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ABSTRACT

There has been substantial work exploring strategies, both theoretical and empirical, for selling and buying
in online auctions. However, much of this work has considered single auctions in isolation, partially because
it is hard to examine multiple simultaneous auctions using traditional math modeling approaches. In reality,
many auctions occur simultaneously, so there is competition not just among bidders, but also among
auctions. In this paper, we use simulation to explore bidders’ switching behavior between auctions for
similar products. Using an empirical dataset, we first examine the distribution of switching and associated
bidding behavior in real auctions. We use this data to create an agent-based model that reproduces the
price process observed in the empirical data. Using this model we then explore the effects of: (1) different
switching distributions, (2) the switching rule, i.e., which auction to switch to, and (3) different auction
start rates. In the end, we show that in order to maximize the final price and to minimize the price disparity,
auction platforms should encourage users to switch to a low-price auction that is ending soon.

1 INTRODUCTION

Price dispersion of online auctions exists even among auctions selling the exact same item. In this research,
we discuss one of the possible causes of this phenomena – bidders’ resistance to switch auctions. The
reason behind bidders’ resistance is associated with search costs (Haruvy and Leszczyc 2010), i.e., the
information about similar auctions that is readily available to bidders is limited, which requires bidders to
put in significant time to search for another auction that matches their needs.

There has been intensive investigation of bidders’ behavior and various proposed strategies for Internet
auctions, but very little of it has investigated multiple auctions and switching behavior in these auctions.
Bapna et al. (2004) developed a taxonomy of bidding behavior in online auctions, in which early bidders
and snipers are identified through empirical data of online auctions. Roth and Ockenfels (2002), and Easley
and Tenorio (2004) focus their studies on sniping behavior and jump bidding respectively. Haruvy and
Leszczyc (2010) discussed bidders’ search and choice in simultaneous online auctions and their impact
on price dispersion. Ariely and Simonson (2003) talked about bidders’ value assessment and decision
dynamics in online auctions. Jank and Zhang (2011) proposed a functional forecast model of auction price
to assist bidders’ bidding decision. Chu and Shen (2006) concluded that the best strategy is bidding one’s
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Table 1: Frequency table of bidders’ number of auction participated.

Num of Auctions 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 4295 865 311 142 79 48 32 8 17 3 7 10

Num of Auctions 13 14 15 16 18 19 22 27 28 35 43 53

Frequency 6 4 3 4 4 2 3 1 1 1 2 1

maximum willingness to pay (WTP) derived from theory of game mechanism design. Gray and Reiley
(2007) discussed whether there is any benefit of early bidding and sniping through real-world experiments.
Shmueli, Russo, and Jank (2007) proposed a BARISTA model for bid arrivals in online auction, which
capture the deadline and earliness effects. Bradlow and Park (2007) modeled the bid amount and timing
of bidders through Bayesian estimation of a record-breaking model. Most of this work has been in the
space of single auctions, where our work examines multiple competing auctions. Even when researchers
have investigated multiple auctions, they have usually done it in the context of sequential auctions, and
not simultaneous auctions. For instance, Zeithammer (2007) examined forward-looking strategies through
theoretical models and concluded that with perception of future auctions, bidders would strategically shade
their bids down comparing to the single auction setting. Our work differs from all of this previous work
in that we are examining why users decide to switch between multiple auctions. Moreover, our goal is
not purely descriptive, but instead we also hope to offer prescriptions for auction platforms interested in
encouraging users to stay on their platform.

In this research, we design a multiple auction agent-based model (ABM) (Page 2005) to examine the
influence of bidders’ switching behavior on price dispersion by providing bidders’ with information of
contemporary auctions. This study provides three useful insights for auction platforms and participants.
First, by reducing the price difference between auctions selling the same item, the risk for both bidders
and sellers is reduced, which will lead to an increase of customers’ satisfaction for both groups of users.
Second, providing information about additional auctions will give the auction platform better customer
retention, by successfully promoting bidders’ switching behavior, because participating in a new auction
serves as an incitement for bidders to check back and stay on the same auction platform. Third, increasing
switching behavior will increase the average closing price, since more bidders will stay in the auction
platform which will increase the level of competition. This in turn will lead to increasing the profits of
sellers and online auction websites.

