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ABSTRACT 

While ontology deals with the question of being or existence, epistemology deals with the question of 

gaining knowledge. This panel addresses the challenge of how we gain knowledge from modeling and 

simulation. What is the underlying philosophy of science of M&S? What are our canons of research for 

M&S? Is it sufficient to apply the foundational methods of the application domains, or do we need to ad-

dress these questions from the standpoint of M&S as a discipline? The invited experts illuminate various 

facets from philosophical, mathematical, computational, and application viewpoints. 
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1 INTRODUCTION 

In his essays on life itself, Robert Rosen (1998) states: “I have been, and remain, entirely committed to the 

idea that modeling is the essence of science and the habitat of all epistemology.” Rosen’s view on modeling 

is best captured in the left part of Figure 1, that shows a natural system we are interested in which is modeled 

using a formal system that we use to understand the natural system better. Observed correlation are assumed 

to result from a causality embedded in the natural system. By encoding our understanding of the natural 

system using symbols and rules of a chosen formalism, we can make inferences in the formal system that 

by decoding help us to understand the natural system better. We actually do not get knowledge of the natural 

system itself, but of the representing formal system that we used to describe the system. 

The modeling relation is directly derived from the scientific method: empirical data are collected and 

analyzed to discover correlations that may be described by causalities. A hypothesis is formulated that 

allows the description of the observation (formal system) and explains the observed correlations (inference) 

to explain the observed system. Experiments can be conducted to further test the hypothesis until she is 

accepted by the broader scientific community and becomes a theory. 

It can be observed that Rosen follows the argument of Karl Popper (1935) who actually introduced the 

three worlds: the physical world of objects, the mental world of conceptualizations, and the formal world 

of objective knowledge. He differentiates between the natural system and the cognitive layer of conceptu-

alization: how we perceive the natural system. The formal representation reflects our perception of the 

natural system, which is heavily influenced by sensors as well as by the education of the observer. More 

accurate observation tools as well as new insights from related scientific domains often lead to new hypoth-

eses and ultimately new theories. A very similar idea, introduced by Ogden and Richards (1923) as the 

semiotic triangle, shown in the right part of Figure 1, was applied to modeling in simulation (M&S) by 

Turnitsa and Tolk (2008). 

 

Figure 1: Rosen’s Modeling Relation (left) and Ogden’s Semiotic Triangle and M&S Relation (right). 

When we talk about a real world referent of a natural system, we are actually talking about the concept 

that we have, utilizing symbols we agreed upon. This explains why people often ‘talk pass each other’ even 

if they look at exactly the same natural system: their perceptions and concepts are different. In M&S, our 

model is the conceptualization of the naturalization, and our simulation becomes the symbol standing for 

it. Overall, the idea that we are using models to represent our knowledge, and that within M&S we build 

simulation derived from these models seems to be well established. Nonetheless, there are several chal-

lenges that have to be addressed by the community. This paper collects several position papers by experts 

in the domains of philosophy of science, modeling, and simulation to contribute towards a philosophical 

foundation of M&S as a discipline. 
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2 ARE WE READY FOR SIMULATION TO BE THE EPISTEMOLOGICAL ENGINE OF 

OUR TIME? (HEATH) 

As computers become more pervasive in our lives, it has been said that simulation will be the episte-

mological engine of our time (Ihde 2006). Simulation has achieved this honor because of its ability to extend 

our conceptual models with the speed and efficiency that is beyond our cognitive abilities. This implies that 

simulation will continue to be a key source of knowledge discovery in the future and in essence become the 

third leg of the “science stool” that helps us augment, fully understand, and interpret experimentation and 

theory (Latane 1996). Certainly it is a good time to be a simulationist as the future looks very bright for the 

field, however are we ready for the full implications of what it means for simulation to be the epistemolog-

ical engine of our time? Do we need to change how we practice simulation as the weight of human 

knowledge discovery becomes more dependent upon simulation? Do we have a philosophical belief system 

to be successful or are there cracks in the foundation? 

The reason why simulation is becoming the epistemological engine of our time is exactly the same 

reason why we need to be considering whether we are ready for it to be the epistemological engine of our 

time: simulations are complex. Their ability to perform complex calculations and represent abstractions of 

our conceptual reality allow them to be powerful epistemological engines. In many ways they are going 

beyond just modeling aspects of a real system and are becoming theories by themselves. In most of today’s 

literature on simulation philosophy, the majority of researchers treat simulations in this way (theories by 

themselves) and then utilize principles from the philosophy of science to validate that the simulation is an 

accurate representation of reality and therefore knowledge generated from the simulation is valid and prag-

matically useful until proven otherwise (Heath and Hill 2009). This is all well and good if the community 

has decided to embrace the philosophy of science belief system; however accepting this means that the 

community must follow through with the scientific method or else be branded as hypocrites and a decidedly 

unscientific discipline. It is here that we face some of our largest challenges as a discipline touting the 

epistemological engine of our time. 

