
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

SUPPORTING A MODELING CONTINUUM IN SCALATION:
FROM PREDICTIVE ANALYTICS TO SIMULATION MODELING

John A. Miller
Michael E. Cotterell

Department of Computer Science
University of Georgia

Athens, GA 30602, USA

Stephen J. Buckley

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

ABSTRACT

Predictive analytics and simulation modeling are two complementary disciplines that will increasingly be
used together in the future. They share in common a focus on predicting how systems, existing or proposed,
will function. The predictions may be values of quantifiable metrics or classification of outcomes. Both
require collection of data to increase their validity and accuracy. The coming era of big data will be a
boon to both and will accelerate the need to use them in conjunction. This paper discusses ways in which
the two disciplines have been used together as well as how they can be viewed as belonging to the same
modeling continuum. Various modeling techniques from both disciplines are reviewed using a common
notation. Finally, examples are given to illustrate these notions.

1 INTRODUCTION

Two disciplines, predictive analytics and simulation modeling, are currently expanding their scopes and
are likely to increase their commonalities in the near future. On one hand, predictive analytics attempts to
make sense of data by finding patterns or fitting statistical models. On the other hand, simulation modeling
attempts to mimic reality. Simulation requires data for fitting distributions and estimating parameters. One
may view the two disciplines as two ends of the same continuum. Although somewhat of an overstatement,
one end could be described as data-rich and knowledge-poor, while the other could be viewed as knowledge-
rich and data-poor. If one looks at the emerging revolution of big data analytics (LaValle et al. 2011), it is
only natural to suppose that simulation models will increase their data richness and that models used for
deep analytics will increase in their sophistication.

Although analytics is similar to data mining, it often has a stronger emphasis on modeling. Mining has
the basic philosophy to examine data with a variety of techniques in order to gain insight. Modeling pushes
toward understanding the phenomena, systems or processes involved. There are some internal structures
and mechanisms, which may only partially be known, but which are worthwhile to try to capture. Over
time, understanding as well as model accuracy (e.g., weather forecasting or biochemical pathway analysis)
should improve. Among other things, the refinement and validation of simulation models involves adjusting
parameters so that the predictions of the models come in closer agreement with observed data (analogous to
what occurs in machine learning). Optimization algorithms are used for both simulation model calibration
(parameter adjustment) and machine learning.

In this paper, we examine both predictive analytics and simulation modeling. The characteristics and
commonalities of both disciplines are illustrated with example problems. ScalaTion (Miller et al. 2010),
an integrated environment supporting predictive analytics, simulation modeling and optimization is used
as a testbed in this paper for studying the modeling continuum.
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Techniques used in predictive analytics have been used in simulation for metamodeling (Barton 1998;
Beers 2005) including techniques such as polynomial regression, neural networks, splines, radial basis
functions and kriging. Metamodeling is especially useful when complex and time-consuming simulation
models need to be run repeatedly, e.g., for sensitivity analysis or simulation optimization. Such techniques
have been used to a lesser degree in simulation for input modeling (Leemis 2004). Analytics can also be
used to make simulation optimization more efficient by determining the more important features/factors
to consider while optimizing (Better et al. 2007). Finally, analytics can also be used for output analysis.
Complex, large-scale simulations can produce result data that are difficult to digest, so use of analytics
techniques post simulation can be quite useful.

The rest of the paper is organized as follows: Using a common notation, sections 2 and 3 provide
some necessary background on predictive analytics and simulation modeling, respectively. Section 4 makes
the case for a modeling continuum based on the richness of data and knowledge utilized by various
modeling techniques. Example problems illustrating commonalities and trade-offs between the various
techniques are discussed in sections 5 and 6. Finally, conclusions and future work are given in section
7. Due to space limitations, all figures and many code listings are provided in the on-line supplement
(see http://www.cs.uga.edu/∼jam/scalation/apps/simopt). The supplement also contains an Appendix that
provides an overview of ScalaTion.

2 PREDICTIVE ANALYTICS

As the name predictive analytics indicates, the purpose of techniques that fall in this category is to develop
models to predict outcomes. For example, the distance a golf ball travels, y, when hit by a driver depends
on several factors or inputs, x, such as club head speed, barometric pressure, and smash factor (how square
the impact is). The models can be developed using a combination of empirical data and knowledge (e.g.,
Newton’s Second Law). The modeling techniques discussed in this section tend to emphasize the use of
data more than knowledge.