The remainder of this paper is organized as follows. In Section 2, we give an overview of the data and
describes exploratory analyses. Section 3 describes the simulation model of multiple online auctions used
to test the effect of bidders’ switching behavior. In Section 4, we present the simulation experiment test
results, and Section 5 presents conclusions.

2 DATA DESCRIPTION

Our research is based on a dataset of digital camera auctions obtained from eBay.com. We examine auctions
that were selling brand new Canon SD1000 digital cameras without accessories. There are 1155 auctions
and 19,007 bidding records. On average, there are ∼ 8 different bidders and ∼ 16 bids per auction. In
total, 5849 bidders participated in the auctions and 1554 (26.6%) of them participated in more than one
auction. Also, ∼ 40% (2428) of bidders only placed 1 bid while the other ∼ 60% (3421) of bidders placed
all other 16,579 bids. Table 1 shows the frequency with which bidders’ participated in auctions. ∼ 73%
of all the bidders left the platform after participating in just one auction. However, there are some very
enthusiastic bidders who participated in more than 10 auctions.

We are particularly interested in bidders’ switching behavior. If a bidder bids on another auction before
her previous auction ends, then this bid is considered to be a switching bid. There are 1320 bidders who
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placed returning bids before the previous auctions ended, which means they were facing the option of
continuing to bid on the same auction or switching to another auction, i.e., they could have place a switching
bid. The proportion of switching bids for each bidder is calculated as in Equation (1).

p.switch =
Num. switching bids

Num. staying bids + Num. switching bid
(1)

3 MULTI-AUCTION MODEL DESCRIPTION

In this section, we describe the general set-up of our simulation framework. We conduct our simulations
using an agent-based model.

An agent-based model is a framework that consists of computational, autonomous decision-making
entities, which often represent individuals, who interact repetitively within the framework (Bonabeau 2010).
Each individual, called an agent, evaluates the information they have about the environment and makes
decisions based on rules set by the modeler. The goal of using ABM is to experiment and observe the
phenomena or consequences generated from the collective behavior of agents. In the last few years,
agent-based modeling has become a useful and popular tool to carry out experiments in social science
studies.

One of the main reasons for the recent increase in the popularity of agent-based models is that it enlarges
the set of questions researchers can explore (Page 2005). In contrast to classical statistical models which
rely on restrictive – and at times unrealistic – assumptions (such as linearity, homogeneity, normality and
stationarity) which are often imposed for mathematical analysis and proof rather than realistic applicability,
agent-based models operate within a framework of minimal, simple and realistic rules. As a result, agent-
based modeling (ABM) allows researchers to examine issues that have been avoided previously in theoretical
disciplines and for which mathematical and analytical derivation is impossible (Bankes 2002).

3.1 Switching Design

The multi-auction model is designed based upon a single online auction model as described in a previous
paper (Guo, Jank, and Rand 2011). The bidders’ arrival process to an auction is kept the same in the
multi-auction setting. And each arriving bidder is given a designated auction, when they arrived in the
multi-auction system. Different from the single auction model, upon each arrival, the bidder could switch
to other auctions. For each visit to an auction, a bidder will first check if she is still the current winner of
the auction. If so, he/she will not take any action, except coming back at the next scheduled time. If she is
not the current winner, she will make decisions according to the following rules. Let PD denote the price
of the designated auction, Pi’s denote price of other auctions and w denote the arrival bidder’s willingness
to pay for the item.

1. If PD ≤ min(Pi), i.e., the bidder’s designated auction has the lowest price, then the bidder won’t
switch.
(a) Given (1) then if w > PD, the bidder will place a bid and come back on scheduled revisit time.
(b) Given (1) then if w ≤ PD, the bidder will leave the system and will not come back.

2. If PD > min(Pi), i.e., there is at least one auction j with Pj < PD, then the bidder might switch.
(a) Given (2) if w > PD, the bidder will switch with probability q1 to another auction and with

probability 1−q1 stay in the same auction.
(b) Given (2) if w ≤ PD, the bidder will switch with a probability q2 to another auction and with

probability 1−q2 leave the system.

