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ABSTRACT 

Grand challenges are significant themes that can bring together researchers to bring significant change to 
a field.  In 2012 a new initiative to restart the debate on major grand challenges for modeling and simula-
tion (M&S) began.  Leading researchers have presented M&S Grand Challenges in areas such as ubiqui-
tous simulation, high performance computing, spatial simulation, big simulation, human behaviour, multi-
domain design, systems engineering, cyber systems, network simulation and education.  To contribute 
further to this initiative, this paper presents M&S Grand Challenges from an Operational Re-
search/Management Science (OR/MS) perspective and discusses themes including simulation in 
healthcare, value of information, data modeling, stochastic modeling and optimization, agent-based simu-
lation and simulation analytics. 

1 INTRODUCTION 

Grand Challenges can bring together researchers to revolutionize a field.  One can turn to astronomy and 
physics to see how Grand Challenges are being met as scientists collaborate on huge problems that are 
enabling us to better understand the fabric of our Universe from the large to the small.  Modeling & 
Simulation (M&S) plays a key role in these endeavors as it is in other domains.  However, M&S has its 
own Grand Challenges that can bring great benefit to researchers and practitioners alike.  The first major 
event to reflect on M&S Grand Challenges was the Workshop on Grand Challenge for Modeling & Simu-
lation (M&S), held at Dagstuhl in Germany around a decade ago (Schloss Dagstuhl 2002).  To refresh the 
debate on M&S Grand Challenges, a new initiative began in 2012.  Three panels were held.  These were 
at the 2012 Winter Simulation Conference in Berlin, Germany (Taylor et al. 2012), the Symposium on 
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Theory of Modeling and Simulation (TMS’13) during SpringSim 2013 in San Diego, USA (Taylor, et al. 
2013a), and at the first SIGSIM-PADS conference in Montreal, Canada (Taylor et al. 2013b).  
 Grand Challenge themes that are emerging are diverse: overall M&S methodology, interaction of 
models from different paradigms, coordinated modeling, multi-domain design, parallel and distributed 
simulation, agent-based M&S, ubiquitous computing, supercomputing, grid computing, cloud computing, 
cloud-based M&S, big data and complex adaptive systems, “big” simulation applications (data, models, 
systems), human behavior, model abstraction, replicability, embedded simulation for real-time decision 
support, systems engineering, simulation on-demand, simulation-based acquisition, simulation interoper-
ability, simulation composability, high speed optimization, web simulation science, spatial simulation, 
ubiquitous simulation, cyber systems, network simulation, democratization and education.   
 To continue the Grand Challenge debate, this paper presents views on M&S Grand Challenges from 
an Operational Research/Management Science (OR/MS) perspective and discusses simulation in 
healthcare, value of information, data modeling, stochastic modeling and optimization, agent-based simu-
lation and simulation analytics. 