While the complexity of simulations allow for them to extend our cognitive capabilities it also makes 

it extremely challenging and time consuming to independently verify and validate the simulation and it’s 

results. Accordingly this independent testing is rarely practiced, but it is absolutely vital in the scientific 

method because without it the whole philosophy pragmatically falls apart and no significant progress can 

be made beyond individual self-interests. To provide some perspective as to the size of this problem in our 

field, first consider how many simulations of yours have been independently replicated and validated? Sec-

ond, consider one extensive study of the field of Agent-Based Modeling (ABM) that showed over a 10 year 

period less than 16% of published articles gave a reference for others to independently replicate the results 

and only 35% of the articles even provided evidence that they had completely validated their own simula-

tions (Heath et al. 2009). These figures are at best abysmal when compared to other published scientific 

research articles that are not using simulation. So, how do we turn it around and ensure that simulation 

continues to grow and last as an epistemological engine? 

Below are two conceptual ideas that as a discipline that I believe need serious attention. First, we need 

to emphasis simulation philosophy as a key focus of the simulation field so we can begin to determine if 

the philosophy of science is sufficient or if we need to develop a new pragmatic philosophy of simulation. 

We need a solid philosophical foundation before we develop new technical advances, which is too often 

the singular focus in simulation curriculums. Second, our discipline needs to continue to develop method-

ologies and standards for the use of simulation in scientific research. This is especially true for published 

research. Journals need higher standards for what is truly required when simulation is used to generate 

knowledge and understanding. Now is a great time to be a simulationist but we absolutely need to address 

these issues so we can truly elevate simulation to extending our knowledge of the universe. 
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3 SIMULATION MODELING ROOTED IN THE PHILOSOPHY OF SCIENCE: A NON-

STATEMENT VIEW APPROACH (IHRIG & TROITZSCH) 

As early as in 1997, Axelrod (1997a) called simulation “a third way of doing science”, and even earlier, 

Ostrom (1988) called “computer simulation: a third symbol system”. Both had different views on which 

the other two ways or symbol systems were. For Axelrod, simulation was an alternative “way” to both 

deduction and induction; for Ostrom simulation as a symbol system was an alternative both to natural lan-

guage and mathematics. We argue that simulation is a way of deduction which is gone by means of an 

alternative symbol system. Simulation research is not a distinct way of doing science, in the sense that it 

has a starting point of existing knowledge and ends up in new knowledge. Nevertheless, simulation results 

can be surprising, particularly when they show emerging macro phenomena. In a strict sense however, 

simulation results are not ‘new’, since they are only hidden in the micro-specifications from which they 

were generated (Epstein and Axtell 1996). It is anyhow questionable whether this holds for deduction with-

out induction or for induction without deduction, to use the two words used by Axelrod. Thus it seems 

necessary to take a view on simulation which takes the whole research design into account. We agree with 

Harrison, Lin, Carroll and Carley (2007) that simulation is an appropriate means to deal with complex 

behaviors and system, but we doubt that simulation directly produces novel theory. 

For both practitioners and academics to fully harness the power of simulation as a method, we need 

frameworks that give us an integrated view of the research process that involves simulation modeling. One 

such approach, rooted in the philosophy of science, is described here (Ihrig and Troitzsch 2013). We dis-

tinguish three modes of research: theoretical, empirical, and desk research. Since theoretical research can 

be conducted both without simulations and with simulations, we arrive at four columns of research, three 

of which that drive the development of new research insights: theoretical research without simulations, 

simulation research, and empirical research. The simulation research ‘adventure’ usually starts with a real-

world issue (an empirical observation) backed by prior theory. We assume that some new, unexplained 

feature of the real world (Gilbert’s and Doran 1994) awakens a researcher’s interest. The researcher then 

becomes aware of the current approaches to explaining this or similar features in the existing literature 

(doing desk research).  