This specifies whether or not a bidder will switch, but we also need to discuss to which auction the bidder
will switch. We call the rule for making this decision a switching strategy. There are several switching
strategies we test in this model. Each switching strategy corresponds to a potential auction recommendation
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Table 2: List of variables of multi-auction model.

Level Notation Definition Distribution & Parameters

Auction Pt=0 Starting price 180·Beta(αp = 0.17,βp = 0.59)
Nb Number of bidders Poisson(λb = 12.35)
Ts Start Time Poisson Process(λa = 6.08)

Bidder i wi Evaluation of the good Normal(µw = 180,σ 2
w = 21)

ρi Bid increment Beta(αρ = 1.2,βρ = 4.2)
ti,1 First decision time 10·Beta(αt = 0.58,βt = 0.34)
ni Number of revisits Poisson(λre = 0.97)
ti, j Revisit times j ≥ 2 Uniform[ti,1,10]
pswitchi Probability of Switching Empirical distribution

Normal distribution
Constant value

strategy of the online auction website. The switching strategies listed below are conditional on two things:
(1) the bidder has decided to switch based on the switching decision discussed above; (2) only auctions
with price Pj lower than (a) the price of the bidder’s curet auction PD and (b) the bidder’s willingness to
pay w are considered as possible targets to switch to for bidding.

1. MinPrice: The bidder switches to the auction with lowest price.
2. Earliest: The bidder switches to the auction with earliest closing time.
3. Random of MinPrice: The bidder randomly switches to one of the n auctions with lowest price. n

can be consider as the recommendation limit of the auction platform. When n = 1, this switching
rule degenerates to the MinPrice rule.

4. Random of Earliest: The bidder randomly switches to one of the n auctions with the earliest ending
times. When n = 1, this switching rule degenerate to the Earliest rule.

5. Earliest of MinPrice: The bidder switches to the auction with earliest time among the n auctions
with lowest price.

6. MinPrice of Earliest: The bidder switches to the auction with lowest price among the earlest ending
n auctions.

3.2 Simulation Framework

We complete the model description section by presenting the simulation process of the multi-auction model.
The multi-auction model simulation starts with generating all the random variables as listed in Table 2.
Auction starting time is simulated by a Poisson process with parameter λa matched to eBay data. As
discussed in Section 2, different distributions of bidders’ switching probability are tested later in this paper
to see if the shape of the distribution has significant influence on the closing price (both the average and
standard deviation). For the second step of the simulation, all the auctions starting and ending events,
bidders’ visit and revisit events are ordered according to the event times. Then the online auction model
begins with the earliest event and iterates through each event until the ending time of the simulation.
When it comes to auction starting and ending events, the auction status will change to “open” or “close”
according to the event type. Therefore, when a bidder visits the auction platform, it is clear which auctions
are available for the bidder to choose from. When a bidder places a bid in an auction, the auction’s price
will change according to the eBay price rules as well as the bids of the current winner and the underlying
highest bid of the auction. If a bidder decides to switch auctions, his/her frequency of future revisits
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Figure 1: Flowchart of one bidder’s bidding decision process.
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Table 3: Mean and standard deviation of switching probability with non-linear increments on empirical
distribution.

C Value 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Mean .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90

Std. .38 .34 .30 .26 .23 .19 .16 .13 .11 .10 .11

and corresponding revisit times to the new auction will be regenerated and the event queue of the whole
simulation will be updated accordingly. Also, if a bidder decides to leave the auction platform, his/her
future revisits will be deleted from the event queue of the simulation. Figure 1 illustrates a bidder’s bidding
decision process for one visit.

4 EXPERIMENT TESTS AND RESULTS

In this section, we endeavor to investigate and answer several questions. The first question is whether
promoting switching behavior will increase the profit of an online auction website and decrease price
dispersion. If so, does any switching rule have a more significant effect on price dispersion than any of
the other switching rules? In other words, which auctions should the auction platform recommend to the
bidders? Also, as discussed earlier, we want to test if the distribution of switching probability affects the
modeling results or only the average switching probability affects the auction prices. In this section, we
answer these questions using the multiple auction agent-based model.