Abstractly, a predictive model can generally be formulated using a prediction function, y = f (x, t; b),
where y is a scalar output, x is an input vector, t is time, and b is the vector of parameters of the function
that can be adjusted so that the predictive model matches available data. Of course, the formulation could
be generalized by turning the output into a vector y, the parameters into a matrix, and allowing feedback
in the function f . Here, we do not initially consider these generalizations, but introduce them only when
necessary.

In ScalaTion, data are passed to the train function to train the model/fit the parameters, b. In the
case of prediction, the predict function is used to predict values for the scalar response y, while the
predictAll function is used when the response, y, is multidimensional. In the case of classification,
the train function is still used, but the classify and classifyAll functions replace the prediction
functions. A key question to address is the possible functional forms that f may take, such as the importance
of time, the linearity of the function, the domains for y and x, etc. We consider several cases in the subsections
below.

2.1 Time-Independent Models

In time-independent models, the time argument, t, is removed from the prediction function. Although these
techniques are thought of as time-independent, it is still possible to interpret one of the values in the input
vector, x, as time. It is just that time is not a dominate feature as it is in the next section on time-dependent
models.

• Multiple Linear Regression. Regression has been used with simulation modeling since as early
as the 1970’s (Kleijnen 1975; Friedman 1984). A common and useful case occurs when it is
reasonable to model f as a linear combination of parameters, b. In this case, given an input vector,
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x, the predicted value for y is simply the dot product of the parameter vector, b, with the input
vector augmented with a 1, [1 x], as in

y = b · [1 x] = b0 + b1x1 + ... + bnxn.

The predict function predicts the response value, y, using ScalaTion’s dot product operation:
def predict (z: VectorD): Double = b dot z. Note, z = [1 x]. The design of ScalaTion
was to make the code look much like the mathematical notation. Using several data samples as a
training set, the Regression class in ScalaTion can be used to estimate b. Each sample pairs
an x input vector with a y response value. The x vectors are placed into a data/design matrix X
row-by-row and a column of ones is introduced as the first column in X . The y response values
form the response vector. The parameter vector can be estimated from the data using

b = (XᵀX)−1Xᵀy.

The train function below performs this calculation and determines the quality of fit, R2.

def train () {
b = (x.t * x).inverse * x.t * y // parameter vector (b0, ... bk)
val e = y - x * b // residual/error vector
val sse = e dot e // residual/error sum of squares
val sst = (y dot y) - y.sum˜ˆ2. / n // total sum of squares
rSquared = (sst - sse) / sst // coefficient of determination

} // train

For improved robustness, the Regression class also allows the pseudo-inverse to be computed
using QR Decomposition. Note, ˜ˆ is the exponentiation operator provided in ScalaTion.

• Neural Networks. Neural Networks have been applied in simulation starting in the late 1980’s (Fish-
wick 1989). Regression may involve many possible functional forms that may be hard to assign
meaning to, so one could use a more flexible/malleable fitting approach such as using ScalaTion’s
NeuralNet class as shown below. Assuming a three layer network (input, hidden and output
layers), an intermediate vector, h = sigmoid(W ᵀx+wb), is calculated where W is a weight matrix,
x is the input vector, wb is a bias vector and sigmoid is an activation function. The response/output,
y = sigmoid(V ᵀh+vb), is computed similarly using a second weight matrix V and bias vector vb.
The W = [wi j] matrix indicates the strength of the weight between input xi and hidden h j. To this,
a bias value, wb j, is added. The V matrix and vb vector play the same roles between the hidden
and output layers.

def predictAll (x: VectorD): VectorD = {
val h = sigmoid (w.t * x + wb) // hidden layer
sigmoid (v.t * h + vb) // output layer

} // predictAll

2.2 Time-Dependent Models

If time is a key feature involved in the modeling, there are a variety of modeling techniques that can be
applied to time series data, starting with the classical ARMA models.

• Times Series ARMA Models. Positive results for modeling simulation outputs using time series
analysis techniques have been obtained (Brandao and Nova 1999; Brandao and Nova 2003). The
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ARMA class in ScalaTion provides support for the development of Auto-Regressive (AR) and Moving
Average (MA) models of time series data. An AR(p) model predicts the next value yt from the last
p values each weighted by its own coefficient, φ j The error/noise is represented by εt , as in

yt = µ + φ1yt−1 + . . .+ φpyt−p + εt .

