of optimal solution for the print production service center. For more detailed discussion, 
applications and benefits of integrating optimization with simulation can be found in Fu et al. (2000), 
Harkan and Hariga (2007), Zeng and Yang (2009), and Sandeman et al. (2010). 

7.1 Problem Formulation 

The problem of selecting the cost-optimal solution for the print production environment in the presence of 
stochastic operational constraints over a large number of design alternatives can be mathematically for-
mulated as below.  
                                        Objective: 	minଡ଼ౡ	∈ୗ ଴݂ሺܺ௞ሻ    (1)                           
                                        Subject to: 																					fଵሺܺ௞ሻ ൑ 	δ	;																													     
                                                                															lb୧୨ 	൑ 		x୧୨ 	൑ 	 		ub୧୨, i ൌ 1. . n୨, j ൌ 1. .m; 

                                                                															X୩ ൌ ൣx୧୨൧; 
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where S, the search space, is a large, finite, and discrete set of equipment design configurations;	X୩ is the 
kth equipment design configuration, which is the vector combination in the number of each type of 
equipment  in each cell; k is the index of equipment design configuration; x୧୨ is the number of ith type of 
equipment in jth cell;	n୨ is the number of unique equipment types in cell j; m represents the total number 
of cells in the  print service center;			lb୧୨	and 		ub୧୨ are the lower and upper bounds on the number of ith 

type of equipment in jth cell; f଴ሺX୩ሻ is the  total equipment cost defined as ܥ௜௝ ൈ  ௜௝,  where Cij is the costݔ
of ith equipment in jth cell; fଵሺX୩ሻ is the print service center performance measure such as average turna-
round time/ number of late jobs/ maximum average turnaround time, which cannot be evaluated exactly, 
but needs to be estimated via LDP simulation. Let ܣ௞௟ be the print service center performance observation 
observed from simulation replication l of system k, then ଵ݂ሺܺ௞ሻ ൌ -௞௟ሿ; and δ is the maximum desiraܣሾܧ
ble level on print service center performance measure.  

7.2 Modified Simulated Annealing Algorithm 

Here, we present the modified simulated annealing algorithm used for solving the problem (1). This algo-
rithm starts with an initial feasible solution and utilizes a decreasing cooling schedule for identifying the 
optimal solution. The general purpose simulated annealing doesn’t handle stochastic constraints when it 
moves from one solution to another. A solution is feasible if it meets the print service center performance 
goal as specified by the user. To test the feasibility of a solution, we do the following procedure proposed 
by Ahmed, Alkhamis, and Hasan (1997): 

Let us consider, an arbitrary stochastic constraint	gሺθሻ ൑ 	δ, where gሺθሻ is the stochastic simulation 
output for design θ and δ being the maximum desirable level. Letting g୧ሺθሻ denote the ith simulation repli-
cation and running simulation n times, the estimate for  gሺθሻ could be determined over n replications as 

gොሺθሻ ൌ
∑ g୧ሺθሻ
୬
୧ୀଵ nൗ 	and the variance of gොሺθሻ is given by	σෝ୥ොሺ஘ሻ ൌ

∑ ൫g୧ሺθሻ െ gොሺθሻ൯
ଶ୬

୧ୀଵ
n െ 1
൘ .Then the 

feasibility conditions are as follows. H0: gොሺθሻ <= δ	, H1: gොሺθሻ	> δ.  

We accept H0, if	ω ൌ 	gෝሺθሻ ൅ t୬ିଵ,ଵି஑ ൈ
σෝ୥ොሺ஘ሻ

√n
൘ 	൑ 	δ, where n-1 is the degrees of freedom, 1-α is 

the upper critical point for the t distribution and σෝ୥ොሺ஘ሻ denotes the standard deviation of	gොሺθሻ.  
Unlike in Ahmed, Alkhamis, and Hasan (1997) procedure, our algorithm does not restrict the neigh-

borhood search to feasible moves only. In their method the temperature length (M) parameter is not in-
cremented until a neighboring feasible solution is found, resulting in unknown/more number evaluations. 
When the probability of  finding a feasible neighborhood solution is very low, this may result in indefinite 
looping. In the modified simulated annealing algorithm, the temperature length (L) parameter is incre-
mented irrespective of the feasibility of the neighborhood solution, providing more control on the total 
number of evaluations by the algorithm. Let T0 be the initial temperature, Tf be the final 

ture( ଴ܶ
ௗܶ௘௣௧௛

൘ ) and r the temperature decay rate. This results in the following series of annealing temper-

atures: 

଴ܶ, ଴ܶ ൈ ,ݎ ଴ܶ ൈ ,ଶݎ ଴ܶ ൈ ଷݎ …… .൅ ଴ܶ ൈ 	,௡ݎ

௙ܶ ൌ
బ்

்೏೐೛೟೓
ൌ ଴ܶ ൈ 	,௡ݎ

݊ ൌ
୪୭୥ଵ ்೏೐೛೟೓ൗ

௥
.	