2 SALLY BRAILSFORD: ARE GENERIC HOSPITAL SIMULATIONS POSSIBLE? 

People who know me well will know that one of my “hobby-horse” topics is the lack of widespread im-
plementation of simulation modeling in healthcare systems (Brailsford, 2005).  Nobody would argue with 
the statement that simulation has been widely applied in healthcare over the past fifty years.  Eight years 
ago, a literature search on Web of Knowledge (WoK) found 1,008 papers describing simulation models of 
Emergency Departments (Brailsford, 2005).  Brailsford et al. (2009) report a wider literature search car-
ried out in 2007 on JSTOR, SCOPUS and WoK, on the search string “(health-care OR health care) AND 
(modelling OR modeling OR simulat*OR (system AND dynamic*) OR markov*)”, appearing in the title, 
abstract or keywords. This search resulted in 176,320 hits, and when repeated over successive days the 
body of literature was found to be expanding at the rate of 30 papers per day.   A recent systematic review 
by Hulshof et al. (2012) contains 658 references.   Yet despite this massive literature, reviews of simula-
tion in health dating back to the 1980’s (Wilson, 1981; Jun et al., 1999; Fone et al., 2003; Hulshof et al., 
2012) all report that despite a plethora of one-off applications in the academic literature, very few papers 
report the practical outcomes of implementation or sustained adoption of these models. Indeed, Fone et al. 
(2003) comment that “… we were unable to reach any conclusions on the value of modelling in health 
care because the evidence of implementation was so scant.” (p333). 
 Of course, it is not true to say that simulation modeling is not being used in healthcare systems at all: 
for example, much of the work in the UK (and, I suspect, the US and other countries as well) is undertak-
en by business consultancies and therefore does not get reported in the academic literature. However, it is 
undeniably true that simulation and modeling methods are not routinely embedded in the healthcare man-
agement toolbox in the same way that they are in the military or in manufacturing industry (Naseer et al., 
2008).  This appears to be a global problem, regardless of the way that healthcare is financed, organized 
and delivered in any particular country. 
 There are many theories as to why this should be the case. Is healthcare special in some way? Of 
course, when we are modeling a hospital we are not modeling inanimate widgets on a production line but 
human beings who are often in extremely stressful situations. The culture in healthcare organizations is 
definitely different, although surely not so vastly different from the culture in other service organizations 
where safety is critical, such as the airline industry. Human behavior cannot be neglected, even in manu-
facturing models.   
 It is perfectly understandable that academic research should be published before the work has had 
time to achieve its full benefit. Academic career incentives (publish or perish) are such that in order to 
gain promotion, researchers have to publish quickly and then move on to the next project. There have 
been very few incentives to follow up with research users on implementation, although in the UK the 
2014 Research Excellence Framework (the process by which the Government assesses the quality of each 
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university’s research and allocates future funding) will, for the first time, include “impact” as one of the 
assessment criteria.   UK universities are now frantically chasing their non-academic collaborators for ev-
idence that their research has been used in practice.   Moreover, in order to publish in top-quality peer-
reviewed journals, academics have to produce models which push the boundaries of research knowledge. 
These can take years to develop and are often highly complex.  Hospital managers however require mod-
els (by next week!) which do not require specialist software, can be easily understood and explained to 
colleagues, and can be easily modified and updated without the need to call the modeler back to write 
more code.  Business consultants of course have other objectives: it is not in their commercial interest to 
make their models transparent, easy to use or let alone to teach hospitals how to modify them.  
 Another theory is the “not invented here syndrome”. While in some domains people are keen to adopt 
models and methods which have proved successful elsewhere, there seems to be a barrier in healthcare to 
doing this. Healthcare modelers often hear the argument that a model which worked for Hospital X would 
not work for Hospital Y, because “our patients are different, our staff are different, our wards are differ-
ent, our systems are different….”  One wonders how true this really is. Do we really need 1,008 different 
models of Emergency Departments?  Surely all EDs have a great deal in common and have many broadly 
similar processes.  However, in many healthcare modeling interventions, it is the process of stakeholder 
engagement, and not the end product, that is most effective (Brailsford et al. 2007). In other words, the 
model itself is often almost just a vehicle for getting the right people together round a table and talking 
through the problem. So, and this is my “grand challenge”, is it necessary to go through this lengthy and 
painful process every time, or is it possible to develop a generic model, or a suite of generic building 
blocks, which can be used in plug-and-play mode to speed up the process? Gunal and Pidd (2007) present 
an example of such a suite of interconnecting models. However, I am not aware that this has been widely 
implemented since then.  
 Bowers et al. (2012) discuss this issue and compare three different approaches to modeling. Firstly, a 
bespoke simulation model developed for an ED in Fife, Scotland; secondly, the re-use of this model (with 
minor adaptation) for an orthopedic outpatient clinic in the same hospital; and thirdly, a “generic” ED 
model, developed jointly by Lancaster University and the UK Department of Health (Fletcher and 
Worthington, 2009) and intended to be freely available for use by any National Health Service hospital.  
Bowers et al. comment that “Where resources allow, the bespoke route can be attractive.” (p1465), sug-
gesting that in an ideal world, this would still be the method of choice.  The generic model had all sorts of 
issues with acceptance, and Bowers et al. state that “There is a danger that even if it is technically valid, 
staff may be reluctant to accept any intervention on the basis of a simulation that is perceived to repre-
sent external practice.” (p1465).  The re-use model appears to be a “reasonable compromise” (p1465), as 
it still allowed an element of stakeholder engagement, although there were still some issues with ac-
ceptance, and of course it was only re-used within the same hospital….   
 My challenge therefore is, is it possible to build a generic model, or a suite of generic building blocks, 
which are software-platform independent, and easily understood by clinical and managerial stakeholders 
in healthcare systems, and which would enable hospital simulations to be built rapidly and re-used, and 
would lead to wide uptake and acceptance of simulation models?  Could simulation models ever be as 
pervasive as spreadsheets in healthcare organizations?    

