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ABSTRACT

JARTA is a Java library to model and fit Autoregressive-To-Anything (ARTA) processes. These processes
are able to capture the dependency structure of a system, in contrast to commonly used models, that assume
independently distributed random values. This study uses a simulation model of a warehouse to demonstrate
the importance of capturing dependencies when modeling stochastic processes. Consequently there is a
need for a suitable modeling approach. With JARTA we provide a modern software package to model
processes with an appropriate dependency structure. Its two main goals are providing a clean code base
for integration in other projects and high transparency for educational purposes. To support these goals
JARTA is published under an open source license at http://sourceforge.net/projects/jarta/.

1 INTRODUCTION AND MOTIVATION

Stochastic processes are a common approach to model system behavior without modeling a system in detail.
Random number generators (RNG) used to implement these processes, are generally designed to generate
independent and identically distributed (i.i.d.) values. In fact being i.i.d. is widely accepted as a desirable
quality of RNGs (L’Ecuyer 2006). Considering real world systems the assumption of independence for
subsequent events might be wrong. Indeed one can imagine various effects that inevitably will lead to
dependencies in system behavior, e.g., internal states, psychological factors, or simple ordering of jobs.
Consequently it might be necessary to model stochastic process with a specific dependency structure.
Hence, we have to consider two basic questions:

1. Do significant dependencies occur in real world data?
2. 1If so, do they have an impact on system behavior or is their influence negligible?

With respect to the first question we performed an extensive study, analyzing data of various companies
in production and logistics. The results of this survey can be found in Rank et al. (2012). To analyze the
dependencies we determined the autocorrelation structures in the given data. Autocorrelation measures the
dependency of values of a process (Schlittgen and Streitberg 2001) for a given lag [ with:
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Summarizing the results, we observed significant dependencies in 47 of 52 data sets. With dependencies
occurring in nearly all data samples, we can focus on the second question. Various studies have shown the

influence of autocorrelation on basic queuing systems. This will be discussed briefly in the next section.
One could still hypothesize, however, that for complex models the influence of these dependencies is rather
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small. Perhaps the interactions in larger system could distort the dependencies to such an extent that no
effect will be observed.

One goal of this publication is to refute this assumption. Therefore we performed a study using a
model of a warehouse to directly show the impact of autocorrelation. The results demonstrate the risk of
assuming independent behavior for stochastic processes when modeling complex systems. The experiment
will be discussed in detail in Section 3.

The second goal of this work is to promote the modeling of stochastic processes with dependencies.
As we will see in the next section various approaches exist that provide appropriate processes. However
they are still not widely used in the modeling and simulation community (Rank et al. 2012). We introduce
JARTA, an open source java library to model and fit ARTA processes, to make modeling with dependencies
more accessible. We chose the ARTA approach to model stochastic processes for several reasons. Mainly
it requires no user interaction to model the processes, in contrast to other approaches. The basic concept
and advantages of the ARTA approach will be discussed in Section 1.2.

1.1 Related Work

The influence of dependencies in stochastic processes is known for quite a long time in the modeling
community. As early as 1962 Runnenburg (1962) observed longer queues in a single-server-queue model
when the input data showed higher autorcorrelation. Experiments by Livny et al. (1993) and Patuwo
et al. (1993) confirmed this observation. More recent papers provided further proof for the influence of
autorcorrelation (Altiok and Melamed 2001; Nielsen 2007; Civelek et al. 2009). Those studies relied on
simple models to illustrate the effect of autocorrelation, using mostly single-server-queue models. For a
more complex real world scenario Pereira et al. (2012) provided indications for comparable results.

Various approaches exist to model stochastic processes with a certain autocorrelation structure. They
employ different techniques to generate autocorrelated data. Some like TES rely on distortion other
use the concept of minification or maxification. Markovian chains, Brownian motion, or copulas are
alternative approaches (Sklar 1973; Lucantoni et al. 1990; Glasserman 2003). For our work we rely on
the ARTA concept which is an modification of the ARMA approach (Box and Jenkins 1970). ARTA uses
Autoregressive-To-Anything processes by Cario and Nelson (1996) to model stochastic processes. Since
it is the underlying mathematical approach implemented in JARTA we will discuss it briefly in the next
section.

Despite the obvious necessity to consider dependencies for modeling and the available modeling
approaches, even today the industry largely ignores the topic. While packages like MATLAB (The
MathWorks, Inc. 2013) or R (R Core Team 2013) readily provide tools to fit processes appropriately, we
are not aware of a software library that provides easily available and reusable code. This may be one reason
why suitable methods are currently not integrated into existing simulation tools.