Partly from casual observations, partly from background knowledge and desk research, a mental model 

is formed in the researcher’s mind. He or she arrives at this most economic explanation by means of ab-

duction (Peirce 1992). It is the starting point for the ensuing theory development process. In line with the 

“non-statement view” (Troitzsch 1992, 1994, 2012), using a set-theoretic description of theories (Sneed, 

1979), we distinguish three classes of emerging models (Balzer et al. 1987), which goes back to the obser-

vation that (a) some terms used in a theory are measurable or observable no matter whether the theory has 

ever been formulated or tested — the list of these terms defines a set of partial potential models; (b) other 

terms used in a theory become meaningful only after the theory was formulated — the list of these terms 

extends the elements of partial potential models to elements of the set of potential model; and (c) the rela-

tions between both kinds of terms need to be defined as axioms — full models which conform to such 

axioms form the third set. 

Most simulation exercises, in academia and especially in practice, are solely based on mental models, 

used directly to build executable simulation software that is supposed to model a particular real world phe-

nomenon. However, we see this as a shortcut that should be avoided. Formalizing a mental model should 

lead to the definition of a potential model first, listing all the terms, both theoretical and non-theoretical 

with respect to a particular theory. By adding axioms, the researcher then arrives at a full model that instan-

tiates a specific environment. Only then can an executable simulation model be properly built and mean-

ingful virtual experiments conducted. By varying the parameter space, different simulation runs will result 

in simulated data that will yield testable propositions, which can be compared to both partial potential 

models (theoretically derived propositions, deduced from full models) and to empirical data. This is the first 

step in generating new research insights that will help improve existing theories and eventually create new 

ones. A research process like the one postulated here defines the role of simulation in a different and more 
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precise way than previous social simulation work has done (Axelrod 1997a, 2007). Our approach extends 

Balzer’s (2009) definition of the role of simulation in scientific research from the ‘non-statement’ point of 

view where (for the sake of brevity) he does not make a difference between the runs of an executable 

simulation program and the data generated by these runs.  

Taking agent-based models as an example, the researcher specifies well-defined micro-behaviors of 

agents (based on the theoretical assumptions). The macro-level results that emerge from those individual-

level activities cannot be predicted (especially when exploring different boundary conditions), and the re-

searcher may gain valuable new insights from analyzing the simulation outcome and comparing it to em-

pirical data. Another example are agent-based models that do not rest on prior theories. In these cases the 

agent-based simulation program is the first attempt ever at formalizing a mental model using Ostrom’s 

(1988) third symbol system. For those, unambiguous conclusions cannot be derived and simulation results 

may reveal unexpected outcomes. More often than not, simulated data cannot be compared to purely theo-

retical assessments as a classical mathematical formulation of the axioms of the theory has no analytical 

solution (and a numerical solution of, for instance, a system of non-linear differential equations is also the 

result of a computer simulation for a specific combination of parameters), such that simulation sometimes 

is the only possibility to generate deductions from theoretical assumptions. 

A research architecture that employs simulation tools is more comprehensive than conventional ap-

proaches (and the classic deductive and inductive reasoning that go with them) and so better suited for 

studying complex phenomena and obtaining new theoretical insights (Carley 2002). The conventional re-

search entails predictions and analyses that are made based on existing theories in Ostrom’s (1988) first 

and second symbol systems of natural language and mathematics, and the empirical data gathered on real 

world issues is compared to these theoretical accounts or propositions. What is lacking is the power of 

computer tools that enable us to study more complex processes by modeling micro behaviors that individ-

ually might be straightforward, but may result in unpredictable outcomes when considered together. 

Finally, Martin Ihrig would like to thank Klaus Troitzsch for his contributions to this position paper 

and the work that did lead to it. Klaus Troitzsch has been professor and director of the Institute for Infor-

mation Systems Research at University of Koblenz-Landau and is a pioneer of introducing simulation meth-

ods to the social science community. 

4 MEASURING THE DEGREE OF VALIDITY: AN OPEN CHALLENGE 

(PADILLA) 

If all models are wrong, how wrong are they? Furthermore, if some of them are useful, how useful? These 

two questions provide an idea of how models are evaluated today: truthfulness and usefulness. Currently, 

we answer these questions by either evaluating validity through techniques such as calibration or by their 

predictive capability. However, the first captures how well a combination of parameters follows a trend. 

The resulting challenge is to establish how truthful that parameter combination is. The predictive capability 

of a model/simulation provides part of a picture; how well simulated data matches real data. It does not tell 

how truthful the simulation that generated the data is. Both, calibration and predictive capability (predicting 

the past in most cases) could provide part of a more complete picture.  

This extended abstract reports on ongoing research on the feasibility and the mechanics on how to 

measure validity. As such, it poses to the M&S and philosophy of science community a challenge of provid-

ing a metric for validity.  