The code in ScalaTion works with zero mean data, xt , where the mean, µ , has been subtracted
from yt . The coefficients, φ , are estimated using the Durbin-Levinson algorithm (Rao 2008). After
these coefficients are estimated, the AR(p) model can be used for forecasting. An MA(q) model
predicts the next value, yt from the effects of prior noise/disturbances, as in

yt = µ + εt + θ1εt−1 + . . .+ θqεt−q.

2.3 Models Based on Classifiers

When the output/response, y, is defined on small domains, e.g., B or Zk = {0, ... k− 1}, then some
classifiers used in data mining can be used for predictive analytics.

• Bayesian Networks. If one can estimate the conditional probabilities of Xj = x j given Y = c, then
the BayesClassifier class can used. The best prediction for y is the value that maximizes the
product of the conditional probabilities, as shown in

y = argmaxc{Πn−1
j=0 p(x j | c)}.

Although the formula assumes the conditional independence of x js, the technique can be applied
as long as correlations are not too high.

3 SIMULATION MODELING

The most recent version of the Discrete-event Modeling Ontology (DeMO) lists five modeling paradigms
or world-views for simulation. So far in this paper, discussion has focused on functions with two vectors,
the input, x, and output, y, and a scalar time, t. Simulation modeling adds to these the notion of state,
represented by a vector-valued function, s(t). Knowledge about a system or process is used to define state
as well as how state can change over time. Theoretically, this should make such models more accurate,
more robust, and have more explanatory power. Ultimately, we may still be interested in how inputs affect
outputs, but to increase the realism of the model with the hope of improving its accuracy, much attention
must be directed in the modeling effort to state and state transitions. This is true to a degree with most
simulation modeling paradigms or world views. These paradigms are briefly discussed below and explained
in detail in Silver et al. (2011).

• State-Oriented Models. State-oriented models, including Generalized Semi-Markov Processes
(GSMPs), can be defined using three functions, an activation function, {e} = a(s(t)), a clock
function, t ′ = c(s(t),e), and a state-transition function, s(t ′) = d(s(t),e). In simulation, advancing
to the current state, s(t), causes a set of events, {e}, to be activated according to the activation
function. Events occur instantaneously and may affect both the clock and transition functions.
The clock function determines how time advances from t to t ′ and the state-transition function
determines the next state, s(t ′). In this paper we tie in the input and output vectors. The input
vector, x, is used to initialize a state at some start time, t0, and the response vector, y, can be a
function of the state sampled at multiple times during the execution of the simulation model.
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• Event-Oriented Models. State-oriented models may become unwieldy when the state-space
becomes very large. One option is to focus on state changes that occur by processing events in
time order. An event may indicate what other events it causes as well as how it may change state.
Essentially, the activation and state transition functions are divided into several simpler functions,
one for each event: {e}= ae(s(t)) and s(t ′) = de(s(t)). Time advance is simplified to just setting
the time, t ′, to the time of the most imminent event on a future event list.

• Process-Oriented Models. One of the motivations for process-oriented models is that event-oriented
models provide a fragmented view of the system or phenomena. As combinations of low-level
events determine behavior, it may be difficult to see the big picture or have an intuitive feel for the
behavior. Process-oriented or process-interaction models aggregate events by putting them together
to form a process. An example of a process is a customer in a store. As the simulated customer
(as an active entity) carries out behavior it will conditionally execute multiple events over time.
A simulation then consists of many simultaneously active entities and may be implemented using
co-routines (or threads/actors as a more heavyweight alternative). One co-routine for each active
entity. The overall state of a simulation is then a combination of the states of each active entity
and the global shared state, which may include a variety of resources types.

• Activity-Oriented Models. There are many types of activity-oriented models including Petri-Nets
and Activity-Cycle Diagrams. The main characteristics of such models is a focus on the notion of
activity. An activity (e.g, customer checkout) corresponds to a distinct action that occurs over time
and includes a start event and an end event. Activities may be started because time advances to its
start time or a triggering condition becomes true. Activities typically involve one or more entities.
State information is stored in activities, entities and the global shared state.

