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ABSTRACT 

Complex systems contain hierarchical heterogeneous subsystems and diverse domain behavior patterns, 
which bring a grand challenge for simulation modeling. To cope with this challenge, the M&S communi-
ty extends their existing modeling paradigms to promote reusability, interoperability and composability of 
simulation models and systems; however, these efforts are relatively isolated and limited to their own 
technical space. In this paper, we propose a domain specific modeling (DSM)-based multi-paradigm 
modeling approach which utilizes model driven engineering techniques to integrate current M&S para-
digms and promote formal and automated model development. This approach constructs a simulation 
model framework to architect the structure of the overall simulation system and combines multiple M&S 
formalisms to describe the diverse domain behaviors; moreover, it provides domain specific language and 
environment support for conceptual modeling based on the model framework and formalisms. An appli-
cation example on combat system effectiveness simulation illustrates the applicability of the approach. 

1 INTRODUCTION 

In the last decades, complex systems have become a research focus of academia and industry. Complex 
systems usually have hierarchical structure and heterogeneous subsystems, and involve a diversity of ap-
plication domains. When interacting with the environment and other systems, the complicated structures 
of complex systems can generate non-linear behaviors which can not be acquired by linearly adding sub-
systems together (e.g., emergent behavior). Thus, complex system research brings grand challenges for 
existing scientific research and engineering practices. Enabled by the development of computer hardware 
and software, modeling and simulation (M&S) is being widely used in all research fields and exhibits 
promising potential in complex system research. M&S significantly reduces the time and cost of complex 
system development and it is especially useful in the overall design and demonstration phase. Moreover, 
M&S has an irreplaceable role when physical experiments are unavailable or highly expensive. 

Complex systems are structurally heterogeneous and large-scaled, thus they are difficult to model 
appropriately and simulate efficiently. Currently, M&S research in each domain is relatively isolated; 
therefore, the comprehensive utilization of domain knowledge and M&S paradigms in multiple domains 
needs to be systematically studied. Moreover, many M&S researchers try to deal with complex system by 
improving existing methodologies and techniques based on the same technical space as that of M&S re-
search on simple systems, but this improvement is limited to satisfy the multi-subsystem, multi-domain 
characteristics of complex systems. 
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To cope with the problem difficulty and technique complexity in simulation model development for 
complex systems, the M&S community has launched research on model reuse, simulation interoperability 
and model composability recently. This research concentrates on developing simulation models and sys-
tems based on certain M&S paradigms, such as simulation protocols, model specifications, and formal-
isms, to promote the reuse potentials and extend the application ranges of simulation resources. 

The requirements of reusability, interoperability and composability on simulation models and sys-
tems indicate that the simulation model development process should be formalized and automated to ena-
ble efficient and effective development of complex simulation systems. Problem analysis and conceptual 
modeling should be formalized to provide a formal conceptual background for the following M&S activi-
ties in the problem domain, and formalisms should be used to build formal simulation models and support 
formal analysis of source systems. Moreover, generative techniques (e.g. model transformation, code 
generation) should be used to automatically generate lower level implementation or models from higher 
level models. Formal and automated model development process can separate problem domain from 
technical domain, raise the modeling abstraction level, promote efficiency, and thus support reuse, in-
teroperation and composition of simulation resources at higher abstraction levels.  

Multi-paradigm modeling (MPM) addresses complex system design and implementation issues com-
bining the following orthogonal dimensions: model abstraction, multi-formalism modeling and metamod-
elling; and it highlights the importance of model transformation to link models of different formalisms at 
different abstraction levels (Mosterman and Vangheluwe 2004). MPM promotes formal modeling by mul-
ti-formalism modeling and enables automated implementation of models via model transformation. Thus, 
MPM can utilize the comprehensive fruits of current M&S paradigms in various application domains and 
tackle the multi-domain and multi-subsystems characteristics of complex systems. However, MPM does 
not provide enough support for conceptual modeling and simulation model integration. 

In this paper, we introduce a DSM-based multi-paradigm modeling approach which raises the model-
ing abstraction level and supports the integration of domain specific models using a simulation model 
framework. This approach specifies a model development cycle with domain specific conceptual model-
ing, formal model design, automated model implementation and seamless model integration, and thus 
supports efficient and rapid simulation model development for complex systems. 

