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ABSTRACT

When fitting queueing models to service system data, it can be helpful to perform statistical tests to confirm
that the candidate model is appropriate. The Kolmogorov-Smirnov (KS) test can be used to test whether a
sample of interarrival times or service times can be regarded as a sequence of i.i.d. random variables with
a continuous cdf, and also to test a nonhomogeneous Poisson Process (NHPP). Using extensive simulation
experiments, we study the power of various alternative KS tests based on data transformations. Among
available alternative tests, we find the one with the greatest power in testing a NHPP. Furthermore, we
devise a new method to test a sequence of i.i.d. random variables with a specified continuous cdf; it first
transforms a given sequence to a rate-1 Poisson process (PP) and then applies the existing KS test of a PP.
We show that it has greater power than direct KS tests.

1 INTRODUCTION

The most widely used stochastic queueing model of a service system is the Erlang-A (M/M/s+M) model,
with s servers and i.i.d. exponentially distributed interarrival, service, and patience times. However, it
is important to perform statistical tests with service system data to determine if such a model is actually
appropriate. To demonstrate the importance of using the correct model, Table 1 compares the simulated
performance of two models where one has exponentially distributed interarrival times and the other has
hyper-exponentially distributed interarrival times with squared coefficient of variation (scv, variance divided
by the square of the mean) c2 = 2. It shows that if we choose staffing assuming that interarrival times
are exponentially distributed when they are actually hyper-exponentially distributed with c2 = 2, then we
would observe an average of 35% increase in the percentage of the customers that wait (here we consider
s = 30, but the increase is similar in other cases).

Brown et al. (2005) emphasized the importance of performing statistical tests with service system data.
Realizing that testing only for a Poisson process (PP) would not be sufficient because service systems,
such as call centers and hospital emergency rooms, typically have strongly time-varying arrival rates,
they suggested a specific statistical test to test whether the arrival process is a nonhomogeneous Poisson
process (NHPP). Their test is based on, first, looking at subintervals where the NHPP can be regarding
as a PP, second, applying the conditional-uniform property of a PP to obtain a sample of i.i.d. random
variables uniformly distributed on [0,1] and, third, applying the Kolmogorov-Smirnov (KS) statistic after
transforming the data. We found there are actually more KS tests exploiting data transformations, and
conduct extensive simulation experiments to study the power of various alternatives. We conclude that
the general approach of Brown et al. (2005) is excellent, but an alternative KS test proposed by Lewis
(1965), exploiting a different transformation due to Durbin (1961), consistently has greater power in testing
a NHPP.
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Table 1: Simulation estimates of steady-state performance in the GI/M/s+M model with λ = 25, µ = 1,
θ = 1 for two interarrival time cdf’s: exponential and hyper-exponential (c2 = 2). The staffing level,
s, is chosen using the square root staffing formula assuming exponentially distributed interarrival times,
s≡ m+β

√
m, where m is the offered load λ/µ = 25. We consider three cases for the quality-of-service

parameter β : 0.5, 1, and 2 (yielding s =28, 30, and 35). The results are based on 100 replications of
103+105 customers (first 103 customers removed to get rid of the initial effect). Associated 95% confidence
intervals are also shown.

Model s E[W |All] E[W |Served] E[W |Abandoned] %Wait %Abandon
M/M/s+M 28 0.0324±0.0003 0.0348±0.0003 0.1004±0.0006 29.96±0.15 3.49±0.03

30 0.0168±0.0002 0.0181±0.0002 0.0878±0.0006 18.23±0.13 1.81±0.02
35 0.0022±0.0001 0.0024±0.0001 0.0647±0.0012 3.41±0.06 0.24±0.01

H2/M/s+M 28 0.0461±0.0003 0.0496±0.0004 0.1165±0.0006 35.93±0.16 4.96±0.03
30 0.0272±0.0003 0.0295±0.0003 0.1031±0.0006 24.75±0.15 2.94±0.03
35 0.0057±0.0001 0.0061±0.0001 0.0776±0.0009 7.11±0.09 0.61±0.01