Operating Definitions: There are many definitions of validity and validation. For the purpose of this 

work, I will rephrase the most used one: validity is the correspondence between a model/simulation and 

reality. However, this definition is usually translated as: validity is the matching of results (an experiment 

for instance) to reality. Yet, this definition is usually reduced to: validity is how well a model predicts 

reality. While this reduction is “valid”, for lack of a better word, it provides an evaluation of the usefulness 

of a model not of its truthfulness.  

1156



Tolk, Heath, Ihrig, Padilla, Page, Suarez, Szabo, Weirich, and Yilmaz 

 

 

Usefulness and Truthfulness: Perhaps the best example of usefulness vs. truthfulness comes in the his-

tory of predicting planetary motion, especially Ptolemaic and Copernican models. Ptolomy’s geo-centric 

model of planetary motion stood over a millennium, unchallenged and accepted as true. It was a good model 

as it provided great predictive capabilities, yet it was not true. It was useful and still is, but the model does 

not correspond to the phenomenon in reality; its output does. Copernicus heliocentric model challenged 

Ptolomy’s not on its predictive capabilities, but on correspondence; it is a good abstraction of the phenom-

enon in question. While later Kepler provided a model based on ellipses and not on circles, Kepler’s can be 

seen as an improvement on Copernicus’.  

Validity Spectrum: Axelrod’s (1997b) posits simulation as the third way of doing science: “Like de-

duction, it starts with a set of explicit assumptions. But unlike deduction, it does not prove theorems. In-

stead, an agent based model generates simulated data that can be analyzed inductively. Unlike typical 

induction, however, the simulated data come from a rigorously specified set of rules rather than direct 

measurement of the real world.” 

As such, a simulation’s validity should consider the evaluation of the 1) deductive portion; how well a 

system of premises reflects a static view of a phenomenon/system and how well that system reflects the 

dynamics of such phenomenon/system in a time scale; 2) the inductive portion; how well the resulting data 

provide insight into the phenomenon through statistical analysis; 3) the combination of the two. While 1 

can be based on formal practices such as those found in mathematics and 2 in those found in statistics, 3 

suggests measures unique to M&S; calibration for instance.  

The evaluation along this spectrum should provide a metric, which is the challenge posed in this brief. 

Further, the evaluation should address usefulness and truthfulness; for instance, a statistical predictive ca-

pability provides usefulness and if paired with an evaluation of axiomatic validation may provide truthful-

ness. The mechanisms of this evaluation are part of current research.  

Challenge: If validity has a degree, how do we measure it? It is the opinion of the author that an answer 

to this question would facilitate the discussion on the degree to which simulations generate and evaluate 

knowledge. Simulations have provided its engineering usefulness, yet their truthfulness as a scientific meth-

odology are still under discussion in a paradigm where lack of data or complex phenomena may mean no 

capability for empirical validation. Yet, we need to question those that have been empirically validated 

(when considering prediction as the evaluation form) if a form of axiomatic validation is not provided. It is 

proposed that a validity metric would permit to evaluate simulations along a spectrum. This metric should 

also provide an idea of the usefulness and truthfulness of simulations. 

5 ON SCIENCE AND MILITARY SIMULATION (PAGE) 

In the summer of 2002, the Army Model and Simulation Office (AMSO) and the Defense Modeling and 

Simulation Office (DMSO) jointly sponsored a workshop on the Scientific Exploration of Simulation Phe-

nomena. The workshop involved 17 participants from industry, academia and government who were asked 

to address the following questions: Could a fundamental knowledge of the nature of simulation exist? 

Would a scientific approach to the study of simulation improve that knowledge? What specific steps are 

needed to develop the science of simulation? 

The proceedings of the workshop survive online (Harmon 2002) and many of the thoughtful position 

papers developed by the panelists remain relevant to Tolk’s current efforts to study the relationships be-

tween science and Modeling and Simulation (M&S). Space limitations preclude revisiting most of these 

themes here, but the interested reader is commended to review the position papers and detailed session 

transcripts from the workshop. 