4.1 Effects of Distribution of Switching Probability

To answer the question whether there is any benefit of promoting switching for online auction website, we
experiment with the model by increasing the switching probability. Here we use a non-linear increment on
empirical distribution: ∆pi =C(1− pi)

2, where C represents the maximum increment and varies from 0.1
to 1.0 by 0.1. Table 3 shows the mean and standard deviation of the switching probability corresponding
to different increments added to the empirical distribution. It can be seen from the table that the mean of
switching probability increases linearly and standard deviation decreases, when the C value increases.

Before investigating the benefit of promoting switching behavior, we need to answer a preliminary
question, whether the distribution of switching probability makes any difference to the simulation results
of the average and standard deviation of auction closing price. This will allow us to examine the robustness
of our model to different switching assumptions, and help us to identify a baseline distribution to use.
We test three distinct distributions: the empirical distribution from eBay data, a normal distribution and a
constant value. Upon examination of the eBay switching distribution it was observed that the empirical
distribution had a tri-mode shape, with three modes at 0, 0.5 and 1, which is very different from a normal
distribution or a constant value. To test the effect of the different distributions, the three distributions were
scaled to have the same mean and the same standard deviation for empirical and normal distributions.

In Experiment 1, we examined the 3 different switching distributions with 11 increments, i.e., changes
in switching probability (as listed in Table 3), under 3 switching rules. The 3 rules in this experiment
represent three extreme situations (deterministic minimum price, earliest ending time and random switch)
and serve as illustrations for examining the influence of switching probability and its distribution. All the
switching rules discussed below are conditional on the bidder deciding to switch and will only switch to
the available auctions for him/her. The available auctions for each bidder is defined as the auctions that
have price less than the price of bidder’s current auction and the bidder’s willingness to pay.

1. Choose the auction with the minimum price (Minimum rule in Section 3)
2. Choose the auction with the earliest closing time (Earliest rule in Section 3)
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Table 4: Experiment settings.

Experiment 1 3 Switching Rules 3 Probability Distribution 11 Probability Increments

99 settings 1. MinPrice 1. Empirical distribution All 11 increments
2. Earliest 2. Noraml distribution as in Table 3
3. Radom 3. Constant Value

Experiment 2 14 Switching Rules 1 Probability Distribution 11 Probability Increments
(n = 1,3,5,10)

154 settings 1. Random of MinPrice Empirical distribution All 11 increments
2. Random of Earliest as in Table 3
3. Earliest of MinPrice
4. MinPrice of Earliest

Experiment 3 5 Switching Rules 3 Auction Start Rate 6 Probability Increments

90 settings MinPrice of Earliest λa = 6,12,18 C = 0,0.2,0.4,0.6,0.8,1
with n = 1,5,10,15,20 as in Table 3

3. Randomly choose from all available auctions (equivalent to the 3rd/4th random rules but all auctions
are considered)

In sum, there are 99 settings in Experiment 1 as shown in Table 4. For each setting, 200 days of auctions
are simulated and approximately 1200 auctions occur during this period, because the mean of the auction
start rate per day is 6. We exclude extreme values and keep track of the trend for both mean and standard
deviation of closing price. Experiment 1 provides insights on both the effect of the switching distribution
and the influence of promoting switching behavior. From the result, the means and standard deviations
of closing price from the three different distribution are essentially within confidence intervals of each
other and share the same trend. Therefore without losing generality, We use the empirical distribution with
non-linear increment in all future experiments. In addition, we observe that increasing switching probability
will increase average closing price with all the three switching rules, while the random switching rule results
in lower price compared to the other two rules. Furthermore, by increasing the switching probability with
minimum price and earliest ending rule, the price dispersion is reduced, while with the random switching
rule there is barely any effect on price dispersion. In the next section, we investigate the effect of each
switching rule and begin to answer the question, what is the optimal recommendation strategy for an online
auction website?

4.2 Effects of Switching Rule

In this section, we investigate which switching rule has the most significant effect on the closing price, i.e.,
what kind of auctions should a website recommend to bidders to increase closing prices. To answer this
question, we test the last 4 switching rules (Random of MinPrice, Random of Earliest, Earliest of MinPrice
and MinPrice of Earliest), with recommendation limit n = 1,3,5,10. When n = 1, Random of MinPrice
and Earliest of MinPrice degenerates to the first rule MinPrice; and Random of Earliest and MinPrice of
Earliest degenerates to the second rule Earliest. Therefore, we only need to test the first 2 rules and the
last 4 rules with n = 3,5,10. As listed in Table 4, Experiment 2 contains 14 different switching rules with
11 increments of the empirical distribution resulting in 154 combinations. The simulation is run for the
equivalent of 200 days.