Furthermore, we found that the KS tests used to test a PP can be applied to test whether n observations
can be regarded as a sample of size n from an i.i.d. sequence with arbitrary specified continuous cdf F .
These KS tests are directly applicable to service systems, because the standard model for the service times
is an i.i.d. sequence. The most convenient cdf for analysis is the exponential cdf, but data analysis often
suggests a lognormal cdf instead, as in Brown et al. (2005). The idea is to first transform the given sequence
to a sequence of mean-1 exponential random variables, which is equivalent to a rate-1 PP, and then apply
the alternative KS tests of a PP. Durbin (1961) suggested transforming the data to increase the power of the
KS test for an i.i.d. sequence with arbitrary specified continuous cdf F , but a KS test that first transforms
a given sequence to a Poisson process has not been considered before. We use simulation experiments to
show that the power can often be more consistently and substantially increased by including this step.

2 ALTERNATIVE KOLMOGOROV-SMIRNOV TESTS

The KS statistical test is commonly used to determine if data can be regarded as a sample from a sequence
of independent and identically distributed (i.i.d.) random variables {Xn : n ≥ 1}, each distributed as a
random variable X with a specified continuous cumulative distribution function (cdf) F(x) ≡ P(X ≤ x),
x ∈R. In this section, we first briefly describe the standard KS test, and introduce three alternative KS tests
of a PP (equivalently, whether a sequence of i.i.d. random variables is exponentially distributed) based on
transformations of the data. Then, we introduce three additional tests that can be used to test whether a
sequence of i.i.d. random variable is from a continuous cdf F .

2.1 The Standard Test

The KS test is based on the maximum difference between the empirical cdf (ecdf) Fn(x)≡ n−1
∑

n
k=1 1{Xk≤x}

where x ∈ R and the underlying cdf F , where 1A is an indicator function that is equal to 1 if the event A
occurs, and equal to 0 otherwise, i.e.,

Dn ≡ sup
x
{|Fn(x)−F(x)|}, (1)

which has a distribution that is independent of the continuous cdf F . For any observed maximum y from
a sample of size n, we compute the p-value P(Dn > y) using the Matlab program ksstat and compare it
to the significance level α , i.e., for specified probability of rejecting the null hypothesis when it is in fact
correct (type I error), which we take to be α = 0.05.

In this study, we are mostly interested in the power of alternative KS tests. Recall that the power is
the probability of rejecting the null hypothesis when the null hypothesis is false. Specifically, for specified
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significance criterion α , the power of a specified alternative is the probability 1−β , where β ≡ β (α) is
the probability of incorrectly accepting the null hypothesis (type II error) when it is false, which of course
depends on the alternative.

2.2 Alternative Tests for Testing for a NHPP

A key property exploited in alternative tests that will be described in this subsection is the basic conditioning
property of a PP. For a PP on an interval, it is well known that, conditional on the total number of arrivals
in that interval, the arrival times divided by the length of the interval are distributed as the order statistics
of i.i.d. random variables uniformly distributed on [0,1]; e.g., see §2.3 of Ross (1996). Since the arrival
rate in a service system typically changes relatively slowly compared to the overall arrival rate, it is often
reasonable to assume that the arrival rate is piecewise-constant (PC); Brown et al. (2005) assume that can
be done. A PC NHPP can be regarded as a homogeneous PP over each subinterval.

With that classical conditional-uniform (CU) transformation, the data from all the subintervals can be
combined into obtain a single sequence of i.i.d. random variables uniformly distributed on [0,1], to which
the KS test can be applied directly; we call that the CU test. The CU transformation and the CU test has
the important property that it eliminates the nuisance parameter; the method is independent of the rate of
the PP. However, Brown et al. (2005) did not stop with the CU KS test, but instead proposed a (scaled)
logarithmic transformation into a single sequence of i.i.d. exponential random variables for their Log KS
test. We also found that there is relevant history in the statistical literature. In particular, Barnard (1953)
first proposed the CU test of a PP. Then Lewis (1965) made a significant contribution for testing a PP,
recognizing that a transformation proposed by Durbin (1961) could be effectively applied after the CU
transformation to obtain a new KS test; we call that the Lewis test. Here are formal definitions of the three
tests of a PP:

Conditional-Uniform (CU) Test. We start with the CU test proposed by Barnard (1953). Given an
arrival process over an interval [0, t], we observe the number n of arrivals in this interval and their
arrival times Tj, 1 ≤ j ≤ n. Under the null PP hypothesis, these random variables are distributed
as the order statistics of i.i.d. random variables uniformly distributed over [0, t]. Thus, the random
variables Tj/t, 1≤ j ≤ n, are distributed as the order statistics of i.i.d. random variables uniformly
distributed over [0,1]. Thus the ecdf can be computed via Fn(x) ≡ n−1

∑
n
k=1 1{Tk/t≤x},0 ≤ x ≤ 1,

and the KS statistic can be computed as in (1) with uniform cdf F(x) = x, 0≤ x≤ 1.
Log Test. Brown et al. (2005) observed that, given the n observed arrival times {Tj : 1≤ j≤ n} during

the interval [0, t], XLog
j ≡−(n+1− j) loge[(t−Tj)/(t−Tj−1)] with 1≤ j ≤ n are n i.i.d. mean-1

exponential random variables. The KS test in (1) can then be applied using the exponential cdf
F(x)≡ 1− e−x.

We note that a variant of the Log test applies to a fixed sample of size n. With Tj again
denoting the time of the jth arrival, XLog,n

j ≡− j loge (Tj/Tj+1) where 1≤ j ≤ n−1 are again i.i.d.
rate-1 exponential random variables.

Lewis Test. Lewis (1965) proposed using a different modification of the CU test, exploiting a trans-
formation due to Durbin (1961). Durbin (1961) started with a sample Uj with 1 ≤ j ≤ n that
is hypothesized to be uniformly distributed on [0,1]. Then let U( j) be the jth smallest of these,
1≤ j ≤ n, so that U(1) < · · ·<U(n). Lewis (1965) applies this with U( j) = Tj/t from the CU test.
Next the successive intervals between these ordered observations are considered: Cj =U( j)−U( j−1)

with 2 ≤ j ≤ n, where C1 = U(1) and Cn+1 = 1−U(n). Then let C( j) be the jth smallest of these
intervals, 1 ≤ j ≤ n, so that 0 < C(1) < · · · < C(n+1) < 1. Now let Z j be scaled versions of the
intervals between these new variables, i.e., Z j = (n+2− j)(C( j)−C( j−1)) with 1≤ j≤ n+1 where
C(0) ≡ 0. Remarkably, Durbin (1961) showed that, under the PP null hypothesis, the random vector
(Z1, . . . ,Zn) is distributed the same as the random vector (C1, . . . ,Cn). Hence, again under the PP
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null hypothesis, the vector of associated partial sums (S1, . . . ,Sn), where Sk ≡ Z1 + · · ·+Zk with
1≤ k≤ n, has the same distribution as the original random vector (U(1), . . . ,U(n)) of ordered uniform
random variables. Hence, we can apply the KS test with the ecdf Fn(x) ≡ n−1

∑
n
k=1 1{Sk≤x} with

0≤ x≤ 1 for Sk, comparing it to the uniform cdf F(x)≡ x, 0≤ x≤ 1. Durbin (1961) showed that
by doing this transformation starting from a sequence of i.i.d. uniform random variables, we should
gain an increase in power. Lewis (1965) showed that this transformation increases power after the
CU transformation, which is a different setting than considered by Durbin (1961).

2.3 Additional Tests for Testing for a General Distribution

In this subsection, we introduce three additional KS tests of an i.i.d. sequence {Xn} with continuous cdf F
based on the idea that F(Xn) has a uniform cdf on [0,1] and − log{1−F(Xn)} has a mean-1 exponential
cdf. It is important to note that the KS statistic is unchanged by these transformations.