3 STEPHEN CHICK: VALUE OF INFORMATION AND DATA MODELING 

In what is described here, I focus on some end-user benefits and possibilities enabled by trends in data 
and networking. Certainly, however, I won’t claim to be an expert in them all. Grand challenges by defi-
nition require a contribution from a broad variety of experts. I have several somewhat disjointed observa-
tions to make about the role of simulation in decision making. The observations are influenced by my 
path: which a couple decades ago included work in materials handling engineering in the automotive sec-
tor doing discrete event simulation, to a transition to the faculty in industrial engineering with work on 
manufacturing and on epidemic transmission systems, and to a decade ago to a business school.  
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 Value of information. If simulation is to be used in a decision making process, some specific benefit 
must be derived. Decisions that are made on the basis of any decision support tool, including simulation, 
are often made in order to improve some metric. If we define benefits as an increase in such a metric, then 
the development and use of a decision support tool can be considered to be an option to gain information 
that reduces uncertainty about what decision is best. Quite a bit of work has focused on this from statisti-
cal and from stochastic optimization perspectives, with various goals in mind. Bayesian, decision-
theoretic work takes the perspective that simulation sampling gives the option to learn about alternatives, 
that sampling therefore reduces the risk of an incorrect selection (in expectation), although it may come at 
a cost. There are opportunities in this line of work in several directions. One opportunity is that formal 
mechanisms to link more narrowly defined operational objectives to broader economic objectives (with 
potentially risks that are not commonly modeled in simulations today). For example, how does average 
throughput rate influence the economic impact of a decision taken with simulation? This means stepping 
back from operational details of a system being modeled and making the link to macro implications of 
decisions (does the increase in production rate actually improve the firm’s 5-year discounted NPV?).  
 Another direction is to extend current theory on expected value of information approaches, which has 
seen ‘good’ results in a number of contexts, to very large scale problems (combinatorial number of alter-
natives) where correlation structures in beliefs of the performance of alternatives and in random variate 
usage may be at play. This value of information thus raises a number of other interesting theoretical is-
sues, involving sequential sampling and sequential decision making in environments with many decision 
variables and complex correlation structures. The dynamic programming approach (and related approxi-
mations) to sequential learning in simulation contexts has shown some interesting progress, but more re-
mains to be done. This may prove useful not only in improving the speed at which complex simulated 
systems can be optimized, but might also prove useful in terms of spill-over effects to sequential clinical 
trial or health technology assessment applications. Another area worthy of exploration is a greater empha-
sis of the role of risk of decisions (from stochastic risks associated with random outcomes even when pa-
rameters are known, from epistemic risks associated with uncertainty about what the parameters of a sys-
tem are, and third from environmental risks associated with the fact that entire systems are changing 
around us). I have spoken about stochastic and epistemic risks in past WSCs. This third risk, environmen-
tal risk, I use to refer to scenario planning exercises that firms are increasingly using to characterize the 
many shifts, often unpredictable, in environments. This third risk seems to offer opportunities to link sim-
ulation in the discrete sense to simulation in the business sense of developing monitoring and action plans 
associated with industrial, economic and other structural uncertainties. That is, can simulation be used to 
improve ‘optimal’ system control in a non-stationary sense: the optimal control being a policy that adapts 
control to events that arise. 
 A very different benefit of the simulation modeling process is its use in getting people to share a 
common vision to a set of activities (which will hopefully be organized into a process). The process of ar-
ticulating assumptions in a group to develop a common vision and goal structure should not be underes-
timated when improving the functioning of effective processes. This so-called soft operations research has 
incredible practical value, and is by no means easy. In addition to research within the field of simulation 
and operational research, scholars in the field of strategy (strategy execution) and organizational behavior 
(team alignment, etc) have also studied this problem. One ‘challenge’ is to extend the reach of current 
theory across these domains to provide greater theory (falsifiable hypotheses) as to when simulation initi-
atives (of the group decision making process or organizational alignment sort) do or do not create value. 
 Data modeling. Rare is the day when samples are truly independently sampled. While a joint inde-
pendence assumption for stochastic outcomes may be a useful approximation to reality, there is often cor-
relation across activities in service or manufacturing systems: a patient with a complicated operation is 
likely to have complicated billing activities: service times in the operating room are likely correlated with 
service times in administrative processes. Moreover, there may be correlations in time (a tired worker 
might have several service times that are slow in a row; a server with a long queue of customers might 
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work faster), and across people. An example of autocorrelation across people is that infectious disease 
outcomes are correlated across individuals due to the nonlinear dynamics of disease transmission. These 
correlations can be shown to lead to very different conclusions for some important decision problems 
(such as some in infectious disease control) as compared to a model with independence assumptions. 
Modeling of correlation and of ‘real’ distributions is therefore important. Social network theory is in-
creasingly being applied to indicate that behavior may be correlated for other phenomenon besides dis-
ease transmission: such theory attempts to explain why outcomes also appear correlated in some non-
communicable disease categories (e.g., peer pressure in social networks about smoking; or behavior for 
activity in groups that may reduce risks of obesity and related comorbidities). Developing effective data 
models of human behavior in our increasingly networked world seems to be a worthwhile goal. This 
could involve theoretical statistical models, estimation models, and efficient variate generation tools. The 
agent based world has made some neat progress here, and there seems to be more that can be done. This is 
particularly true with the open data movement and other massive data sets that can describe actual human 
behavior. 
 In summary, I think there are a number of interesting opportunities for simulation modelers in the ar-
eas of use of massive amounts of data, of development of theories with falsifiable hypothesis of human 
interactions (both in the decision making process and in the human interaction processes in simulated 
human systems), and in the area of linking value creation and risk management goals of the decisions be-
ing made with the use of simulation as a decision support tool. 