This author’s contributions to the workshop focused on the relationship between science and M&S in 

the defense sector. In a broad sense, the defense simulation sector was enjoying two decades of plenty – 

simulation, particularly interoperable simulation, had become a focal point for defense training systems at 

all scales; simulation-based acquisition was hailed as the solution to inefficiencies in DoD procurement 

practices; development budgets for simulation systems like JSIMS reached $1B, giving these programs the 
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same status as the military’s largest programs. Times were good. But under the surface, there were clearly 

some troubling issues (and these issues were largely what inspired AMSO and DMSO to convene the work-

shop). The defense simulation workforce was largely on-the-job trained. There were few University pro-

grams in Modeling and Simulation (and almost none in military aspects of Modeling and Simulation), and 

there were limited opportunities for professional development and certification. There were few incentives 

for the workforce to publish, and a dearth of quality outlets for their articles. The big simulation programs 

were slipping their schedules. The community seemed almost distracted by interoperability and standards 

to the exclusion of other pressing needs. 

Clearly, a more rigorous approach to the practices associated with defense M&S was warranted. 

Whether this increased rigor meant doing better science, or doing better engineering, or doing something 

else, was unresolved in this author’s 2002 position paper. 

In the intervening years, the DoD M&S days of plenty have gone. The priorities of active combat are 

doubtless a primary factor. There has been progress. University programs for M&S are proliferating, and 

there are more opportunities for professional development and certification. The Journal of Defense Mod-

eling and Simulation (JDMS) has been established. DMSO’s successor, the Modeling and Simulation Co-

ordination Office (M&SCO), actively pursues the codification of Best Practices and an M&S Body of 

Knowledge. But there have also been failures. JSIMS was cancelled after $1B spent failed to deliver a 

functioning system. Simulation-based acquisition never got off the ground. 

Are the failures of defense simulation due to a lack of science, or something else? Edsger Dijkstra is 

purported to have said, “The question of whether a computer can think is no more interesting that the ques-

tion of whether a submarine can swim.” One wonders what he would think of the question “Is simulation 

science?” 

6 THE MULTIDIMENSIONAL FUTURE OF M&S (SUAREZ) 

The Field of Modeling and Simulation (M&S) has made undeniable and significant advances in the last 

few decades. Going against the current of modeling based on a reductionist view of the world, the rise of 

the nonlinear research agenda is now irreversible. The relative success of computational models has created 

a wave of research and practice that makes use of the increased capabilities to model complex systems, 

particularly those appearing in nature and society (Gilbert and Troitzsch 2005). Despite its broad appeal 

and expanded use, the field is searching for general methodologies for validation and verification (Tolk 

2012) as well as for common languages and methodologies in which different models can interact with each 

other (Seck and Honig 2012). 

The need for composability among models is an intrinsic characteristic of a multidimensional reality, 

given that diverse phenomena, aspects of reality, disciplines, bodies of knowledge, paradigms and their 

corresponding models must reflect an irreducible, nonlinear world. Emergent phenomena are ubiquitous in 

systems that are separated into distinct ontological levels, such as it is in human societies (Goldspink 2000). 

A framework for describing of behavior must therefore not only allow for the description of any physical 

aspect of the world, but also a way to describe the relationships, structures and processes that influence the 

contextualized decisions made by agents in these complex adaptive systems (Koestler 1967). In order to 

appropriately model complex human behavior we must define a canvas in which multiple dimensions of 

our existence can be defined (Suarez and Castañon-Puga 2103). Microeconomics, for example, has usually 

relied on simplistic definitions of what represents an indivisible actor. Generally speaking, firms and con-

sumers are modeled as having a straightforward behavioral directive: to maximize their profits or utility, 

subject to the constraints imposed by the exogenous environment. This approach is incompatible with a 

view where decisions are contextualized and treated endogenously (Edmonds et al. 2011). 

Much of the current work to develop the M&S paradigm has foundations in Multi-Agent Systems 

(MAS), and is thus similarly based on independent agents that strategically interact with each other. The 

independence granted to the agents in MAS is a computational one, in the sense that each agent processes 

information internally, without the need to resort to the outside world to draw conclusions about the inputs 
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it receives (Epstein and Axtell 1996). In contrast, the proposition is that the M&S field should develop 

broader capabilities that allow for model interoperability, as nonlinearity should not be taken to mean that 

the multiple ontological dimensions are completely orthogonal; they must be ultimately reassembled in a 

holistic description. Models of each dimension must take into consideration this fact, for only then will 

disciplines of human behavior be able to communicate in an epistemologically compatible manner. The 

proposed general framework would also serve as a relative taxonomy in which bodies of knowledge can 

establish correspondences with each other and lay the epistemological web in which new models can be 

developed and integrated. 

7 ONTOLOGIES: BEYOND DATA EXCHANGE FOR SEMANTIC INTEROPERABILITY 

(SZABO) 

An ontology is defined as “a set of representational primitives with which to model a domain of knowledge. 