The additional KS tests are: (i) Exp+CU, applying the CU transformation to a PP constructed using
− log{1−F(Xn)}, (ii) Exp+CU+Log, the CU transformation of a PP plus the Log transformation as in
Brown et al. (2005), and (iii) Exp+CU+Durbin, the CU transformation of a PP plus the Durbin (1961)
transformation, as in Lewis (1965).

Exp+CU Test. We start with Yk ≡ − log{1−F(Xk)}, 1 ≤ k ≤ n, which are i.i.d. mean-1 exponential
random variables under the null hypothesis. Thus, the cumulative sums Tk ≡Y1+ · · ·+Yk, 1≤ k≤ n,
are the arrival times of a rate-1 PP. In this context, the conditional-uniform property states that Tk/Tn,
1≤ k≤ n, are distributed as the order statistics of n−1 i.i.d. random variables uniformly distributed
on [0,1]. Thus we can apply the KS statistic with the ecdf F(CU)

n (x)≡ 1
n−1 ∑

n−1
k=1 1{(Tk/Tn)≤x}, 0≤ x≤ 1.

Exp+CU+Log Test. We start with the partial sums Tk, 1≤ k ≤ n, used in the Exp+CU test, which are
the arrivals times of a rate-1 PP under the null hypothesis. We again use the conditional-uniform
property for fixed sample size to conclude that, under the null hypothesis, Tk/Tn, 1≤ k≤ n−1, are
distributed as U(k), the order statistics of n−1 random variables, with U(1) < · · ·<U(n−1). Hence,

Y (L)
j ≡ − loge (Tj/Tj+1) ,1 ≤ j ≤ n−1 should be n−1 i.i.d. rate-1 exponential random variables,

to which we can apply the KS test.
Exp+CU+Durbin Test. We again start with the partial sums Tk, 1 ≤ k ≤ n, used in the Exp+CU

test, which are the arrivals times of a rate-1 PP under the null hypothesis. We again use the
conditional-uniform property for fixed sample size to conclude that, under the null hypothesis,
Tk/Tn, 1≤ k≤ n−1, are distributed as U(k), the order statistics of n−1 random variables uniformly
distributed on [0,1], with U(1) < · · · < U(n−1). From this point, we apply the Durbin (1961) test
with n replaced by n−1, just as Lewis (1965) did in his test of a PP (and explained in §2.2).

3 THE SIMULATION EXPERIMENT

In this section we specify the alternative hypotheses to the PP and the service time distribution that we
will consider, and show how we perform the simulation experiment.

3.1 Study Cases

We consider five cases, each with one or three subcases, yielding a total of nine cases in all. We specify
these cases in terms of the sequence {Xn : n≥ 1} of interarriva/service times, each distributed as a random
variable X . In all cases, the sequence is assumed to be stationary with E[X ] = 1.

For the purpose of testing for our PP null hypothesis, all of the five cases are renewal arrival processes,
with i.i.d. interarrival times. The first i.i.d. case is the null hypothesis with exponential interarrival
times. The other i.i.d. cases have non-exponential interarrival times. Cases 2 and 3 contain Erlang and
hyperexponential interarrival times, which are, respectively, stochastically less variable and stochastically
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more variable than the exponential distribution in convex stochastic order, as in §9.5 of Ross (1996). Thus,
they have scv c2

X < 1 and c2
X > 1. Cases 4 and 5 contain non-exponential cdf’s with c2

X = 1 as well as
E[X ] = 1, just like the exponential cdf. Similarly, for testing service times, all of the cases are designed
to be i.i.d. mean-1 random variables with the specified cdf.

1. Exponential: Exponential interarrival/service times.
2. Erlang, Ek: Erlang-k (Ek) interarrival/service times, a sum of k i.i.d. exponentials for k = 2,4,6

with c2
X ≡ c2

k = 1/k.
3. Hyperexponetial, H2: Hyperexponential-2 (H2) interarrival/service times, a mixture of 2 exponential

cdf’s with c2
X = 1.25, 2, and 10. The cdf is P(X ≤ x) ≡ 1− p1e−λ1x− p2e−λ2x. We further assume

balanced means (p1λ
−1
1 = p2λ

−1
2 ) as in (3.7) of Whitt (1982) so that given the value of c2

X ,

pi = [1±
√

(c2
X −1)/(c2

X +1)]/2 and λi = 2pi.