The rest of the paper is organized as follows. Section 2 overviews related work and Section 3 presents 
the proposed approach. Section 4 applies this approach to combat system effectiveness simulation, and 
section 5 concludes this research and proposes future work.  

2 RELATED WORKS 

State-of-the-art simulation modeling methods try to cope with the difficulties in complex system simula-
tion modeling from different aspects, each of which aims to achieve one or more of the following goals: 
(1) construct problem domain oriented language or environment to provide domain specific modeling 
concepts for domain modelers; (2) separate the conceptual model, the design model and the model im-
plementation to raise the abstraction level of formal model representation; (3) multi-formalism modeling 
and simulation to support formal analysis and early verification and validation; (4) automatically generate 
executable simulation models to promote development efficiency and maintenance; (5) provide a com-
mon specification for simulation model and simulator to integrate the simulation models and promote re-
use, interoperability and composability of simulation resources. According to the goals and underlying 
principles, state-of-the-art simulation modeling methods can be categorized into three groups as follows. 

2.1 Unified Modeling Methods 

These methods support unified modeling of complex systems from three aspects: the first is unified mod-
eling using multi-domain concepts, e.g., Modelica; the second is unified modeling based on multiple for-
malisms, e.g., UML, DEVS; the third is simulation modeling based on a unified simulation model frame-
work or architecture, e.g., the Department of Defense Architecture Framework (DoDAF).  
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Modelica supports unified descriptions of domain concepts of different physical systems based on 
mathematical equations. Modelica provides domain modeling support via extended model library tailored 
for typical domains. Modelica also support hybrid modeling by integrating formalisms such as finite state 
machine and DEVS. Recently, ModelicaML is proposed to combine SysML and Modelica to support the 
whole model development cycle (Schamai et al. 2009).  

DEVS is a hierarchical and modular formalism which supports unified description of various formal-
isms, and it is widely accepted by M&S community as a common theoretical foundation of M&S frame-
work. Many DEVS-based M&S frameworks are proposed to facilitate complex system research, e.g., 
DEVS unified process framework (Mittal 2007). Though DEVS itself provides no domain extension 
mechanism, continuous efforts are made to empower DEVS platforms with domain customization capa-
bility (Ferayorni and Sarjoughian 2007). 

UML provides an integrated modeling environment with a series of modeling formalisms to model 
different aspects of the software. It is also used for complex system simulation modeling since the simula-
tion models are technically a kind of software. UML uses profile mechanism for domain customization 
and it is combined with DEVS to be more executable (Risco-Martín et al. 2009). However, UML is soft-
ware-oriented and lacks simulation modeling support.  

A unified simulation model framework (or architecture) describes the main components in its sub-
domains and their fundamental relationship, guides the simulation model development, and provides a 
foundation for sub-model integration. A model framework is built based on domain knowledge and simu-
lation model expertise which is application independent, and different simulation applications are instan-
tiated from the model framework. One of the most successful examples of this method is DoDAF in the 
defense domain which specifies a model framework for complex defense systems. More examples can be 
found in other complex system research fields, such as supply chain (Chatfield, Hayya, and Harrison 
2007). Though model framework-based modeling method can efficiently support rapid development of 
new simulation applications; it is domain-oriented and implementation-focused, thus model frameworks 
themselves lack generality and thus are difficult to be extended.  

2.2 Combined Modeling Methods 

Combined modeling methods compose models of different formalisms and simulate them integratively. 
Combined modeling can be performed at two levels: the first is the interoperation of simulation systems 
via simulation data at the data level (a.k.a. co-simulation); the second is model composition of different 
formalisms at the semantics level (a.k.a. multi-modeling).  

HLA is a representative of the first kind which links simulators of different simulation systems. HLA 
concentrates on simulation interoperability but lacks model specification, thus it is not suited to use HLA 
to perform simulation modeling for complex systems. However, it can be used to integrate heterogeneous 
models of different formalisms. There are two directions to enable HLA for complex M&S: first, basic 
object model (BOM) is proposed to enhance its ability for model description; second, RTI is extended us-
ing SOA techniques to enable interoperability at a broader scope. 

The tool Simulink is a typical example of multi-formalism modeling which supports the composition 
of models of casual block diagram and stateflow. Simulink could be considered as a DSM platform since 
it provides DSM supports for digital signal processing and simulations (Kelly and Tolvanen 2008). How-
ever, more formalisms should be integrated to provide DSM support for more application domains as far 
as complex systems are concerned.  