1.2 Autoregressive-To-Anything Processes

Autoregressive-To-Anything (ARTA) processes are a proven approach to generate random values with a
given marginal distribution and autocorrelation structure. Generating an ARTA process with the desired
properties can be easily automated. This is a big advantage considering the required user interaction during
modeling of other techniques.

An ARTA process {Y;} models a stationary time series. It uses a standardized Gaussian autoregressive
(AR) process with order p, transforming it into the desired marginal distribution Fy. The underlying AR
process {Z;;t =1,2,...} is defined as follows:

ZI = (X]Z,_l —|—OtzZt_2 + + OCpZt_p—i-S,,
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where p is the given maximal lag to consider, and & is a series of independent random variables. The
random variables are drawn from a normal distribution N(0,5?) with mean 0 and variance 6>. We can
adjust the variance to generate a process Z; with a marginal distribution N(0, 1), using:

02 =1—-0or —0Qry — ... — Oplp,

where ry, is the desired autocorrelation for lag & (r, = Corr|[Z;,Z,11)). Given an AR process with a marginal
distribution N(0, 1) we can transform its output into uniformly distributed values U (0, 1) using the standard
normal cumulative distribution function ®. Applying the inverse distribution function FY_1 to the ensuing
values results in process with the desired marginal distribution Fy. Consequently the ARTA process is
defined as:

Y = Ffl[qD(Zt)}-

The remaining challenge is to adjust the autocorrelation structure of the base AR process, that directly
determines the autocorrelation structure of the ARTA process. In general we can not find the appropriate
autocorrelation coefficients r;, for the AR process directly. However, in Cario and Nelson (1996) a numerical
search procedure is described to determine the right values. Given the autocorrelation structure of the AR
process we can determine the autoregression coefficients (¢y,) using the Yule-Walker equations (Schlittgen
and Streitberg 2001). Putting it all together we receive a reliable tool chain to model stochastic processes.
Cairo and Nelson also provide a reference implementation in Fortran (Cario and Nelson 1996). For practical
purposes it is, however, difficult to integrate or extend the provided program.

2 JARTA - CONCEPT AND IMPLEMENTATION

JARTA is a Java library to model and fit ARTA processes. It is distributed as open source software under
the Apache License, Version 2.0 (The Apache Software Foundation 2012). The project is hosted online
(Uhlig and Rank 2013) at SourceForge. JARTA relies on the Apache Commons Mathematics Library a
“library of lightweight, self-contained mathematics and statistics components addressing the most common
problems not available in the Java programming language or Commons Lang” (Commons 2013).

JARTA is designed to use a factory design pattern to generate the desired modeling objects (see Figure
1). It provides one factory class to create ARTA processes and a second one to create the underlying AR
processes. The ArProcessFactory creates an ArProcess with a given autocorrelation structure and uses a
random number generator from the Commons Math project to model the normal distributed white noise
(&). The user can decide which random number generator is used, e.g. a Mersenne Twister or a Well
random number generator. In general the RNGs provided by the Commons Math project are better suited
for modeling than the default Java implementation, that is known to be flawed (Coddington, Mathew, and
Hawick 1999).

Using a factory design pattern allows us to build very lightweight classes for the actual processes,
since all the details needed for process generation are moved to the factory. This approach results in very
clean code, that is easy to understand. It also simplifies the selection of the appropriate class to model a
process. For example we use different implementations for processes with certain marginal distributions,
i.e., normal distributions and uniform distributions. These implementations are simpler than the general
case, since they consider special properties of the modeled distributions. The ArtaProcessFactory creates an
ArtaProcess, automatically choosing the most effective available implementation. Each ArtaProcess is build
by combining the appropriate distribution function with an ArProccess created by the ArProccessFactory.
JARTA uses the distribution function provided by the Commons Math project. All distributions typically
employed for modeling are available.

In general we put extra effort in code readability. With this approach it is possible to uses the JARTA
project to learn the details of modeling and fitting ARTA processes. Software developers often prefer code
examples to mathematical notations. With educational purposes in mind, we generally avoid cluttering the
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de.unibw.jarta.arta.ArProcessFactory de.unibw.jarta.arta.ArtaProcessFactory

+ MAX_ERROR : double
+ generateArProcess(arAutocorralations - doublef]) : ArProcess - - - -
¥ generateArProcess(arAutocomelations - double], randem : RandomGen erator) : APracess + createArtaProcessidistribution : RealDistribution, adaCorrelationCoefficients : double]]) . AfaProcess