4. Mixture with c2
X = 1: A mixture of a more variable cdf and a less variable cdf so that the c2

X = 1;
P(X = Y ) = p = 1−P(X = Z), where Y is H2 with c2

Y = 4, Z is E2 with c2
Z = 1/2 and p = 1/7.

5. Lognormal: Lognormal interarrival/service times with mean and variance both equal to 1 (LN(1,1)),
so that c2

X = 1.

3.2 Simulation Design

For each study case, we simulate 104 replications of 104 interarrival/service times. We generate much more
data than needed in order to get rid of any initial effects. We are supposing that we observe stationary
point processes, which is achieved by having the system operate for some time before collecting data.

We use this simulation output to generate arrival for time intervals of a fixed length t and service times
for sample sizes of a fixed size n. For the first scenario of testing a PP in interval [0, t] with t = 200, in each
replication we transform the 104 interarrival times to 104 arrival times starting at t = 0 by taking cumulative
sums and then consider the arrival process in the interval [103,103 +200]. We treat this as observations
from a stationary point process over the interval [0,200]. To observe the effect of longer intervals, we
subsequently consider the arrival process in the interval [103,103+2000]; we treat that interval as [0,2000].

In the second scenario for testing service time models with fixed sample size n, in each replication of
the 104 simulated service times we use n = 200 and n = 2000.

4 RESULTS

We now present the results of applying the alternative KS tests in §2 to the original and transformed arrival
process and service time data in all nine study cases specified in §3, with the goal of comparing the power
of the alternative KS tests. We first show the results of tests of a PP in §4.1; we assume that an initial
NHPP has been regarded as a PC NHPP, so that we are looking at a single subinterval, yielding a PP. In
§4.2, we show the results of tests for an i.i.d. sequence with cdf F . In §4.3, we discuss the effect of longer
length of intervals (equivalently, larger sample sizes) on the power of the tests.

4.1 Tests of a Nonhomogeneous Poisson Process

In Table 2, we report the power of each test based on 10,000 replications, where the power is estimated as
(number rejected/10,000). We also report the average p-value; the p-value is the significance level below
which the hypothesis would be rejected. Thus low p-values indicate greater power. The first “Exp” case is
the PP null hypothesis, and the results show that all tests behave properly for the PP null hypothesis. The
results also show that the tests perform quite differently for the non-PP alternative hypotheses. The Lewis
performs the best, but the Log test also performs reasonably well, in marked contrast to the CU test. The
difference is most striking for the middle H2 alternative with c2 = 2. For H2 cdfs with lower scv, the power
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of all methods is less, but the ordering remains; for H2 cdf’s with higher scv, the power of all methods is
greater, but the ordering remains.

We also include a “standard” test for comparison. The standard KS test used to obtain the values
reported in Table 2 is actually invalid because the sample size was not specified in advance, but instead
was the random number observed in [0, t]. Moreover, it used the true mean 1, which would not be known
in application. In order to check the consequence of this, we also tried the valid standard KS test with
fixed sample size n = 200, the standard KS test in the interval [0,200] but with estimated mean, and the
Lilliefors (1969) test for the exponential cdf with unknown mean. Interestingly, none of the performance
results differed greatly, so one might consider the standard KS test with estimated mean or the Lilliefors
(1969) test as realizable alternatives to the standard KS test. However, all of these were inferior to the
Lewis KS test.

Table 2: Simulation estimates of the power of alternative KS tests of a rate-1 Poisson process for rate-1
renewal processes, with observations over the time interval [0,200] and significance level α = 0.05 based
on 10,000 replications. The estimated power is computed as (number rejected / 10,000). The average
p-value, the significance level below which the hypothesis would be rejected, is shown in parenthesis.