The representational primitives are typically classes, attributes, and relationships.” (Gruber 1993). Ontolo-

gies are part of the W3C standards stack for the Semantic Web, where they are used to specify standard 

conceptual vocabularies in which to exchange data among systems, provide services for answering queries, 

publish reusable knowledge bases, and offer services to facilitate interoperability across multiple, hetero-

geneous systems. In contrast to a taxonomy that contains hierarchical definitions usually modeled as sub-

class/superclass relationships, an ontology enhances knowledge about the world by allowing the specifica-

tion of more complex relationships, such as defining disjoint classes, intersections and various predicate 

logics (Gruber 2008). In modeling and simulation, ontologies can be broadly classified into two main cat-

egories. Methodological ontologies define methods and simulation techniques, and referential ontologies 

represent the real world entities to be simulated (Hoffman et al. 2011). Methodological ontologies are nec-

essarily prescriptive as they need formally defined inference rules, whereas referential ontologies are de-

scriptive and would need to reflect ambiguity and contradictory conceptualizations. This implies a balance 

between normative and epistemic perspectives, but is usually implemented as an exclusive choice. 

Despite this two-edged nature of ontologies for M&S, there is general consensus that ontologies are the 

catalysts to achieve simulation model interoperability and composability at the highest levels (Tolk and 

Curt 2005). Since the early 2000s, ontologies have been abundantly used in modeling and simulation. The 

most widely spread use is to ensure semantic data exchange and thus achieve a level of interoperability that 

is close to the semantic interoperability level of the Levels of Conceptual Interoperability Model (LCIM) 

(Tolk and Muguira 2003). This includes either ensuring that exchanged data adheres to a specific format 

(Lacy and Gerber 2004; Mahmood et al. 2009; Teo and Szabo 2008), to discovering components that meet 

particular descriptions (Szabo and Teo 2011), to generating ontologies that will be used by model users to 

ensure meaningful exchange of information (Zeigler et al. 2008). In conceptual modeling, ontologies can 

help to better define the entities in the conceptual model (Benjamin et al. 2006, Mimosa 2012), and to 

perform concept-level matchmaking to facilitate the dynamic composability of disparate models (Yilmaz 

and Paspuleti 2005). An ontology-driven modeling and simulation approach maps from domain-specific 

ontologies to a simulation ontology and then further to the generation of model code (Silver et al. 2009). 

Further, ontologies can also be used to evaluate various discrete-event simulation languages (Guizzardi and 

Wagner 2010), to facilitate the modeling and simulation of agent-based systems (Christley, Xiang, and 

Madey 2004), and more specific approaches see various domain ontologies used together with ontologies 

defining simulation blocks to achieve a more coherent and semantically correct model (Novak and Sindelar 

2011). 

Several avenues remain unexplored. Firstly, improvements on the reuse of models could be achieved 

by defining an ontology in which various models, accessible through a shared model repository, are defined. 

Capturing the state-of-the art discussed above, this modeling and simulation ontology could define the en-

tities in the conceptual model, the simulation model with its attributes and behavior, and, details about the 

simulation paradigm employed in the simulation code. This can be achieved either as a single ontology 

capturing all of the above, or as a series of ontologies that describe concepts in a higher ontology. Secondly, 
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current use of modeling ontologies is limited to yes/no queries that only look at exact matches. This does 

not harvest the reasoning capabilities of ontologies to address partial matches but also, using the open world 

assumption, discover new knowledge. Thirdly, a more ambitious use of ontologies might lie in model val-

idation, and in particular in the identification and validation of emergent behavior in models with a large 

number of communicating and interacting entities. Complex models often exhibit properties that are not 

easily predictable by analyzing the behavior of their individual, interacting model components: these prop-

erties, called emergent properties, are increasing becoming important, and methods to identify and validate 

emergent properties have the potential to increase model credibility but also to provide increased insight 

into the behavior of the system the model abstracts. A taxonomy of emergent behavior has been previously 

proposed by Gore and Reynolds (2007) and proposes to analyze emergent behavior based on reproducibil-

ity, predictability, and temporality. Reproducibility refers to the repeatability of a simulation for a given set 

of inputs. Predictable behaviors enable selective sampling towards testing user hypotheses. Temporality 

distinguishes between the simulation reaching a final state and residing in a particular state. The challenge 

remains in enhancing such a taxonomy with inference rules that, together with the simulation model ontol-

ogy outlined before, are able to determine if the observed behavior of a simulation model has not been seen 

before, i.e., is emergent, and further from this, to determine if the behavior is beneficial for the system. 