If the number of times to search a neighborhood solution at a given temperature is L, then the number 
of evaluations is ݊ ൈ  To estimate the performance measure the algorithm makes use of all the historical .ܮ
observations obtained at that solution. Next, we define the following: 
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 Definition 1 The search space S is a set of equipment design configurations whose cardinality is 
∏ ∏ ሺܾݑ௜௝ െ ݈ܾ௜௝ ൅ 1ሻ

௡ೕ
௜ୀଵ

௠
௝ୀଵ  

 Definition 2 For each	ܺ௞ ∈ ܵ , there exists a subset ܰሺߠሻ of 	ܵ െ ሼܺ௞ሽ which is called the set of 
neighbors of		ܺ௞, such that each point in N (ߠ) can be reached from ܺ௞ in a single transition.  
 
 Parameters:  Number of times to run the simulations at design (X୩): n 

                Temperature depth:	Tୢ ୣ୮୲୦ 
                Temperature decay rate: r 
                 Maximum desirable level of secondary performance measure: δ 
                 No of times to search a neighborhood solution at a given temperature: L 

    Significance value for t-test: α 
Step 1. Set: feasibility=false	
Step 2. Begin Loop: While Until feasibility=false 
Step 3. Obtain Initial Design Configuration: Xi∈S 
Step 4. Generate observations ሼf0ሺXiሻሽj=1

n   , ሼf1ሺXiሻሽj=1
n  

Step 5. Evaluate : fመ0ሺXiሻ,f1
෡ሺXiሻ,σොfመ0ሺXiሻ

,σොfመ1ሺXiሻ
and tn-1,1-α	 

Step 6. IF ω≤ δ Then  feasibility=true 
Step 7. End Loop 

Step 8. Set: ݒalue= fመ0ሺXiሻ,  Tinitial= value
 2ൗ  ,  Tfinal=

Tinitial
  Tdepth
൘  

Step 9. Begin Loop: While Until T≥Tfinal 
Step 10. Set : valueold=value 
Step 11. Begin Loop : do j=1…..L 
Step 12. Set:		feasibility=false 
Step 13. Get Neighborhood Design Xj∈	NሺXiሻ, where Nሺθሻis the set of	neighborhood of	θ, θ	∈S	 
Step 14. Generate observations ൛f0൫Xj൯ൟj=1

n
  , ൛f1൫Xj൯ൟj=1

n
 

Step 15. Evaluate : fመ0൫Xj൯,f1
෡൫Xj൯, σොfመ0൫Xj൯

,  	௡ିଵ,ଵିఈݐ	ො௙መభ൫௑ೕ൯ܽ݊݀ߪ

Step 16. IF ߱≤ δ Then  feasibility=true 
Step 17. IF feasibility=true	Then 
Step 18. valuenew=fመ0൫Xj൯	
Step 19. Evaluate:  ݀elta=valuenew-value	 and generate Uk~Uሾ0,1ሿ 

Step 20. IF delta<0 OR e
-delta

T
ൗ ≥Uk then	 value=valuenew and Xi=Xj 

Step 21. End IF 
Step 22. End IF 
Step 23. End IF 
Step 24. Next j 
Step 25. End Loop 
Step 26. ܶ ൌ ݎ ൈ ܶ 
Step 27. End Loop 
Step 28. Return Optimum Design Configuration: Xi

*= Xi 
Step 29. Return Optimum Value: fመ0൫ Xi

*൯ 
Step 30. End 
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8 APPLICATION AND CASE STUDY 

This section illustrates the selection of optimal printing equipment configuration in a transaction print 
shop which has two cells and six stations using existing and simulation based optimization approach with 
two different test cases. Table 1 shows the printing equipment in each cell and their fixed cost. In both the 
test cases, the total equipment cost is deterministic and defined as ܥ௜௝ ൈ  ௜௝ where, Cij is the fixed cost ofݔ
ith station in jth cell and  x୧୨	is the number of ith type of equipment in jth cell. The print service center per-

formance measure ( ଵ݂ሺܺ௞ሻ)  is problem specific and can only be estimated by running simulations. 

Table 1: The printing equipment in each cell and their fixed cost. 