Ptolemy II is another typical example which supports multi-formalism modeling via the Direc-
tor/Actor mechanism (Eker et al. 2003), and a diversity of common formalisms, such as synchronous data 
flow, continuous time, discrete event, and communication sequence process, have been implemented in 
this tool. Ptolemy II can implement domain modeling concepts as model libraries and support composable 
modeling based on the model libraries. 
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2.3 MDE-based Modeling Methods 

The software engineering community proposed a new software development paradigm called model driv-
en engineering (MDE) which uses models as the first-class artifacts in the software development process 
to promote development efficiency. MDE aims to construct formal, implementation-independent models 
using modeling languages (not programming language) and generate code from them. MDE has attracted 
much attention of M&S community recently, and there are several discussion panels (e.g., annual 
Mod4Sim workshop in spring simulation conference) and methodologies (e.g., MDD4MS (Cetinkaya, 
Verbraeck, and Seck 2011)) which aim to promote the application of MDE in M&S. There are two 
branches of MDE: model driven architecture (MDA) and model integrated computing (MIC).  

2.3.1 MDA-Enabled Simulation Modeling 

MDA is proposed by the Object Management Group to solve the software architecture problem and the 
integration of different tools using architecture models. MDA specifies a series of technical standards, 
such as meta-object facility for metamodelling, XML metadata interchange for model storage and inter-
change, UML for modeling, query/view/transformation language for model transformation and so on. 
MDA promotes the usage of platform independent model and platform specific model to separate model 
design and model implementation, and uses model transformation to generate platform specific model 
(PSM) from platform independent model (PIM). M&S community use UML to construct PIM of simula-
tion models and generate object oriented code for model implementation. However, UML is not designed 
for simulation modeling and thus lacks description of essential simulation concepts. MDA is also applied 
to HLA system development and many HLA tools have realized the support for MDA.  

Simulation model portability standard 2 (SMP2) is a successful application of MDA in simulation, 
which was proposed in 2004 by the Europe Space Agency to promote model reuse and portability 
(European Space Agency 2005). It uses simulation model definition language (SMDL) to define the 
common representation of PIM for simulation models, and exploits code generation to generate C++ code 
from PIM. SMP2 has been widely used in aeronautical simulation system and combat simulation systems 
(Li et al. 2010). Though SMP2 conforms to MDA principle and promote development efficiency, it has 
weaknesses which hamper its application in complex system M&S: SMP2 mainly specifies the static 
structure of simulation systems and fails to support behavioral modeling, thus modelers need to manually 
fill the behavioral code; it is a low level model specification which provides only technical modeling con-
cepts, such as class, container, interface, and lacks DSM support for application domain.  

2.3.2 MIC-Enabled Simulation Modeling 

MIC aims to provide domain specific modeling solutions for problem domains instead of a unified model-
ing language and a suite of common technical standards. MIC contains the following steps: construct do-
main specific modeling languages for problem domains based on metamodelling, generate domain specif-
ic modeling environments for domain modelers, and automatically implement domain specific models by 
semantic anchoring. M&S activities are essentially domain problem oriented, thus DSM for simulation 
has been widely studied.  

DSM research in M&S can be divided into two categories: the first is to use DSM method in simula-
tion system development from the aspect of software; the second is domain specific simulation modeling 
of source system. The first category belongs to the software engineering field, e.g., the research presented 
in (Hemingway et al. 2012) uses DSM to automatically generate engine configuration files and glue code 
from a integration model to integrate heterogeneous HLA systems. In this paper we concentrate on the 
second category, which has the following three aspects of concern (Li et al. 2011): (a) from the applica-
tion aspect, researchers construct domain specific modeling language (DSML) and environment (DSME) 
from scratch or based on M&S formalisms to build problem-oriented solution,; (b) from the tool aspect, 
generic M&S tools and platforms are extended to provide domain support; (c) from the M&S develop-
ment cycle aspect, M&S community aims to incorporate DSM into the whole M&S cycle via framework 
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support for domain knowledge integration or adaptation of software engineering techniques to enable 
DSM for M&S system development. Though there is plenty of research on DSM for simulation, how to 
compose domain specific models for complex system M&S still needs to be explored since DSML com-
position in software engineering community can not solve this problem completely (Li et al. 2011).  