• System Dynamics Models. System dynamics models were recently added to DeMO, since hybrid
models that combine continuous and discrete aspects are becoming more popular. In this section,
modeling the flight of a golf ball is reconsidered. Consider the response vector, y = [y0 y1], where
y0 indicates the horizontal distance traveled and y1 indicates the vertical height of the ball. Future
positions of y depend on the current position and time. Using Newton’s Second Law of Motion, y
can be estimated by solving a system of Ordinary Differential Equations (ODEs) such as ẏ = f (y, t),
where y(0) = y0. The Newtons2nd object uses the Dormand-Prince ODE solver to solve this
problem. More accurate models for estimating how far a golf ball will carry when struck by a driver
can be developed based on inputs/factors such as club head speed, spin rate, smash factor, launch
angle, dimple patterns, ball compression characteristics, etc. There have been numerous studies of
this problem, including Barber (2007).

3.1 Simulation Optimization

Simulation optimization, including both simulation via optimization and optimization via simulation, is
becoming more popular and may be used for optimizing designs or for improving the models themselves (Pa-
supathy and Henderson 2011). One can think of a simulation model as having a parameter vector, b, that
needs to be estimated or fit based on pairings of input and output vectors, {y and x}. In some cases,
such as biochemical pathways, kinetics parameters are hard to measure directly, so an alternative is to
adjust them by using simulation optimization to bring simulation results in line with experimental data.
This is analogous to what happens in machine learning, where a training set of data is used calibrate or
adjust parameters in a model (e.g., the weights, W and V , in Neural Nets). The optimization techniques
themselves may be very similar. ScalaTion supports the development of simulation optimization solutions
and includes several optimization algorithms, e.g., Linear Programming (Simplex), Integer Programming
(Branch and Bound), Quadratic Programming (Quadratic Simplex), Nonlinear Programming (Steepest
Descent, Conjugate Gradient and Quasi-Newton), and Heuristics (Tabu Search and Genetic Algorithm).
Furthermore, the SoPT ontology (Han et al. 2011) can assist users developing such solutions.
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4 MODELING CONTINUUM

Having examined techniques in both predictive analytics and simulation modeling utilizing a common
notation, the paper now considers how these techniques can be viewed to belong to the same continuum.

In the era of big data (Jacobs 2009; Agrawal et al. 2011), data for the purposes of analytics or
simulation modeling will become available at an explosive rate. Data will come from multiple sources
including corporate data stores and on-line data sources such as Web accessible databases, Linked Open
Data (LOD) following the Resource Description Framework (RDF) and Web Ontology Language (OWL)
ontologies. These are also several initiatives to provide open data (e.g., the Open Data Group and the Open
Government Initiative). At the same time, processing capabilities in computing clouds are also increasing
substantially. The increasing availability of multi-core compute clusters also provides organizations with
more storage and computational power. Programming techniques (e.g., Map-Reduce) and software libraries
(e.g., Hadoop, Akka) are making it easier to exploit these computational resources. The convergence of
these capabilities, the ability to collect and store vast amounts of data, the ability to carry out deep analytics
and the ability to create sophisticated models that are well-calibrated and continually feed by data, suggest
a coming revolution in the use, credibility and reliance on these analytics/modeling techniques.

There are numerous modeling techniques that can be used for predictive analytics. Let us consider
this in more detail for the modeling of emergency healthcare facilities. The operation and efficiency of an
emergency department or urgent care facility is dependent on several factors, such as staffing levels and
inventories of supplies. Revenues and costs can also be added to the model. A simulation model can be
used to predict profit over time, the expected waiting times of patients, etc. In section 5, we compare three
fundamental modeling techniques: one from predictive analytics (Multiple Linear Regression), one analytic
technique (Queueing Networks) and one discrete-event simulation techniques (Process-Interaction). All
models are developed using ScalaTion.

One difference between the approaches is that the regression/time series analysis are more reliant of
data, while the analytic/simulation modeling are more reliant on knowledge. One on hand, if one collects
enough data about emergency healthcare facilities, predictions of waiting times and operating costs could
be accurately made, so long as the current scenario does not depart too much from prior ones for which
data have been collected. On the other hand, armed with the knowledge of how these facilities operate
(e.g., queues and service centers), one can construct a simulation model. Still, without data to estimate
parameters and fit distributions, which approach will be more accurate? Clearly, effectively combining
data and knowledge can lead to more accurate and informative modeling.

In essence, the raw material for both predictive analytics and simulation modeling is data and knowledge.
An important trend in the future will be that such data and knowledge will become more widely available.
This will allow faster, larger scale modeling, improved reproducibility of results, and enhanced credibility.