4 PIERRE L’ECUYER: STOCHASTIC MODELING AND OPTIMIZATION 

Available computing power to perform simulations increases relentlessly and fast, mostly due to the pos-
sibilities for parallel and distributed simulation, via cloud computing, multicore processors, and general 
purpose graphical processing units (GPGPUs), for example. Larger and more complicated models can be 
simulated, or more simulation runs can be performed to obtain tighter confidence intervals on certain un-
known quantities. But these results can be meaningless and misleading if the model is not sufficiently re-
alistic and accurate. Simulation can be useful only to the extent that we can trust the model (Law 2007). 
Building trustable stochastic models of large complicated systems is one of the biggest challenges we face 
in modeling and simulation research. A key reason for this is that there are many sources of uncertainty, 
which are generally not independent, and the dependence is often very hard to model. In my experience, 
lousy and unconvincing stochastic modeling, often with lack of appropriate data given as an excuse, is 
(unfortunately) a major weakness in many application-oriented articles submitted to simulation journals.  
 In parallel with the increasing compute power, huge amounts of data are currently becoming available 
at a rate never seen before and that increases exponentially. Exploiting this massive data to build credible 
and valid stochastic models of complex systems leads to statistical modeling and estimation problems re-
lated to current research in Bayesian statistics, data mining, and machine learning, for example. Bayesian 
statistics are involved when we need to effectively update the models as new data comes in. This is typi-
cally needed when simulation is used periodically, in a dynamic fashion, to update decisions. In fact, 
Monte Carlo simulation methods are often used in these areas for parameter estimation and for “learning” 
the models based on available data (Robert and Casella 2004). It is important to emphasize that realistic 
modeling is generally much more complicated than selecting univariate distributions and estimating their 
parameters. Model inputs are often multivariate distributions and stochastic processes, with hard-to-model 
(but important) dependence between them.  
 Let us give some examples of large stochastic systems that are difficult to model. As a first example, 
consider modeling and simulating the climate change on our planet, to study the potential regional im-
pacts. For this we need (among other things) three-dimensional dynamic models for concentrations of 
greenhouse gases such CO2, CH4, N2O, freons, water vapor, for the air and water temperature, water cur-
rents, surface ice and snow, the clouds, etc. This involves uncertainty which is difficult (although essen-
tial) to model.  
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 Such difficulties also occur for example if we want to simulate a whole human body or one of its 
parts, or the spread of infectious diseases by virus or bacteria in populations of humans, animals, and 
plants, with resistance of bacteria to antibiotics, or social networks and crowd behavior, where stochastic 
behaviour of interacting humans is involved, or communication and transportation networks, which in-
volve various devices and stochastic demands and travel times, or stochastic models in finance, where ex-
ternal knowledge might be better exploited and where dependence between asset prices in a portfolio (be-
yond correlations) can have a large impact on risk, for example, or health-care facilities (clinics, hospitals, 
ambulances, patient evolution), where stochastic aspects are ubiquitous. 
 To examine a few concrete illustrations more closely, consider a telephone call center, where calls ar-
rive one by one according to some stochastic process. Such centers currently employ around 3% of the 
workforce in North-America, so they are important economically (Aksin, Armony, and Mehrotra 2007, 
Koole 2013). They are used by small and large organizations for marketing and sales, customer service, 
billing and recovery, public services, emergency calls, taxis, fast food ordering, etc.  
 Important stochastic aspects to model in those centers include for example the call arrival processes, 
the service time distributions, and the abandonments. Simplistic modeling often assumes that the arrivals 
are from a stationary Poisson process, that the service times are i.i.d. exponential random variables, and 
that patience times (the time the customer is ready to wait for an agent before hanging up and abandon-
ing) are also i.i.d. exponentials. But these assumptions are highly unrealistic.  
 Arrival rates in call centers are highly non-stationary; they depend on the time of the day, day of the 
week, type of day (holiday, special day, etc.), and other seasonal effects. The arrival rates are also highly 
stochastic. With deterministic time-varying rates, the number of arriving calls within any given time peri-
od(the arrival count) would have a Poisson distribution, with variance equal to the mean, but the observed 
variance of the counts over periods of a few hours is usually much larger than the mean, sometimes by 
factors of over 50, and these counts are also dependent across periods (Avramidis, Deslauriers, and 
L’Ecuyer 2004; Channouf and L’Ecuyer 2012; Ibrahim, L’Ecuyer, Régnard, and Shen 2012; Oreshkin, 
L’Ecuyer, and Régnard 2013; Steckley, Henderson, and Mehrotra 2005).  
 To account for this high dispersion, one may assume that the arrival rate is random, for example con-
stant in each 30-minute time period, and with some dependence structure across time periods that could 
be modeled via a copula. One difficulty in estimating such a model is that we do not observe these rates, 
but only the arrival counts. This generally makes maximum likelihood parameter estimation much more 
difficult. In fact, the available information is often only the arrivals count in each time period. Incoming 
calls are also partitioned into different types, often several dozen types or more, where each type can only 
be handled by a subset of the agents that have the corresponding skills, and the arrival processes are de-
pendent across call types (Jaoua, L’Ecuyer, and Delorme 2013). This brings a further level of difficulty. 
Modeling this dependence across periods and across call types simultaneously would give rise, in general, 
to highly-dimensional copulas that are very challenging to estimate.  
 Service time distributions (call durations) depend of course on the call type but also on the individual 
agents, with means that can sometimes vary by up to a factor of 2 or 3 between two agents for the same 
call type (Gans, Liu, Mandelbaum, Shen, and Ye 2010; Ibrahim and L’Ecuyer 2013). It may also depend 
on the number of call types that the agent is handling, and may change with time (due to learning effects, 
motivation and mood of the agents, etc.). These can be important factors to model and to consider when 
making work schedules for agents, but modeling them properly is not easy.  
 Similar arrival-process and service time modeling problems occur in other settings that involve hu-
mans, such as customer arrivals at stores, incoming demands for a product, arrivals at hospital emergency, 
etc. The uncertainty in those settings tends to be more important and more complicated than in industrial 
automated systems that involve only machines. Modeling it in a trustable way is still a significant chal-
lenge (and is likely to remain so for many years ahead) in several areas of application. 
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5 CHARLES MACAL: AGENTS – THE FUTURE OF SIMULATION? 