Another important branch in MIC is MPM, which uses state-of-the-art M&S and software engineer-
ing techniques to deal with the heterogeneity of the complex systems (C. Hardebolle and Boulanger 
2009). Successful applications of MPM includes OsMoSys (Vittorini et al. 2004), ModHel’X (Hardebolle 
and Boulanger 2007), Maya (Zhou et al. 2003). Although DSM has attracted the attention of MPM re-
searchers and been applied in certain domains (Lara, Levendovszky, and Mosterman 2009), how to incor-
porate DSM into a MPM-based modeling framework for complex systems remains an open issue.  

Summary. The categorization of three groups is neither absolute nor complete, and there is a trend 
to model the complex systems using combinations of these methods, e.g., DEVS/HLA. These methods 
have their own advantages and disadvantages as far as the five goals are concerned. Generally speaking, 
each of unified methods is based on a powerful unified modeling formalism with its corresponding tech-
nical space, thus this kind of methods supports model reuse, model composition and simulation interoper-
ability. However, the heterogeneity of complex systems is not appropriately addressed since no single 
formalism can describe all aspects of complex systems. Combined methods exploit multiple formalisms 
and combine heterogeneous models, but they lack the support for modeling at higher abstraction levels, 
and model reuse and composition issues arise. MDE methods have the supports of modeling paradigms, 
technical standards and code generation tools, thus they facilitate the model development process of com-
plex systems and provide high level modeling support. Actually, MPM can be either categorized into the 
combined methods or MDE methods since its technical essence is using MDE techniques to support mul-
ti-formalism modeling. So MPM has a promising potential in simulation modeling and we explicitly 
study how to incorporate DSM into MPM in this paper. 

3 A DSM-BASED MULTI-PARADIGM SIMULATION MODELING APPROACH 

3.1 Model Driven Engineering for Simulation Model Development 

As discussed in Section 2.3, model driven development of simulation models and systems is becoming 
prevalent since it promotes development efficiency and model quality by using a formal and automated 
development cycle. MDE has promising potential in simulation modeling for complex systems for the fol-
lowing reasons. (1) Simulation application domain usually has relatively explicit structure framework and 
behavioral patterns to support PIM design for simulation model, thus it provides a sound foundation for 
MDA utilization. (2) Many simulation modeling languages and environments have been developed for 
specific application domains; though many of them are based on isolated technical spaces and at imple-
mentation level, they still pave the way for MIC-based simulation modeling since they have plentiful 
knowledge of domain engineering and language engineering. (3) Wide application of SMP2 indicates that 
MDA-based simulation modeling promote development efficiency and model reuse, but DSML and M&S 
formalisms should be integrated into SMP2 to raise the abstraction level and strengthen behavioral model-
ing capability. (4) MDA and MIC can offset mutual disadvantages: MIC provides DSM support and for-
malisms unification support (via metamodelling and model transformation) to enhance MDA (especially 
SMP2); while MDA provides common model specification and technical standards. Thus MDA and MIC 
used in combination will significantly improve the efficiency of simulation model development. 

Simulation model development usually involves a series of activities including problem formulation, 
requirement analysis, conceptual modeling, model design, model implementation, and model integration 
(Balci 2012). MDE can be used for simulation model development since the technical essence of comput-
er simulation models is a special kind of software. MDE develops formal models (instead of documents) 
as the products in the model development cycle, and uses generative techniques (such as model transfor-
mation and code generation) which can be executed by the computer to automatically achieve the trans-
formation between model products of different phases or implement the higher level models. MDE can 
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achieve higher-level interoperability in the LCIM since different aspects and development phases are 
formally described, and the technical standards specified by MDA provide a technical foundation for re-
use, interoperation, composition of simulation resources from the aspect of software implementation. 