The Semantic Web can play a vital role in this mission (Miller and Baramidze 2005) in the following ways:
(i) Linked Open Data: An increasing amount of data and meta-data is being made available as LOD (Bizer
et al. 2009) (typically in RDF) that is interlinked and available as SPARQL endpoints. (ii) Domain
Ontologies: Knowledge of entities, systems or phenomena are being are being captured and organized in
OWL ontologies. For example, the GlycO, EnzyO and ReactO ontology suite provides knowledge that
can be used in creation of biochemical pathway models. (iii) Modeling Ontologies: The development of
ontologies for modeling and simulation (e.g., DeMO and the Cognitive Systems Specification Framework
(CS2F)) can serve as a bridge between domain ontologies and executable simulation models (Miller et al.
2004; Douglass and Mittal 2013).

5 APPLICATION TO HEALTHCARE

In the healthcare domain, one problem to be addressed for emergency departments/urgent care facilities is
that of staffing. The solutions provided below are simplified to better illustrate the techniques. For more
information on problems of this type, please see Tan et al. (2012). Given an estimated demand, how many
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of various types of staff members should be hired, i.e., how many triage nurses, registered nurses, nurse
practitioners, doctors and administrative clerks should be hired. The model includes l = 2 types of patients
(regular and severe) and m = 5 types of employees.

Table 1: Model definitions.

Variable Obtained Description Units
λk input arrival rate for patients of type k hr−1

µ jk input service rate at resource j for patients of type k hr−1

fk input fee charged to patients of type k $
d input patients dis-utility of waiting $ / hr
s j input salary/wage for staff of type j $ / hr
x j optimize staffing level for type j employees none
n output treatment rate for patients hr−1

w output waiting time for patients hr
c s ·x operating cost $ / hr
r f ·n revenue for patient service $ / hr
p r− c net profit $ / hr
u p−dnw overall utility $ / hr

The goal is to maximize a utility function based on profit as well as patient satisfaction that factors in a
dis-utility proportional to patient waiting times. The optimization problem may be formulated as

max u(x) subject to x ∈ Zm
+.

This is an Integer Nonlinear Programming Problem (INLP) where, unless assumptions/approximations are
made, there is no closed-form expression for the objective function u(x). For this modeling/optimization
problem, the following three techniques are utilized: Process-Interaction Simulation Models, Queueing
Networks and Multiple Linear Regression.

• Discrete-event Simulation: Process-Interaction. The above problem is a natural one to be solved
using simulation optimization. This will be done by extending the process-oriented Model class
provided by ScalaTion. The ERModel class (see supplement) defines a simple process-interaction
model of our Emergency Department where the staff is represented by instances of the Resource
class. The input to the model is a VectorI which contains staffing levels for the model. The
external arrival and service time distributions for each staff member are modeled according to
Exponential distributions with rates from λ and µ . Two different kinds of patients are generated in
this model, WalkInPatients and AmbulancePatients. Their arrival distributions are based
on the external arrival rates found in λ . Upon arrival, they are assigned a severity level of 0 (low)
or 1 (high) based on a Bernoulli distribution where the probability of receiving a 1 is 25%. The
model itself is constructed by defining the sources, sinks, resources, queues and transportss for the
model as well as defining the script for each actor involved in the simulation (the model’s screenshot
(Figure 1) and source code are available in the supplement. Given the process-interaction model,
we can easily define an objective function u(x) that utilizes the statistics provided the simulation:

def u (x: VectorI, s: Double, d: Double): Double = {
val m = new EmergencyModel(x) // create model
val results = m.simulate() // simulate and gather stats
val w = m.sumMeanWaitingTimes() // sum of average waiting times
val n = new VectorD (m.low, m.high) // patients served of each type
val c = x dot s // operating cost
val r = f dot n // revenue for patient service
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val p = r - c // net profit
p - d * w * n.mean // return overall utility

} // u

Note, the dot operator is provided by ScalaTion as a concise way to take the dot product over
two vectors. Now that the objective function, u(x), has been defined in terms of the actual
simulation model, it is ready to be optimized. As this is an INLP optimization problem, ScalaTion’s
IntegerTabuSearch optimizer for Tabu Search (Glover and Laguna 1998) is utilized, passing
u(x) as the function to be optimized.

• Queueing Networks. Due to the high computational demands of simulation optimization, one may
attempt to use a simpler analytic modeling technique, such as Queueing Networks. In ScalaTion, the
JacksonNet class can be used to determine the steady-state distribution for a network of M/M/c
queues. The technique discussed is limited by two serious assumptions. The model only works
if the inter-arrival times of patients into the network follow a Poisson process and service times
are Exponentially distributed. More general types of Queueing Networks (e.g., BCMP) models are
planned for the future. Still, they will have limiting assumptions compared to simulation models.
The derived queueing model for the Emergency Department model can be found in the supplement.
The objective function is defined using the steady-state results and is analogous to the one given
in the last section.