8 IDEALIZATIONS IN MODELS OF CHOICE (WEIRICH) 

Normative decision theory advances standards of rationality for decisions. Descriptive decision theory pre-

sents regularities in the decisions of people. Both branches of decision theory use models that incorporate 

idealizations. A standard of rationality may apply to ideal agents who know all mathematical truths and so 

have no excuses for miscalculations. A regularity in subjects’ choices among items a survey question offers 

may assume that the subjects understand the survey question. The idealizations of normative and descriptive 

models have similar functions, as Colyvan (2013) observes. Do they have the same explanatory role? 

Normative decision theory uses at least two types of idealization, as Weirich (2004) explains. An aspi-

rational idealization states a condition that rational agents aspire to meet. Knowing all mathematical truths 

is an example. A controlling idealization states a condition that grounds a principle. The assumption that 

an agent has precise probability and utility assignments, an idealization of the principle of expected-utility 

maximization, falls into this type. Descriptive decision theory features controlling idealizations. A control-

ling idealization for a psychological study’s conclusion may state a condition that only a portion of the 

target population meets. Among the subjects responding to a survey question, a subpopulation understands 

the question, so the assumption that all understand it is a controlling idealization. In some cases a controlling 

idealization is so restrictive that no members of the target population meet it. A model using the idealization 

may describe a fictitious situation. A fictitious model of choice may assume that agents attach precise prob-

abilities and utilities to their options’ possible outcomes, whereas in fact their probabilities and utilities are 

imprecise. 

The aspirational idealizations of normative decision theory guide improvement and construction of 

artificial agents. The design of an artificial agent often tries to meet aspirational idealizations as closely as 

possible. A designer may try to make a robot a perfect calculator. Although descriptive decision theory may 

build a model in which agents are perfect calculators, its goal is a more realistic model that dispenses with 

that assumption and incorporates people’s tendencies to err. Its goal is a model that generates simulations 

of human behavior, including errors. 

The epistemology of models and simulations asks whether a model’s incorporation of aspirational ide-

alizations affects the model’s power to explain the target phenomena. A descriptive model may help explain 

choices by showing how in the model aversion to risk affects choices. The model may use idealizations to 

control for factors, besides aversion to risk, that affect choices, as described by Weirich (2012). Does a 

normative model help explain the rationality of choices by showing how in the model some factor affects 

their rationality, using aspirational idealizations to control for other factors that affect their rationality? 
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One negative answer maintains that rationality for ideal agents tells us nothing about rationality for 

human agents because humans are far from ideal. The critic contends that an aspirational idealization does 

not control for any factor that explains the rationality of human choices. The idealization may regulate 

factors in the explanation of the rationality of an ideal agent’s choices. It may help us understand rationality 

for the agents we aspire to be but does not help us understand rationality for the agents we are. Aspirational 

idealizations may help to formulate a general theory of rationality that treats all agents, ideal and nonideal 

alike, but do not help to formulate a restricted theory that treats rationality for humans. Knowledge of all 

mathematical truths may be part of the explanation of the rationality of an ideal agent’s choice but does not 

control for a factor in the explanation of a human agent’s choice. The rationality of a human agent’s choice 

may not depend on calculation at all but just on the operation of a heuristic such as one recommending 

flight from threats. The explanatory factors may belong to what psychologists call System 1 in distinction 

from System 2, in which calculation occurs. The possibility that a heuristic rather than a calculation explains 

a choice’s rationality is especially plausible when a choice’s rationality depends on its meeting procedural 

standards rather than standards for its content. 

This argument against the real-world relevance of models for ideal agents fails because having 

knowledge of all mathematical truths in fact controls for a factor in the explanation of a human choice’s 

rationality. The presence or absence of mathematical knowledge affects a choice’s rationality. Ignorance of 

mathematical truths excuses reliance on heuristics for choice. Knowledge removes the excuse. A knowl-

edgeable agent need not rely on heuristics but may instead calculate to discover a maximizing choice. An 

aspirational idealization may stipulate mathematical knowledge to control for its presence or absence. The 

argument against the idealization’s relevance to the rationality of human decisions presumes that only the 

presence and not the absence of knowledge may explain a decision’s rationality. However, the absence of 

mathematical knowledge explains the rationality of decisions that follow heuristics. Sometimes absences 

explain. 