3.2 A DSM-based MPM Approach to Enable Formal and Automated Model Development Cycle 

As shown in Figure 1, we propose a DSM-based MPM approach for simulation modeling of complex sys-
tems, which comprehensively utilizes the following state-of-the-art modeling methods: MDE employs 
formal models to represent products of different phases, and utilizes model transformation and code gen-
eration to automate the development process; DSM is evolving as the centerpiece of MDE which provides 
domain specific solutions for problem domains, thus it is especially useful to model complex systems of 
multiple domains; M&S formalisms are important research fruits and irreplaceable foundations of M&S 
endeavor; A model framework is the abstraction of the knowledge based on M&S experience on the sys-
tem under study (SUS), which provides the system architecture to guide the development process and 
sub-model integration. This approach combines multiple M&S paradigms based on MDE techniques and 
consists of the following four key steps for simulation model development. 

 

Figure 1: A DSM-based MPM approach for simulation modeling of complex systems 

3.2.1 DSM-based Conceptual Modeling 

Conceptual modeling remains a tough issue in simulation model development cycle since it is difficult to 
find a precise and formal way to represent the conceptual model which contains highest-level concepts, 
constraints, and assumptions (Balci 2012). It is inefficient to extract useful information from conceptual 
models for simulation modeling, and the consistency between simulation models and conceptual models 
is hard to maintain. Conceptual modeling of complex systems is extremely important for multiple subsys-
tems and domains are involved in model development life cycle, and there are numerous efforts which fo-
cus on formalize conceptual models. A typical example is model theory (Tolk, Diallo, and Padilla 2011) 
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which provides a mathematical foundation for conceptual models, and another example is diagramming 
techniques for building formal conceptual models (Heath, Ciarallo, and Hill 2012).  

Recently, DSM is recognized as a new conceptual modeling paradigm (Setavoraphan and Grant 
2008)(Setavoraphan 2009) since it provides DSML and DSME tailored for problem domains. The con-
ceptual models can be built as formal models with high-level concepts and stored as computer-
processable documents. As shown in the DSM layer in Figure 1, the complexity of complex systems 
modeling can be reduced by decomposing the complex system into a series of problem domains and 
building domain specific conceptual models for each domain.  

The metamodel design of DSML is an essential step of DSM which involves joint efforts of domain 
experts, language engineers and M&S experts. To enable DSM for multi-domain and domain model inte-
gration, we propose a metamodeling approach which combines model framework-based structure model-
ing and formalism-based behavior modeling. The DSML metamodel imports the corresponding structural 
information for the specific domain from the framework, including entity hierarchy and interfaces to other 
part of the model framework. The behavior patterns of each domain are depicted based on classical M&S 
formalisms, such as DEVS for discrete-event behavior and Modelica for continuous-time behavior. These 
formalisms can be combined or specialized to depict the characteristics of problem domains. Domain-
specific models can be either transformed to formalism-based models which guide simulation model de-
sign and support formal analysis, or implemented as executable codes for simulation by code generators. 

3.2.2 Model Framework-based Model Architecting and Integration 

A model framework is the architecture of the simulation system and provides a structural foundation for 
the integration of simulation models of sub-systems across different domains. A model framework itself 
is technology-independent and should be described using high level concepts. However, current model 
frameworks are usually implemented based on certain technical specifications or modeling paradigms. 
Examples include Agent-based model framework for SEAS, HLA/BOM specification for distributed 
simulation systems. We build our model framework based on SMP2, a MDA-compliant model specifica-
tion, to provide a PIM for the model framework in this approach. 

The model framework or simulation system architecture plays an irreplaceable role in complex simu-
lation systems overall design and architecting. There is always an overall design scheme, whether it is 
implicit or explicit, proposed in the overall design phase and guides the whole development process. 
Model framework is abstracted from the main structure and fundamental relationships of the SUS, and it 
explicitly represents the overall architecture from the aspect of simulation modeling. Thus model frame-
work is the first class artifact in the development of complex simulation systems, which provides struc-
tural foundations for each domain and their coupling relationships.  

According to the three abstraction levels of MDA, a model framework is a computation independent 
model of the overall structure of the whole simulation system; we use SMP2 to implement the model 
framework. The SMP2-compliant model framework specifies the main components, their relationships, 
and the simulator interfaces, which provide a technical foundation for the integration of models of differ-
ent subsystems across various domains at the model integration phase. 