5.1 Perspective 

To frame our discussion, I’d like to ask: What is simulation? Because people often think of different 
things when discussing simulation, Pritsker (1979) was one of the first to present a compilation of defini-
tions of simulation, and Oren (2011) ultimately came up with about 400 definitions. Based on the com-
monalities of these definitions, one could conclude that a simulation is a model of a dynamic process, i.e., 
a process that is “animated” over time, and often, more recently, over space (Law 2007). This notion of 
simulation is broad enough to encompass traditional discrete event simulation (DES), system dynamics 
(SD), and agent-based simulation (ABS). If uncertainty is included in the simulation, Monte Carlo (MC) 
simulation plays an essential role (Rubinstein and Kroese, 2008). I also believe that simulation is what 
“simulationists” do -- or will be doing in the future. By simulationists I mean simulation scientists, engi-
neers, or just regular people that develop or use computer simulation models. One way to look at a grand 
challenge is to enumerate the things related to simulation that people are already spending, or intending to 
spend, a lot of time and effort on, perhaps pointing out a few bottlenecks to progress and problems that 
might require focused efforts of the simulation community in the future.  

5.2 Grand Challenges 

With these arguments in place, we can ask equivalently, What is the future of simulation?, here focusing 
on the OR/MS perspective, and What will simulationists be doing in the future? There is much discussion 
in the simulation community about all possible pair-wise combinations of the relationship among DES, 
SD, ABS, and MC simulation. Each approach carries its own community, including specialists, accepted 
practices, software, and common understandings of what constitutes good models and good applications. 
I propose the first grand challenge is for the simulation and modeling community to come to a common 
understanding of the various ways of how these simulation approaches fit together in applications to solve 
important problems of  national and global significance.  