*arAulocorrelations ToAlphas{arAutocorslations - double) - double] + createArtaProcessidistribution : RealDistribution, artaCorrelationCoefficients : double[], random : RandomGenerator) : ArtaProcess
+ calculateVariance(arAutocorrelations : double]], alphas : doublefl) : double

winterfacen de.unibw jarta.tests.StationaryTest

————————— ——
ArtaProcess + checkStationanj(alphas - double[]

+next() : double

+ getAR( :ArProcess

de.unibw.jarta.tests.FeasibilityTest

i + FeasibilityTest(integrator : Univariateintegrator, distribution : RealDistribution)
+ FeasibilityTest(distribution : RealDistribution)

de.unibw jarfa.arta.ArProcess de.unihw.janai.a‘na.nhmradnnaprncess + getMinimumFeasibleBivariateCarrelation() : double
+ArProcess(alphas : double[l, whiteNoiseProcess : NormalDistibution) +next() - double + eheckFeasibilityataCorrelations  doubls])
+nex() - double = + getAR() : ArProcess +isFeasible(corralation : double)  boolean
+toString() : String
de.unibw.jarta.arta.ArtaProcessGeneral de.unibw jarta.arta.ArtaProcessNormal de.unibw jarta.arta.ArtaProcessUniform

Figure 1: UML class diagram of core classes in JARTA.

code with run time optimizations. The only exception is the use of caching for certain functions. For those
cases we use a cache to store results of run time expensive calculations.

Using JARTA is quite simple. There are two ways to generate an ARTA process. First, we explicitly
use the desired distribution function and autocorrelation structure (see Figure 2). The second way is to
take a given data sample and to fit an ARTA process to it. This approach uses an empirical distribution
function and empirical autocorrelation coefficients taken from the sample to model the process.

// select the desired distribution
RealDistribution distribution = new ExponentialDistribution(1.0);

// define the desired autocorrelations
double[] acc = {0.3, -0.1, -0.5};

// Factory generates the approriate ARTA process
ArtaProcess arta = ArtaProcessFactory.createArtaProcess (distribution, acc);

// get the next value from the ARTA process
double value = arta.next();

Figure 2: Example of using JARTA.

Currently we provide neither a graphical nor a command line interface for JARTA, however both could
be implemented easily if according interest in the community would emerge. The focus at this time is to
provide a low level library that can easily be reused in other projects.
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3 STOCHASTIC PROCESSES WITH DEPENDENCIES IN A WAREHOUSE SIMULATION

In this section, we will discuss a study we performed, to demonstrate the influence of dependencies in
stochastic processes on a warechouse simulation model. The considered scenario is a typical challenge in
logistics. We use simulation to evaluate whether a warehouse can handle a given throughput of goods.
Although we did not model an existing warehouse, the model we employed has the typical properties we
usually observe in real world problems. The modeled warehouse (see Figure 3) consists of an automated
storage and retrieval system (ASRS) with four aisles (A1-4). Furthermore there are two Pickers (P1, P2),
an incoming conveyor (I), and outgoing conveyor (O). A transportation system connects all the elements

of the model.

Aisle 1-4 (A1-Ad)

} ASRS

Checkpoint —
monitor

Incoming (1) s a “ -
i fi i i fi i fi
: T Bypass ]
I o i n i
Outgoing (O)
= = — . 2Pickers (P1|P2)
had o

Figure 3: Model of the warehouse.

We define certain streams of goods which are modeled as stochastic processes (see Table 1). They
represent the varying demands to transport goods between different locations. Each process is modeled
using an exponential distribution (Law and Kelton 2000) to generate inter-arrival times between successive

transpor tation r equests.

Table 1: Different streams of goods in the warehouse. Each stream is modeled as stochastic processes.

Generated values represent the time between two transportation requests.

I = L1 Ll — Pl =— O | 14 = PI1
1 — 12 Ll — P2 — O | 14 — P2
I = L3 L2 — Pl =— O | Ll = P2
1 — 14 12 — P2 — O | L2 — P2
|l —= Pl = O |L3 = Pl = O |L3 = P2
|l — P2 — O |13 — P2 — O |14 — P2

Initially, we model the stochastic processes using random numbers that fit the i.i.d. criterion. The
results generated during simulation, when no dependencies were considered, serve as reference (see Table
2). In the next step we use the JARTA library to generate processes that have some kind of dependencies.
For this study we modeled only processes with significant autocorrelation coefficients (ACC) at lag one.
During every simulation we measure the delay occurring for each request and monitor the number of goods

passing by the checkpoint during a time frame of one hour.
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Table 2: Experimental results showing the relative change for delays in comparison to reference (Ref) and
the average hourly throughput of the warehouse.