• Multiple Linear Regression. Several factors can affect the staffing decisions, including the hourly
pay rates for the various types of staff members, the costs of supplies, etc. We use Multiple
Linear Regression (MLR) to predict patient waiting times, cost, revenue, profit and utility. The
two techniques discussed above, have limitations: Discrete-event Simulation used in simulation
optimization can be very time consuming, even when run on a cluster. Queueing Networks provide
solutions more rapidly, but their accuracy can be questioned when their assumptions are violated.
An important issue for MLR is the issue of getting the data; recall the earlier discussion of data-rich,
knowledge-poor vs. data-poor, knowledge-rich. Clearly, it is important to collect real-world data,
even simulation models need data. The data requirements for applying Multiple Linear Regression
are much greater. Of course, there is no reason why simulation can not supply the regression models
with some data, as is done in Response Surface Methodology (Carley et al. 2004). The regression
models can therefore be used for interpolation, limited extrapolation and optimization, reducing
the need for more time-consuming simulation runs.

6 APPLICATION TO SUPPLY CHAIN MANAGEMENT

In this paper we claim that predictive analytics is more reliant on data, while simulation modeling is more
reliant on knowledge. Effectively combining data and knowledge can lead to more accurate and informative
modeling. Supply chain management is one of the most mature fields of analytics and provides excellent
support for our claims. A wide variety of time-dependent predictive analytics techniques are used in
supply chain management to forecast product demand (Box and Jenkins 1976). As shown in Figure 2 (see
supplement), forecasts of product demand feed the overall supply chain process, whose goal is to provide
inventory to satisfy demand on a continuing basis. Simulation is often used to assess whether a supply
chain will truly satisfy demand in the presence of a variety of uncertainties such as forecast error, supplier
lead time, manufacturing lead time, and manufacturing yield. Here are a few of the many examples of
supply chain simulation:

• IBM Europe PC Study: In the mid-1990s, IBM performed simulation modeling to develop a
better understanding of its personal computer supply chain in Europe (Feigin et al. 1996). The
supply chain was experiencing low service levels and excessive inventory. A manufacturing plant
in Scotland was the primary source for PCs. The manufacturing execution strategy was Build To
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Forecast and there were distribution centers and transshipment points in each European country. A
discrete-event simulation model was built, along with a number of optimization models.

• IBM Asset Management Tool (AMT): A couple of years later IBM started a global supply
chain re-engineering effort whose goal was to achieve quick customer responsiveness with minimal
inventory in the IBM global supply chain. To support this effort, an extended enterprise supply chain
analysis tool, AMT, was developed (Lin et al. 2000). AMT integrated graphical process modeling,
analytical performance optimization, and discrete event simulation to study a wide range of issues
including inventory budgets, turnover objectives, customer service level targets, and effects of new
product introduction.

• IBM Pandemic Business Impact Modeler: In 2006, IBM developed a simulation model to
understand how a pandemic might impact a manufacturing companys employees and business
performance (Chen-Ritzo et al. 2007). As shown in Figure 3 (see supplement), the model comprised
six integrated sub-models to examine epidemiological, behavioral, economic, infrastructure, value
chain, and financial aspects of the IBM ecosystem. The sub-models were constructed using a
combination of system dynamics simulation, time step simulation, and linear programming.

In the above examples, predictive analytics and simulation modeling are used in combination to predict
important supply chain results. There is a key difference in how uncertainty is treated in the two techniques.
In the predictive analytics example, data are analyzed to generate a forecasted quantity, with uncertainty in
the forecast expressed as a probability distribution (generally referred to as forecast error). The simulation
models accept probability distributions as inputs, draw samples from the distributions, and assess the impact
of the samples on the modeled processes. The simulation models generate an array of output values, which
can be converted back into probability distributions using output analysis. In essence, predictive analytics
turns data into distributions, while simulation modeling turns distributions into data.