But to my main point, I believe the future of simulation is agent-based simulation. In the future, simula-
tionists will be building, using, and reporting results from agent-based simulations to decision and policy 
makers; simulationists will team with scientists across many disciplines to build agent-based simulations 
and use them as electronic laboratories to advance scientific knowledge. In the future, all simulations will 
be agent-based simulations, or agent-based simulations will be components of larger simulation systems. 
In the course of developing many agent-based simulation applications, I have observed that it is not unu-
sual in the current environment to be approached by potential collaborators, customers, and clients who 
are interested in developing agent-based simulation. A common refrain is: “We do not know what agent-
based simulation is, … but we know we need it!” (As to why people think they need agent-based simula-
tion, and whether it is appropriate or not, is beyond the scope of the present discussion.)  

We cover details of agent-based simulation elsewhere (Macal and North, 2010). In a nutshell, agents 
have behaviors and states upon which their behaviors are based. An agent’s behavior, if truly dynamic 
and giving an agent the capability to sense the environment, deliberate, and respond to interactions with 
other agents, is based on the state of the agent at a particular time. An agent-based simulation consists of a 
set of agents, a set of agent interactions, and the mechanisms that update the agent states as a result of the 
agents’ behaviors and interactions. It is worth noting that agent-based simulation overflows the bounda-
ries of traditional simulation, and in my opinion ABS is a more general modeling technology. Agent in-
teraction algorithms are the basis for decentralized system optimization algorithms, such as ant colony op-
timization and particle swarm optimization (Barbati, Bruno and Genovese, 2011). 

I will enumerate four areas I think are important for the future of agent-based simulation: behavior (in-
cluding connections to Big Data and Data Analytics), emergence, design, and the micro-to-macro connec-
tion.  
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5.2.1 Behavior 

One of the reasons that people come to agent-based modeling is because they would like to include truer 
representations of the behaviors of entities, or agents, into their models (e.g., Ferguson 2007). An agent-
based model can be used to investigate whether modeling agent behavior matters at all, what micro-level 
agent behaviors would improve macro-level system performance, and when collective behaviors may 
emerge among interacting agents, among other interesting research questions. Here, there is a connection 
between ABS and Big Data Analytics. For example, Kosinaki et al. (2013) demonstrate how behavioral 
attributes (potentially akin to market segmentation and an antecedent to developing behavioral models) 
can be identified from digital records. The inclusion of real-time data for updating agent states and blend-
ing that information with projections or forecasts of agent activities is another promising area (Bengtsson 
et al. 2011). Ultimately, there appears to be a natural motivation to model and simulate all of society, 
which would have a variety of beneficial applications and uses (Epstein and Axtell, 1996). A fanciful vi-
sion of possibilities is provided by Asimov, when Hari Seldon invents the field of “psychohistory” that 
enables him to predict precisely the aggregate behaviors of large populations of people (Asimov 1988). 
Also interesting is the media’s reaction to mining social network data (The Economist 2013). Individual-
based agent models approaching a global scale have already begun to be developed (Parker and Epstein 
2011).  

5.2.2 Emergence 

I see very little recognition of, or appreciation for, emergence that occurs in ABS by the M&S communi-
ty. Emergence refers to the generation of order in the form of patterns and structures that self-organize 
endogenously within a model. ABS originated in the fields of study called complex adaptive systems and 
artificial life (Macal 2009). In these fields, emergence and adaptation of natural systems are central con-
cepts. People often come to ABS to study emergence by modeling “systems from the ground up,” mean-
ing that the agents and their interactions produce structures and patterns that they have not intentionally 
programmed into their models. For example, in the famous “Boids” model (Reynolds 1987), mobile 
agents interact with their neighbors through simple behavioral interaction rules that influence each other’s 
speed and direction. Most people find it surprising that for certain parameter settings related to the 
strength of agent interactions, such agents form coherent swarms, reminiscent of fish schooling or birds 
flocking, that had not been explicitly programmed in to the model. Most agent-based models exhibit some 
form of emergence whether it is recognized or not by the modelers. A grand challenge is to develop 
methods that recognize endogenous emergent effects in models, create higher-level structures of the kind 
that would emerge in real-world processes, and have those structure endogenously interact with agents.  