9 CLOSING THE CREDIBILITY GAP OF MODELING & SIMULATION (YILMAZ) 

Reproducibility is a fundamental principle of the scientific method (Morin et al. 2012; Fomel and Hennen-

fent 2009). It refers to the ability to reproduce, and, if needed, independently recreate computational arti-

facts associated with published work. Emergence of reproducibility as a critical issue is based on growing 

credibility gap due to wide spread presence of relax attitudes in communication of the context, experiments, 

and models used in computational science (Mesirov 2010; Stodden 2010). Furthermore, as indicated in 

(Fomel and Claerbout 2009), a published computational science article is not the scholarship itself; it is 

merely advertising of the scholarship. The actual scholarship is the complete software development envi-

ronment and the complete set of instructions, which generate the data and findings (Fomel and Claerbout 

2009). 

Replicability, which is the challenge examined in this position statement, involves implementation of 

a conceptual model in a simulation study that is already implemented by a scientist or a group of scientists. 

Unlike reproducibility of results by (re)using the original author’s implementation via executable papers 

(Nowakowski et al. 2011), workflow systems and repositories (Anand et al. 2009; Freire et al. 2011), or 

provenance-based infrastructures (Koop et al. 2011), replication involves creating a new implementation 

that differs in some way (e.g., platform, modeling formalism, language) from the original model. Yet the 

original and replicate are sufficiently similar so that experiments conducted on both generate results that 

achieve prespecified similarity criteria: they cross-validate. The premise of independent replication is based 

on the following observation. Although eventual exposure to the original model and its source code is im-

portant, if done too early, it may result in “groupthink” whereby the replicater, possibly unintentionally, 

adopts some of the original developer’s practices: features of the original model are essentially “copied”. 

In so doing the replicater has failed to maintain scientific independence. In other situations, replicaters may 

have different implementation tools and infrastructure, or may be unfamiliar with the original model’s plat-
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form. Therefore, providing the ability to implement a conceptual model under specific experimental condi-

tions and analysis constraints across multiple platforms and formalisms is critical to lowering the barrier to 

– and enabling broader adoption of – the practice of reproducibility. Furthermore, by replicating a model 

and ignoring the biases of the original model, differences between the conceptual and implemented models 

may be easier to observe. To facilitate replicability, it is critical to provide the larger community with an 

extensible and platform neutral interchange language for specification, distribution, and transformation of 

model, simulator, and experimental frame elements. Support for – and a lowered technical barrier to – 

independent replication will enable computational experimentation to become more scientific. Cross-vali-

dation will demonstrate (or not) that the original findings and observed results are not exceptional. Success-

ful replications will strengthen the theories represented by the models. 

These observations, coupled with disputes such as Climate Gate (Economist 2010), the microarray-based 

drug sensitivity clinical trials under investigation, and article retractions due to unverified code and data 

(Alberts 2010) suggest a pressing need for greater transparency (Peng 2009) in computational science. Be-

sides, unless computational artifacts are designed and disseminated to be discovered, extended, or combined 

with other models, scientific progress can be hindered. Furthermore, the inability of others to independently 

replicate and cross-validate published results will slow adoption and use of knowledge embedded within 

software and models. 

Increasing number of computational science communities are emphasizing the role and significance of 

reproducibility. For instance, the MultiScale Modeling Consortium of the Interagency Modeling and Anal-

ysis Group (National Institute of Biomedical Imaging and Bioengineering 2011) promoted credibility in 

multiscale modeling in biomedical, biological, and behavioral systems as a critical challenge. Among the 

proposed strategies include executable papers and scientific workflow environments. The Elsevier 2011 

Executable Paper Grand Challenge provided a venue for exploring such practical and promising solutions. 

However, while reusing existing workflow and code scripts help verify published results, they carry the 

biases of the original implementation. Ongoing reproducibility work can be complemented with new strat-

egies that exclusively aim to support independent replication of a study. 

10 CONCLUSION 

The position papers summarized in this conference contribution highlight various facets of M&S as a dis-

cipline and as a scientific effort. Earlier approaches, as described by Harmon (2002), need to be reevaluated 

in the light of current discussions, such as reinstated by Padilla et al. (2011) as well as a series of expert 

panel discussions during recent conference (including this one).  

 Overall it seems that the importance to better understand the philosophical foundations of simulation 

science are gaining more importance, hopefully soon resulting in a better understanding of M&S canons of 

research and other core contributions to the body of knowledge. The ideas presented here are neither a 

complete nor an exclusive enumeration of topics but meant to contribute to broadening the research agenda 

hopefully filled with active research over the next couple of years. 
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