The parameters of our predictive model must be trained on historical data in order to create a reasonably
accurate forecasting engine. Similarly, the parameters of our simulation models must be calibrated against
historical data in order to create “valid models” that reliably predict demand satisfaction. After validation,
it is common to perturb a supply chain simulation model using what-if analysis by changing parameters,
policies, processes, or network structures in an attempt to improve the ability of the supply chain to satisfy
demand. At this point, supply chain simulation has gone beyond being a pure predictor and has become a
tool to improve the supply chain. This was in fact the purpose of the simulation models described above,
whose results were as follows:

• IBM Europe PC Study: $40M of savings were realized per year by removing many distribution
centers and transshipment points, and changing the manufacturing execution strategy from Build
To Forecast to a variant of Build To Order (see Figure 4 in supplement).

• IBM Asset Management Tool (AMT): AMT was implemented in a number of IBM business units
and their channel partners. Benefits generated by AMT included more than $750M of savings in
material costs and price protection expenses in 1998, leading to IBM receiving the 1999 Franz
Edelman award.

• IBM Pandemic Business Impact Modeler: The results of the model suggested that closing airports
and establishing alternative suppliers and fulfillment sites may be the most effective combination
for mitigating the impact of a pandemic on the revenue of a manufacturer, subject to a number of
assumptions about the manufacturer.

Predictive analytics can also be extended to improve a supply chain. A forecasting engine operates
by identifying the relationship between demand and selected demand drivers such as historical demand,
weather, and prices. While historical demand and weather cannot be changed, prices can. Therefore, a
demand forecasting engine can be used to improve a supply chain by leveraging its model of price elasticity
to project price recommendations that increase demand (Dietrich et al. 2012).
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A recent proof of concept built by IBM provides a second example of using predictive analytics to
improve a supply chain. The goal was to improve the on-time delivery of a group of consumer products from
a manufacturing site to a set of retail distribution centers. The analysis involved monitoring a large set of
metrics across the supply chain over time and correlating exceptions in those metrics to late deliveries at the
retail distribution centers, using a predictive analytic technique called Temporal Causal Modeling (Arnold
et al. 2007). This regression based technique extends traditional mining of causality beyond statistical
correlations to temporal relationships. The proof of concept identified five metrics, including forecast
accuracy and distribution center capacity, which had the most impact on late deliveries. Improving these
five metrics indicated a potential to significantly improve on-time delivery. However, the predictive model
did not indicate how to improve the five metrics in supply chain operations. The next step in improving
this supply chain may be to create a detailed simulation model focusing on the processes impacting the
five most important metrics. In this way, the two techniques can work together to efficiently model and
improve a supply chain.

A third example of using predictive analytics to improve a supply chain is an IBM tool called Quality
Early Warning System (IBM 2012). This tool was developed for early identification of quality issues with
a low rate of false alarms. It automatically predicts defect trends before such trends can be triggered by
traditional, industry standard Statistical Process Control techniques. It is used by IBM in its manufacturing,
development, procurement, and field warranty processes. Like the second example, this tool can be used
to identify processes that need to be modeled in more detail to enable improved results. The tool saved
IBM over $38M in quality related costs since its deployment in 2008.

In summary, the examples presented prove that predictive analytics and simulation modeling are
important techniques for supply chain management. Both techniques can be used for prediction, one
relying purely on the data and the other on a combination of knowledge and data. Both techniques go
beyond pure prediction to enabling improvements in a modeled process through what-if analysis. Predictive
models focus mainly on metrics and have little knowledge of underlying processes. Simulation models
rely on deep knowledge about processes and provide a more detailed and flexible way to evaluate potential
process changes. Together these technologies provide an efficient methodology to determine the focus
areas of a process and analyze potential improvements to the process.

7 CONCLUSIONS AND FUTURE WORK

Analytics and modeling is a vast landscape with numerous competing and complementary techniques.
Positioning these techniques along a modeling continuum as well as creating taxonomies and ontologies to
describe and inter-relate them can help illuminate this vast landscape. From the available knowledge, data
and purpose of a particular modeling study, the appropriate techniques can be chosen from the modeling
continuum.

The ScalaTion package, which provides a wide selection of techniques for analytics and modeling,
can be used as a testbed for exploring trade-offs along the modeling continuum. The examples given
in this paper represents a preliminary study of some of the trade-offs. An integrated environment like
ScalaTion supporting a modeling continuum would clearly be advantageous for supply chain management
professionals. The development of models using ScalaTion can be assisted by utilizing the DeMO and
SoPT ontologies. Models can be created manually, with GUI designers, or generated from instances in
ontologies. Example code generators are available on the Web (see supplement).