5.2.3 Design 

Agent-based models often just happen – they are not the result of a deliberate design process -- but they 
should be and will be in the future. Agent-based modeling should become more and more of an exercise 
in assembling pre-designed (and potentially validated) modules into a coherent model to solve a problem. 
Enormous progress has been made in the computer science community, for example, in object-oriented 
design, where the objective of reusability has resulted in the efficient development of programs consisting 
of millions of lines of highly reliable computer code. In the agent-based realm, specifications such as the 
ODD (Overview, Design concepts, and Details) protocol provide a framework for communicating model 
purpose and design (Grimm et al. 2006). The key principle of design is to separate model specification 
from model implementation. In other words, the model design is a standalone entity, and implementation 
can proceed in any computer language according to the unambiguous design specification.  Conceptually, 
every decision made in the design process can be encapsulated and preserved for future use by others 
(North and Macal 2013). 
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5.2.4 Micro to Macro 

Another reason that people come to agent-based simulation is the challenge of connecting the micro 
(agent behaviors) to the macro (population and system-wide behaviors). Agent-based modeling brings 
with it explicit models for agent behaviors, which may not be present in other types of simulations. Ana-
lytic treatments of the micro-to-macro connections have so far been unavailable, but there may be room 
for progress, either analytically or computationally. Related to this situation, is the need for breakthrough 
developments for the proper treatment of uncertainty in simulation models, specifically methods that re-
lated model inputs, data, and parameters to a scientifically valid characterization of model outputs. Char-
acterizing uncertainty of simulation model outputs that correctly characterizes the uncertainties surround-
ing simulation input data as well as structural uncertainties in the model, such as those stemming from the 
uncertainties around behavior representations, are grand challenges. One approach to this may be to de-
velop equivalent classes of more aggregate and less computationally demanding meta-models that mimic 
large-scale stochastic models within estimated uncertainty bounds. 

5.3 CONCLUSION 

The grand challenges above are among many challenges for agent-based simulation in the future. Other 
grand challenges such as agent-based simulation validation, with the need to validate embedded behavior-
al models as well as emergent processes, will ensure there is much exciting work to do in simulation for 
many decades to come.  

6 BARRY L. NELSON: SIMULATION ANALYTICS 

As a simulation research and practice community we need to rethink the reporting of simulation results, 
or perhaps the tools we give users to create their own reports. At first blush this may seem like less than a 
“grand challenge,” but I am firmly convinced of two things: (1) Many, if not most, simulation users mis-
interpret or misunderstand the results they are getting now; and (2) this misinterpretation or misunder-
standing is not harmless. The most straightforward evidence for (1) is that if users really understood what 
they were getting then they would almost certainly be asking for more, and as far as I can tell they are not. 
I will say more about (2) later. 
If I am correct then this is discouraging. Simulation is increasingly the only method capable of analyzing, 
designing, evaluating or controlling the large-scale, complex, uncertain systems in which we are interest-
ed. The available software is up to the model-building task, and the use of animation can inspire confi-
dence that, say, an integer nonlinear programming formulation never will. However, the success of data 
analytics in providing fine-grained, effective and profitable prescriptions based on transactional data is 
going to put increasing pressure on all mathematical models, including stochastic simulation, to do the 
same. It is not a stretch to describe what we do as “data analytics on conceptual systems,” that is, systems 
for which no actual data yet exists. Why should simulation be held to a lesser standard? We have proba-
bly been able to slide by mostly reporting means and confidence intervals because, until now, no one ex-
pected the real-world implementation to behave exactly as the simulation predicts, and even badly inter-
preted simulation results nudged users toward better choices. That may no longer cut it. 
 I want to be clear that I am not beating up on the software vendors. The research community has not 
made a strong enough case for why this matters, nor have we provided very many good solutions. In this 
section I will identify a few of the challenges we should address.  
 Here is the briefest possible summary of inferential statistics, and probably what we should assume as 
the starting point for many simulation users: You have a data set nyyy ,,, 21 … on some variable quantity 
Y  and your goal is to estimate one or more properties of Y . In the simulation context Y is a system per-
formance output and nyyy ,,, 21 … are simulation-generated observations of it. The long-run average and 
percentage chance something happens are familiar properties. To provide a concrete context I will refer to 
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this real-world example: Prior to the U.S. elections of 2012 there was concern about whether the design 
and staffing of polling places would allow everyone to exercise their right to vote with tolerable waiting. 
Historical voting patterns including numbers of voters by precinct, actual voter turnout, and the percent-
age of the vote cast by time of day were available, as well as ballot-dependent models of the time to cast a 
vote. Simulations were constructed to assess poll performance for any given staffing level, equipment ca-
pacity or registration policies.  
 Here are some reasons why reporting the results of stochastic simulation experiments is not easy: 
 Simulations generate a lot of data: Even this simple example generates delay data for each of hun-
dreds to thousands of voters; congestion data for the polling place, the registration desk and the voting 
devices; and utilization data for poll workers and voting devices. A complex manufacturing or supply 
chain simulation could easily increase the amount of data by one to two orders of magnitude. The im-
mense volume of data is one reason that simulation software invariably provides summary reports, typi-
cally averaging everything in sight; but averaging introduces its own problems. 
 Averaging through time masks time-dependent effects: A critical feature of voting is time-varying 
load. In some precincts voting primarily takes place before or after working hours; but a precinct serving 
a retirement community will experience a very different distribution of load. The delay experienced by 
voters, averaged throughout the voting day, will hide the long delays experienced by some voters during 
peak load periods by averaging them with brief delays for voters off-peak. While averaging across repli-
cations is always statistically helpful, averaging within replications may be bad. 
 The performance that interests us is often related to time: Recall our generic output da-
ta nyyy ,,, 21 … . These might be voter waiting times during the simulated day. To be very specific, in a 
typical simulation these could be the waiting times of n  voters in the order that they completed waiting. 
Notice first that the index is not the order of arrival to the polling place, nor the order of departure from it. 
But even if the output data were sorted in one of these two ways, it is unlikely that we are interested in, 
say 32y , the waiting time of the 32nd voter of the day to arrive. Instead, the anticipated waiting time as a 
function of the time of arrival is what is relevant. For instance, what delay might a voter expect who ar-
rives at noon as opposed to 5 PM?  I am willing to argue that for nearly all systems with time-varying 
load, measures of delay should be indexed by time. But this a more subtle measure to define and estimate. 
 A related problem is reporting results for continuous-time outputs, like queue length )(tQ . These out-
puts are naturally indexed by time, so it is easy to generate a within-replication time plot of )(tQ  vs. t  as 
nearly all simulation languages do. Averaging such data across replications to get a better estimate of 
mean queue length as a function of time is certainly meaningful, but how do you do it? The most straight-
forward way requires saving lots of data from each replication (the values of )( itQ and it  at each point in 