KS test Lewis Standard Log CU
Exp 0.05(0.50) 0.05(0.50) 0.05(0.50) 0.05(0.50)
E2 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.78)
E4 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.94)
E6 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.98)
H2(c2 = 1.25) 0.24(0.30) 0.12(0.41) 0.13(0.40) 0.10(0.41)
H2(c2 = 2) 0.94(0.01) 0.63(0.10) 0.59(0.13) 0.28(0.23)
H2(c2 = 10) 1.00(0.00) 1.00(0.00) 0.94(0.02) 0.94(0.01)
Z 0.98(0.01) 0.88(0.02) 0.87(0.02) 0.06(0.57)
LN(1,1) 0.99(0.00) 0.99(0.01) 0.97(0.01) 0.05(0.52)

We find that useful insight is provided by appropriate plots. Especially revealing are plots comparing
the average of the ecdf’s over all 10,000 replications to the cdf associated with the null hypothesis (which
depends on the transformation). Figure 1 illustrates for the case of a renewal process with H2 interarrival
times having c2

X = 2 over the time interval [0,200]. It shows that the transformation in the Lewis KS test
provides much greater separation between the average ecdf and the cdf. Indeed, for the Lewis test, the ecdf
and cdf appear to be stochastically ordered, whereas the ecdf and cdf cross for the other KS tests. From
this plot, it is evident that the CU test should perform poorly. For any new contemplated alternative, we
suggest conducting simulations and comparing the plots.

Also insightful are plots of the empirical distribution function of the p values; we display the plots for
H2 with c2

X = 2 and Z in Figure 2. These plots show that the relative power tends to remain across all p
values, not just for our type I error of α = 0.05.

4.2 Test for i.i.d. Sequence with cdf F

In this section, we present the results of four KS tests: (i) the standard test, using the variables Uk ≡ F(Xk),
(ii) the Durbin (1961) test as described under the Lewis test in §2.2, (iii) the EXP+CU test described in
§2.3, and (iv) the EXP+CU+Durbin test described in §2.3. Under the null hypotheses, the cdf in all four
cases is uniform on [0,1]. We found that the EXP+CU+Log tests were consistently dominated by the
Durbin (1961) test or the EXP+CU+Durbin test, so we do not present detailed results for that test here.

As in §4.1, we report the estimated power of each test based on 10,000 replications as well as the
average p-value. We use the i.i.d. LN(1,1) null hypothesis in Table 3, since lognormal hypotheses are
especially interesting for service systems, e.g., Brown et al. (2005). We first observe that all tests perform
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Figure 1: Comparison of the average ecdf for an H2 renewal process with c2
X = 2 based on 104 replications

for [0,200] with the cdf of the null hypothesis: Standard, Conditional-Uniform, Log, Lewis KS Tests (from
left to right).
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Figure 2: Empirical distribution function of the p-values for two cases of the simulation experiment in
§4.1 - H2 (c2 = 2) (left) and Z (right) based on 104 replications for the time interval [0,200].

properly for the null hypotheses. In order to observe the effect of the same distribution but different
parameters, we add LN(1,0.25), LN(1,4), and LN(1,10) to the alternative distributions. The results for
the EXP+CU+Durbin, standard, and EXP+CU tests are similar to those for the corresponding KS tests of
a PP in Table 2, but the results for the Durbin (1961) test are new, and surprisingly bad in some cases.
Table 3 also shows that the EXP+CU+Durbin test is consistently most powerful for all study cases. We
have tested other null hypotheses (i.e., all study cases given in §3), and found that the conclusions from
the i.i.d. LN(1,1) null hypothesis extend to i.i.d. null hypotheses with other marginal cdfs.

We again found that useful insight is provided by plots comparing the average of the ecdf’s over all
10,000 replications to the cdf associated with the null hypothesis. Figure 3 illustrates for the i.i.d. variables
having cdf Exp with n = 200, tested for the i.i.d. LN(1,1) null hypothesis. It shows that the transformation
in the EXP+CU+Durbin KS test provides greater separation (slightly better than the standard KS test)
between the average ecdf and the cdf.