With such technologies in place, an additional issue becomes how to take Web accessible knowledge and
big data and assist modelers and/or domain specialists in creating predictive models. Preliminary work has
begun on this with the DeMOforge project. To handle larger scale predictive analytics, simulation models and
simulation optimization, work has begun to parallelize ScalaTion to run on multi-core clusters. Additional
future work includes developing an ontology to support predictive analytics, handling of multiple ontologies,
searching for relevant ontologies, using rules to suggest modeling techniques relevant to a particular problem,
and searching open linked data and on-line databases for additional information.
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D. Ferrin, and D. J. Morrice, 408–413. Piscataway, New Jersey: IEEE.

Carley, K. M., N. Y. Kamneva, and J. Reminga. 2004. “Response Surface Methodology”. Technical report,
DTIC Document.

Chen-Ritzo, C., L. An, S. Buckley, P. Chowdhary, T. Ervolina, N. Lamba, Y. Lee, and D. Subramanian.
2007. “Pandemic Business Impact Modeler”. In Proceedings of the 2007 INFORMS Simulation Society
Research Workshop.

Dietrich, B., M. Ettl, R. Lederman, and M. Petrik. 2012, July. “Optimizing the End-to-End Value Chain
through Demand Shaping and Advanced Customer Analytics”. In Proceedings of the 11th International
Symposium on Process Systems Engineering, 8–18.

Douglass, S. A., and S. Mittal. 2013. “A Framework for Modeling and Simulation of the Artificial”. In
Ontology, Epistemology, and Teleology for Modeling and Simulation, 271–317. New York: Springer.

Feigin, G., C. An, D. Connors, and I. Crawford. 1996. “Shape Up, Ship Out”. ORMS Today 23 (2): 24–30.
Fishwick, P. A. 1989. “Neural Network Models in Simulation: A Comparison with Traditional Model-

ing Approaches”. In Proceedings of the 1989 Winter Simulation Conference, edited by E. MacNair,
K. Musselman, and P. Heidelberger, 702–709. Piscataway, New Jersey: IEEE.

Friedman, L. W. 1984. “Establishing Functional Relationships in Multiple Response Simulation”. In
Proceedings of the 1984 Winter Simulation Conference, edited by S. Sheppard, U. Pooch, and D. Pegden,
285–289. Piscataway, New Jersey: IEEE.

Glover, F., and M. Laguna. 1998. Tabu Search, Volume 1. Kluwer Academic Pub.
Han, J., J. A. Miller, and G. A. Silver. 2011. “SoPT: Ontology for Simulation Optimization for Scientific

Experiments”. In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, and M. Fu, 2914–2925. Piscataway, New Jersey: IEEE.

IBM 2012. “IBM Quality Early Warning System”. Technical report.
Jacobs, A. 2009. “The Pathologies of Big Data”. Communications of the ACM (CACM) 52 (8): 36–44.
Kleijnen, J. 1975. “Metamodel for Sensitivity Analysis: The Regression Metamodel in Simulation”.

Interfaces 5 (3): 21–23.

1201



Miller, Cotterell, and Buckley

LaValle, S., E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz. 2011. “Big Data, Analytics and
the Path From Insight to Value”. Technical report, IBM.

Leemis, L. M. 2004. “Building Credible Input Models”. In Proceedings of the 2004 Winter Simulation
Conference, edited by R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, 29–40. Piscataway,
New Jersey: IEEE.

Lin, G., M. Ettl, S. Buckley, S. Bagchi, D. Yao, B. Naccarato, R. Allan, K. Kim, and L. Koenig. 2000.
“Extended-Enterprise Supply-Chain Management at IBM Personal Systems Group and Other Divisions”.
Interfaces 30 (1): 7–25.

Miller, J. A., and G. Baramidze. 2005. “Simulation and the Semantic Web”. In Proceedings of the 2005
Winter Simulation Conference, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines,
2371–2377. Piscataway, New Jersey: IEEE.

Miller, J. A., G. T. Baramidze, A. P. Sheth, and P. A. Fishwick. 2004. “Investigating Ontologies for
Simulation Modeling”. In Proceedings of the 37th Annual Simulation Symposium, ANSS ’04, 55–63.
Washington, DC, USA: IEEE Computer Society.

Miller, J. A., J. Han, and M. Hybinette. 2010. “Using Domain Specific Languages for Modeling and
Simulation: ScalaTion as a Case Study”. In Proceedings of the 2010 Winter Simulation Conference,
edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 741–752. Piscataway,
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