3.2.3 M&S Formalism-based Model Design and Formal Analysis 

M&S formalism includes model specification and simulator algorithm, which is the formal abstraction of 
M&S paradigm and experience. M&S community has developed and utilized many M&S formalisms to 
model different aspects of SUS. Formalisms support model design at a higher abstraction level and formal 
analysis since they are built based on strict mathematical foundations. Though several formalisms are able 
to provide M&S support for complex systems as a unified formalism (as discussed in subsection 2.1), a 
formalism usually can only describe only parts of characteristics of SUS. Multiple formalisms should be 
integrated to comprehensively describe a problem domain. Additionally, one formalism can describe 
more than one domain since it is abstracted from domain-independent behavioral patterns.  
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We use M&S formalisms to support behavioral modeling of complex systems and provide denota-
tional semantics for DSML in the formalism layer. Complex system simulation modeling is an intricate 
process, thus formal analysis is important for early model verification and validation. Moreover, a single 
formalism supports DSM for multiple domains, so formal analysis methods (e.g., state reachability) can 
perform overall analysis on complex system models from various domains. There are several super for-
malisms, such as DEVS, Modelica, and different formalisms can be transformed to these formalisms; in 
this way model design and formal analysis can be performed based a unified formalism. 

Normally, we only use M&S formalism for formal analysis and early verification and validation. 
However, in some cases formalisms are necessary to be transformed to SMP2 and thus support the inte-
gration of formalism-based models: the first is when part of the characteristics of the simulation system 
are the only concern and this part can be sufficiently described by the formalisms; the second is when 
some models of the simulation system are directly built using formalisms in their supporting environ-
ments (i.e., no domain specific models are available) and the simulation system needs to integrate these 
models into a integrative simulation environment. We have study the transformation from DEVS to 
SMP2 (Lei et al. 2009) and Statecharts to SMP2 (Zhu et al. 2012).  

3.2.4 SMP2/C++ Transformation-based Model Implementation 

Currently, only C++ is available to construct PSMs for PIM implementation. SMP2 specification includes 
a SMP2/C++ mapping (European Space Agency 2004), based on which we build a C++ code generator 
for SMP2 using Eclipse. Since SMP2 mainly specifies the structural aspect, a majority part of the behav-
ioral code is generated from domain specific models using corresponding code generators for DSMLs. 
The two parts are integrated under the SMP2 framework and built into executable components. 

3.3 A Technical Implementation Solution for the Proposed Approach 

The technical implementation solution for the proposed approach is presented in Figure 2, including the 
following essential steps. (1) Based on the knowledge and M&S experience of the system a model 
framework is constructed as the backbone of the simulation system. (2) According to language engineer-
ing of DSML, it comprises abstract syntax (including constraints), concrete syntax, and semantics (Kelly 
and Tolvanen 2008). The metamodel of a DSML is designed based on domain specific knowledge under 
the guidance of the framework and concrete syntax is attached to each element of the metamodel. Based 
on the metamodel a DSME is generated using DSM platforms (we use GME in this approach). (3) Do-
main modelers build conceptual models with DSML in DSME. The semantics of DSML is achieved ei-
ther by semantic anchoring which transforms domain specific models to formalism-based models based 
on the metamodel mapping of their abstract syntax, or by code generation which generates executable 
code from domain specific models. (4) Modelers who are familiar with certain formalisms can design 
simulation models base on the formalisms using their supporting tools. Then formal analysis and early 
verification and validation can be performed on these models. Formalism based models can be also trans-
formed to behavioral code to enable composable simulation. (5) The behavioral code is combined with 
the framework code generated from the SMP2-compliant model framework, and these two kinds of code 
are built together as executable simulation model components which are stored in an executable simula-
tion model component library. (6) Complex simulation application users select the components and com-
pose a simulation application according to their requirements. Then they run the application in the inte-
grative simulation environment and analyze the simulation results. 
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Figure 2: A technical implementation solution for the modeling approach 

This technical implementation solution comprehensively utilizes MDE techniques and M&S para-
digms to support formal and automated model development: DSM provides domain modeling supports 
and separate conceptual models and simulation models; M&S formalisms are used in model design and 
formal analysis; the model framework is constructed based on SMP2 to integrate simulation models and 
promote model reusability and composability; model transformation and code generation are employed 
during the whole cycle to automatically generate lower-level artifacts from higher-level products. 