The poor results for the Durbin (1961) test for the i.i.d. cases in Table 3 seem inconsistent with the
results in Durbin (1961) and the enthusiastic endorsement by Lewis (1965), so we decided to repeat some
of the experiments actually performed by Durbin (1961). We now consider the same four KS tests applied
to the i.i.d. standard normal, N(0,1), null hypothesis. To keep the same mean for all alternatives, we
consider all the previous cases after subtracting 1 to make them all have mean 0. Indeed, the first alternative
considered by Durbin (1961) was an i.i.d. sequence of random variables distributed as Y −1, where Y is a
mean 1 exponential variable; it has the same mean and variance as N(0,1). Since those alternatives have
quite a different shape from the symmetric N(0,1) distributions, we also considered i.i.d. sequences of
random variables distributed as Zk−1+

√
1− (1/k)N(0,1), where Zk has an Ek cdf, for k = 2,4,6. These

have the same first two moments and approximately the same shape. We summarize the results for this
alternative with the sample size n = 50 used by Durbin (1961) in Table 4. The new base case is the i.i.d.
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Table 3: Simulation estimates of the power of alternative KS tests of i.i.d. LN(1,1) variables for alternative
distributions with sample size n = 200 and significance level α = 0.05 based on 10,000 replications. The
estimated power is computed as (number rejected / 10,000). The average p-value, the significance level
below which the hypothesis would be rejected, is shown in parenthesis.

KS test Exp+CU+Durbin Standard Durbin Direct Exp+CU
Exp 0.97(0.01) 0.95(0.01) 0.64(0.09) 0.07(0.45)
E2 0.93(0.01) 0.69(0.08) 0.15(0.38) 0.00(0.70)
E4 1.00(0.00) 1.00(0.00) 0.99(0.00) 0.00(0.89)
E6 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.95)
H2(c2 = 1.25) 1.00(0.00) 0.99(0.00) 0.74(0.06) 0.12(0.39)
H2(c2 = 2) 1.00(0.00) 1.00(0.00) 0.92(0.02) 0.24(0.26)
H2(c2 = 10) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.71(0.06)
Z 0.47(0.14) 0.31(0.22) 0.15(0.37) 0.03(0.57)
LN(1,0.25) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.90)
LN(1,1) 0.05(0.50) 0.05(0.50) 0.05(0.50) 0.05(0.50)
LN(1,4) 1.00(0.00) 1.00(0.00) 0.99(0.00) 0.39(0.17)
LN(1,10) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.64(0.08)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

 

 

avg ecdf
cdf

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
 

Figure 3: Comparison of the average ecdf from observations of n = 200 i.i.d. mean-1 exponential random
variables based on 104 replications with the cdf of the null hypothesis (LN(1,1)): Standard, Direct Durbin,
EXP+CU, and EXP+CU+Durbin KS Tests (from left to right).

standard normal null hypothesis. Just as in previous results, the results show that all tests behave properly
for the standard normal null hypothesis. In addition, Table 4 shows that the Durbin (1961) test performs
much better now, just as originally reported. In this case both the Durbin (1961) and EXP+CU+Durbin
KS tests perform much better than the standard and EXP+CU alternatives.

4.3 Longer Time Intervals and Larger Sample Sizes

In §4.1 and §4.2, we have observed that the power decreases as the alternative gets closer to the null
hypothesis. On the other hand, the power increases as we increase the sample size, as we now illustrate by
considering tests of a PP for a longer interval, [0,2000] in Table 5. We now see a simple summary story
similar to Table 2 when the H2 scv is reduced to c2

X = 1.25 from 2. For all the other cases, the three main
candidates - Lewis, standard, and Log - have estimated power of 1.00 with average p-value 0.00. We note
that similar results hold when we increase the sample size, n, in tests for an i.i.d. sequence with arbitrary
specified continuous cdf F .
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Table 4: Simulation estimates of the power of alternative KS tests of i.i.d. N(0,1) variables for alternative
distributions with sample size n = 50 and significance level α = 0.05 based on 10,000 replications. The
estimated power is computed as (number rejected / 10,000). The average p-value, the significance level
below which the hypothesis would be rejected, is shown in parenthesis. All alternatives have mean 0.