Exp. ACC at lag 1 for streams from Delays - Percentiles Throughput [goods/hour]
I Al A2 A3 A4 25-p | 50-p| 7T5-p [Mean + Stdv]
Ref 0 0 0 0 0 369 | 373 | 378 118+10.5
0 0.50 | 0.50 | 0.50 | 0.50 | 0.50 || +45% | +45% | +46% 126+17.0
1 -0.50 | -0.50 | -0.50 | -0.50 | -0.50 -7% -8% -8% 123+8.4
2 0.10 | 0.10 | 0.10 | 0.10 | 0.10 || +6% | +6% | +6% 118+11.6
3 -0.10 | -0.10 | -0.10 | -0.10 | -0.10 -4% -4% -5% 118+9.5
4 025 | 025 | 025 | 025 | 025 || +18% | +18% | +19% 1214+13.8
5 -0.25 | -0.25 | -0.25 | -0.25 | -0.25 -4% -4% -5% 119+8.8
6 0.50 0 0 0 0] +23% | +24% | +25% 119£11.5
7 -0.50 0 0 0 0 -4% -4% -4% 118+10.2

The results of our study met our expectations. We did observe a change in the system, whenever
dependencies were considered. In general positive autocorrelation leads to larger delays and more variance
(see Table 2 experiments 0, 2, 4 and 6). The increased variance affected the delays as well as the observed
throughput. On the other hand we received an improved system behavior when we considered negative
autocorrelation (see Table 2 experiments 1, 3, 5 and 7). Even a single stream with a dependency structure
affected the whole system (see Table 2 experiments 6 and 7).

The number of transported items in a given time frame varied much more with an increasing amount
of dependencies. Figures 4 and 5 illustrate the changed system behavior. They compare the uncorrelated
reference with the strong positive autocorrelation of experiment 0. Regarding the reference scenario the
warehouse works perfectly well given the desired throughput. However when positive dependencies were
introduced transportation often stalled because of deadlocks resulting from temporary high loads (see Figure
6). This is very interesting, since it shows that neglecting dependencies might have lead to false confidence
in the planned system. According to simulation with independent stochastic processes the warehouse
performed well and a planner would have deemed it suitable to build the actual warehouse. With the
consideration of dependencies this verdict cannot longer be supported.

180
180

i Total - Total
= Mean = Mean
= 24h MA = 24h MA
= 12h MA

160
I
160
I

140
I
140
I

loads per hour
120
!
loads per hour
120
!

o o

27 2 7

o _] o _]

© ©

o | o |

© ©
T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

hour hour

Figure 4: Hourly throughput of warehouse at checkpoint (without dependencies left and with positive
autocorrelation right).
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Figure 5: Hourly throughput of Picker 1 (without dependencies left and with positive autocorrelation right).
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Figure 6: Deadlocks occurred when dependencies were considered.

4 DISCUSSION

As we have seen, including dependencies into the modeling process deserves strong consideration. However
several limitations should be kept in mind. For one ARTA processes are strictly a model for stationary
processes. Therefore seasonal effects or trends must be considered separately. A further challenge are
dynamically changing dependencies, since ARTA processes models a constant dependency structure. In our
experience, fitting dependencies from small samples — with less than 1000 values — leads to very unreliable
results. Appropriate care must be taken to avoid overfitting. Especially with regard to automated fitting in
JARTA the results cannot be applied without previous validation of the generated model.

That being said, even for cases were the dependencies structure is either unknown or changes dynamically
one can still use ARTA processes to model extreme cases. The resulting behavior of the modeled system
can be used for risk analysis. Considering the warehouse example, we have no certain knowledge of the
dependency structure. However, considering various dependency structures during the modeling process
raises the awareness with respect to correlation effects on system performance. Planning with dependencies
can at least be used to anticipate these effects on systems. Policies can be considered to avoid certain
dependencies and in a best case scenario they can be used to generate a certain dependency structure that
promote a desired system behavior.
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S CONCLUSION AND OUTLOOK

Using the simulation model of a warehouse, we demonstrated the necessity to model stochastic processes
that consider dependencies. ARTA processes are a proven way to do this. With JARTA we provide a
modern solution to model and fit these processes. As an open source project JARTA is easy to use and
to extend. It is open to participation and collaboration. We will continue the development to cover some
of the weaknesses discussed in the previous section. The next logical step is to provide a JARTA-based
software solution with a user interface for easy modeling. Since it is still a very young project further
validation and testing is needed.
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