Cell  Station  Fixed Cost 

Cell One Printer A 2448874 
Cell One Inserter A 423366 
Cell One Inserter B 1443304 
Cell One Printer B 2448874 
Cell Two Printer C 3000000 
Cell Two Inserter B 1443304 

 
Job data for a period of 10 days is collected from the print shop with 2692 jobs in the period. The 

number of equipment of each function/station type in a cell is varied between 1-3 and the total number of 
possible equipment configuration is 729. Table 2 illustrates a sample of all the possible equipment con-
figurations. 

Table 2: A sample of equipment configuration. 

Design 
No 

Number of 
Printer A 
stations in 
Cell One 

Number of 
Inserter A 
stations in 
Cell One 

Number of 
Inserter B 
stations in 
Cell One 

Number of 
Printer B sta-
tions in Cell 
One 

Number of 
Printer C 
stations in 
Cell Two 

Number of 
Inserter B 
stations in 
Cell Two 

1 1 1 1 1 1 1 
2 1 1 1 1 1 2 
. . . . . . . 
. . . . . . . 
728 3 3 3 3 3 2 
729 3 3 3 3 3 3 

8.1 Test Case 1 

In this problem, we have considered the print service center performance measure ( ଵ݂ሺܺ௞ሻ) as average 
turnaround time less than or equal to 5 hours. The average turnaround time is defined as the arithmetic 
average of turnaround times (difference between the completion time and arrival time of job) of all the 
jobs. Table 3 illustrates the optimal and/or near optimal equipment configuration using existing approach 
with N equal to 30 (N is the number of simulations replications for each design configuration) and simu-
lation optimization approach with the parameters n=5, L=5,	 ௗܶ௘௣௧௛ =100, r=0.9 and α =0.01 for three dif-
ferent simulated annealing runs. 
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Table 3: Test case 1 results summary. 

 Exhaustive Search  
(Existing Approach) 

Simulation Optimization Approach  

 1st best  2nd best  Run 1 Run 2 Run 3 
No of Printer A stations in Cell One 1 1 1 1 1 
No of Inserter A stations in Cell One 1 2 1 1 2 

No of Inserter B stations in Cell One 3 3 3 3 3 

No of Printer B stations in Cell One 1 1 1 1 1 

No of Printer C stations in Cell Two 1 1 1 1 1 

No of Inserter B stations in Cell Two 2 2 2 2 2 

Optimal Total Station Cost 15537634 15961000 15537634 15537634 1596100
0 

Number of Simulations 21870 1120 1115 1115 
Time in Hours 29.94 1.44 1.66 1.47 

8.2 Test Case 2 

In this problem, we have considered the print service center performance measure ( ଵ݂ሺܺ௞ሻ) as number of 
late jobs less than or equal to 0. A print job is late if the completion time is more than its due. Table 4 il-
lustrates the optimal and/or near optimal equipment configuration using existing approach with N equal to 
30 (N is the number of simulations replications for each design configuration) and simulation optimiza-
tion approach with the parameters n=5, L=5,	 ௗܶ௘௣௧௛ =100, r=0.9 and α =0.01 for three different simulated 
annealing runs. 

Table 4: Test case 2 results summary. 

 Exhaustive Search (Existing Ap-
proach ) 

Simulation Optimization Approach  

 1st best  2nd  best  3rd  best  Run 1 Run 2 Run 3 
No of Printer A sta-
tions in Cell One 

1 1 1 1 1 1 

No of Inserter A 
stations in Cell One 

2 3 1 1 1 3 

No of Inserter B 
stations in Cell One 

2 2 2 2 3 2 

No of Printer B sta-
tions in Cell One 

1 1 1 1 1 1 

No of Printer C sta-
tions in Cell Two 

2 2 2 2 2 2 

No of Inserter B 
stations in Cell Two 

2 2 3 3 2 2 

Optimal Total Sta-
tion Cost 

17517696 17941062 18537634 18537634 18537634 17941062

Number of Simula-
tions 

21870 1105 1115 1120 

Time in Hours 29.94 1.77 1.56 1.50 
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9 FUTURE WORK 

This paper presents a simulated annealing based simulation-optimization solution for optimally selecting 
equipment to design print shops. It describes how suitable abstractions and automation of the simulation 
tool can enable deployment of the Lean Document Production solution for cost-optimal equipment selec-
tion within a highly fragmented printing industry while optimizing key performance objectives such as 
maximum turnaround time, average turnaround time and number of late jobs. Future work includes evalu-
ation of other optimization approaches, expansion of optimization criteria, speeding up of the optimiza-
tion time via problem-dependent heuristics and parallelization and enabling the deployment of the solu-
tion via web-based tools. 
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