KS test Exp+CU+Durbin Standard Durbin Direct Exp+CU
Exp−1 0.88(0.02) 0.44(0.07) 0.81(0.04) 0.33(0.23)
E2−1 0.96(0.01) 0.62(0.04) 0.70(0.05) 0.06(0.52)
E4−1 1.00(0.00) 1.00(0.01) 0.97(0.01) 0.00(0.81)
E6−1 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.92)
H2−1(c2 = 1.25) 0.96(0.01) 0.58(0.05) 0.90(0.02) 0.49(0.16)
H2−1(c2 = 2) 1.00(0.00) 0.83(0.02) 0.98(0.00) 0.74(0.07)
H2−1(c2 = 10) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.81(0.09)
Z−1 0.95(0.01) 0.52(0.05) 0.73(0.05) 0.27(0.37)
LN(1,1)−1 0.99(0.00) 0.83(0.03) 0.93(0.01) 0.40(0.24)
N(0,1) 0.05(0.50) 0.06(0.50) 0.05(0.50) 0.05(0.50)
E2−1+

√
1/2N(0,1) 0.16(0.38) 0.07(0.47) 0.05(0.49) 0.12(0.40)

E4−1+
√

3/4N(0,1) 0.06(0.48) 0.05(0.51) 0.05(0.50) 0.07(0.47)
E6−1+

√
5/6N(0,1) 0.06(0.49) 0.05(0.50) 0.05(0.50) 0.06(0.49)

5 CONCLUSION

We have conducted extensive simulation experiments to study the power of alternative Kolmogorov-Smirnov
(KS) statistical tests that can be used to test components of service system models: the arrival process and
service time distributions. Specifically, when one needs to test for a nonhomogeneous Poisson Process
(NHPP), our analysis strongly supports the approach proposed by Brown et al. (2005), but finds another
related KS test proposed by Lewis (1965) consistently has even greater power. Since both tests exploit
the same conditional-uniform transformation, they both apply directly to piecewise-constant NHPP’s as
well as Poisson processes (PP’s). Moreover, the CU transformation eliminates the nuisance parameter;
these KS tests do not depend on the rate of the PP. However, the CU test itself has very low power for
non-exponential interarrival times, so should not be used. In agreement with Brown et al. (2005), we find
that the banking call center arrival data passed all KS tests for a NHPP, provided that data rounding is
addressed.

For testing for the distribution of service times (more generally, testing for an i.i.d. sequence with
arbitrary specified continuous cdf F), our analysis strongly supports the data-transformation approach
proposed by Durbin (1961), but we find that applying that data transformation after transforming the
original sequence to a rate-1 PP produces a KS test with greater power.

As usual with statistical tests, the power increases with the length of the interval or the sample size,
so that some sample sizes may be too small to have any power, whereas other sample sizes may be too
large to accept even the slightest deviation from a null hypothesis. Thus, as many have discovered before,
judgment is required in the use of statistical tests.
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Table 5: Simulation estimates of the power of alternative KS tests of a rate-1 Poisson process for rate-1
renewal processes, with observations over the time interval [0,2000] and significance level α = 0.05 based
on 10,000 replications. The estimated power is computed as (number rejected / 10,000). The average
p-value, the significance level below which the hypothesis would be rejected, is shown in parenthesis.

KS test Lewis Standard Log CU
Exp 0.05(0.50) 0.05(0.50) 0.05(0.50) 0.05(0.50)
E2 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.79)
E4 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.95)
E6 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.98)
H2(c2 = 1.25) 0.97(0.01) 0.66(0.08) 0.64(0.10) 0.11(0.40)
H2(c2 = 2) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.31(0.21)
H2(c2 = 10) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.00)
Z 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.05(0.52)
LN(1,1) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.05(0.51)
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