time it  when it changed) and doing a substantial amount of post-run computation. If a measure of varia-
bility around this mean queue length is reported, as it should be, then there is even more work. Yet this is 
exactly the sort of information that would be meaningful in the voting model. 
 Simulations are conducted in a sequential, exploratory manner: In classical design of experi-
ments, important factors are identified, levels of the factors are chosen, and all of these predefined exper-
iments are executed and the results analyzed. However, since simulations are not physical experiments, 
data (“runs”) are often cheap, and results can be summarized and displayed immediately. Thus, it is natu-
ral to conduct some simulation studies in a more exploratory fashion. In the voting simulation we might 
pick a particular layout and staff, make a few runs, look for problems, and adjust the staffing and capacity 
where we see congestion or idleness. How do we summarize a user-guided sequence of experiments on 
different scenarios so as to insure that they did not miss something or get mislead? 
 We focus on reporting error instead of risk: We have a historical focus on measures of error while 
decisions should usually be based on measures of risk; even worse, users often confuse error with risk. A 
confidence interval (CI) is a measure of error; measures of error answer the question “have we done 
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enough simulation to estimate whatever?” The answer should be related to the specific context, like “I am 
comfortable being off by ±$1000, but not ±$50,000.” The width of a CI says nothing about the natural 
system variability; that is, it says nothing about risk, although many people think that it does. A prediction 
interval (PI) is a measure of risk; it answers the question “what performance will we most likely see when 
we implement?” Measures of risk should be standard, but they are not. And when reporting either type of 
measure we should avoid statistically meaningless precision. See Nelson (2008), Song and Schmeiser 
(2009) and Wieland and Nelson (2009) for some ideas about how to do this.  
 Simulations involve multiple objectives and competing scenarios: It is a rare simulation that pro-
duces only a single output measure, and for each output there may be more than one property we care 
about. Trade-offs between costs, quality of service, physical space, etc. are common. For some perfor-
mance measures, the mean (long-run average) and a measure of stability (standard deviation, tail percen-
tile, PI) are both relevant. And all of these occur across multiple scenarios or system designs. This is an 
area in which our reporting is particularly weak. Even the formal statistical comparisons we provide typi-
cally focus on a single measure, and nearly always compare means rather than measures of risk.  
This list of analytics challenges is not exhaustive, but it is a good start. We are currently giving simulation 
users amazing tools for generating data, but not nearly as much help in getting the most out of these data.  

7 CONCLUSIONS 

This paper has continued the discussion of Grand Challenges in M&S by discussing these from an Opera-
tional Research/Management Science (OR/MS) perspective.  It has discussed themes including simulation 
in healthcare, value of information, data modeling, stochastic modeling and optimization, agent-based 
simulation and simulation analytics. 
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