4 APPLICATION EXAMPLE: SIMULATION MODELING FOR COMBAT SYSTEM 
EFFECTIVENESS MEASUREMENT 

Combat system effectiveness simulation (CoSES) is a typical example of M&S research on complex sys-
tems. Combat systems usually comprise multiple subsystems (e.g., combat platforms carry sensors, 
weapons and communication devices) from different domains (e.g., physical domain, information do-
main, and cognitive domain). Combat system modeling and simulation is researched at a series of abstrac-
tion levels: theatre/campaign level, mission/battle level, engagement level, and engineering level from top 
to down (Davis and Bigelow 1998). In this research, we concentrate on CoSES at the engagement level, 
and we do not consider social domain behaviors. Model reuse and composability is of vital importance to 
promote development efficiency in CoSES. As shown in Figure 3, we build a model development frame-
work for CoSES based on the proposed MPM approach, which contains the following four modeling lay-
ers.  

(1) The model framework layer comprises two parts: the first is a physical domain framework (for 
simplicity we incorporate information domain into physical domain) which is the backbone of the simula-
tion system, and it specifies the affiliated combat models and their relationships; the second is a decision 
script framework which supports the script-based implementation of decision models. These two frame-
works are connected by a cognitive decision interface framework, which is technically a set of Py-
thon/C++ transformation functions. The whole model development process is based on the model frame-
work layer which specifies the system structure and integrates subsystem models from different domains.  

(2) The behavioral representation layer, i.e., the model implementation layer, uses C++ to implement 
physical domain models and Python to implement cognitive domain models. The physical domain model 
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is implemented using SMP2/C++ since physical behaviors are relatively stable and can be hard-coded in 
C++. The decision script framework is implemented using Python since decision behavior is flexible and 
model revisions take effect immediately without rebuilding. Eventually all Python code are transformed 
to C++ code for integrative simulation in SMP2 environment. 

 

 

Figure 3: A model development framework for CoSES 

 (3) The formalism layer utilizes common M&S formalisms to provide behavioral semantics for do-
main specific models. Statecharts, Modelica and block diagram are used in physical domain for physics 
modeling; event graph, activity diagram and Petri Nets are used in cognitive domain for decision model-
ing since they are suitable to describe combat decision.  

(4) The DSML layer provides DSME and DSML for typical SUS domains such as missiles, radars, 
warships and so on. A DSML metamodel uses the corresponding structural information in the CoSES 
model framework to design its structural aspect of the metamodel, and chooses appropriate M&S formal-
isms based on its domain behavioral patterns to design its behavioral aspect. 

In this model development framework, Python scripting language is used as a supplement of C++ to 
provide flexible decision modeling support. The framework is still using C++ for model implementation 
and Python script are converted to C++ during simulation execution. We have studied decision modeling 
for CoSES using this model development framework in (Li et al. 2013), constructed a DSML for decision 
modeling, and used Petri Net to perform formal analysis. Though more works are needed to implement 
the whole framework, the results and insights gained in  (Li et al. 2013) showed that the  development ef-
ficiency was promoted and model reusability and composability was enhanced by the proposed approach.  

5 CONCLUSIONS AND FUTURE WORK 

Complex systems have hierarchical heterogeneous subsystems and diverse domain behavior patterns, 
which bring a grand challenge for simulation modeling. To enable efficient and effective M&S for com-
plex systems, M&S community extends their existing technical space to promote reusability, interopera-
bility and composability of simulation models and systems. Based on an overview of state-of-the-art sim-
ulation modeling methods, we insist that the model development process should be formalized and 
automated by a comprehensive utilization of current M&S paradigms and MDE techniques. Therefore, 
we propose a DSM-based MPM approach for complex systems. In this approach, a model framework is 
constructed to architect the structure of the overall simulation system and multiple M&S formalisms are 
combined to describe the diverse domain behaviors; moreover, DSMLs and DSMEs are built to provide 
highest-level modeling support. This approach provides an efficient collaborative framework to integrate 
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joint efforts from domain experts, M&S users, M&S experts, software engineering experts and other 
M&S participants. The application example illustrates the applicability of the approach and shows that 
this approach can promote the development efficiency and the quality of the simulation model. 

We plan to continue working on the following aspects in the future. First, more formalisms and their 
environments can be incorporated into the approach; second, physical domain modeling in CoSES should 
be studied to validate the approach with the whole combat simulation system; finally, we need to extend 
the application range of this approach to other typical kinds of complex systems (e.g., traffic networks). 
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