Figures 2 and 3 demonstrate the experimental results by presenting the average and standard deviation
of the closing price for each setting. Each graph represents one family of switching rules (Random of
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Figure 2: Average closing price in Experiment 2.
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Figure 3: Standard deviation of closing price in Experiment 2.
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Figure 4: The most distinct two settings in Experiment 2.

MinPrice, Random of Earliest, Earliest of MinPrice and MinPrice of Earliest), and each color represents
a value of the recommendation limit n. It is worth noting that the black lines in the first and third graphs
are the same and the second and fourth are the same, because the switching strategies in the first and the
third graph degenerate to the same rule when n = 1 and so do the second and the fourth ones. With an
increase in the probability of switching, the increasing trend of average closing price is clear in Figure
2. By careful comparison, the lowest curve of all 14 curves is the blue line (n = 10) in the second graph
(Random of Earliest rule) and the highest line is the green line (n = 5) in the fourth graph (MinPrice in
Earliest rule). The confidence intervals of the lowest and highest curves of average closing price have
no overlap as shown in the left graph of Figure 4. This indicates that there is a significant difference
among auction recommendation strategies. If the website intends to increase auction closing price, then
the highest curves of average closing price should be preferred, i.e., the green line in the left graph of
Figure 4 is the best for the auction platform, while the blue line is the least favorable one. In addition, the
decreasing of price dispersion is clear in most of the experiment settings as seen in Figure 3. One thing
interesting is that the lowest standard deviation curve is the blue line (n = 10) in the second graph (Random
of Earliest rule) and the highest standard deviation curve is the green line (n = 5) in the fourth graph
(MinPrice in Earliest rule), which are the same two most distinct settings identified for average closing
price. For comparison purposes, the two standard deviation curves are plot in the right graph of Figure 4.
As discussed earlier, having lower price dispersion will decrease the risk for both bidders and sellers, thus
will leads to better customer satisfaction. Therefore, the most beneficial auction recommendation system
for the auction platform would increase the average closing price while at the same time reducing price
dispersion. According to this simulation the best rule to do so is the MinPrice in 5 Earliest Rule among
the 14 settings.

Experiment 3 focuses in more depth on the optimal switching rule MinPrice of Earliest identified
in Experiment 2. This switching rule chooses the auction with minimum price among n earliest closing
auctions. When n = 1, this switching rule degenerates to the Earliest rule, i.e., choose the earliest closing
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Figure 5: Average closing price in Experiment 3.
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Figure 6: Standard deviation of closing price in Experiment 3.
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auction among all available auctions. When n increases to (or is greater than) the number of available
auctions, this switching rule becomes the MinPrice rule, i.e., choose the auction with minimum price among
all auctions. When n is between 1 and the number of available auctions, this rule can be consider as a
conditional MinPrice rule, i.e., conditional on the fact that the minimum price auction is one of the n earliest
closing auction, the one with minimum price will be chosen. This scenario is close to the actual online
auction situation. When a bidder sees a list of auctions selling the exact same items, the first thing that might
attract his/her attention might be the price, especially when the closing times are similar. From Experiment
2, the optimal n of the MinPrice of Earliest rule is 5. In this Experiment 3, we test if the optimal n stays
the same, when the number of available auctions varies. In the simulation experiment, the auction start
rate is directly related to the number of available auctions. In this experiment, we test 5 recommendation
limits n = 1,5,10,15,20 and 3 different auction start rates λa = 6,12,18, which are the start rate calculated
from data and its two to three times that value. For each combination of auction recommendation limit
and auction start rate, 6 incremental increases in the distribution of switching probability are tested with
C = 0,0.2,0.4,0.6,0.8,1. To get approximately 1200 closed auctions per setting, the simulated durations
are set to 200, 100 and 70 days according to the auction start rates λa = 6,12,18 so that the the average
number of auctions remains constant. As listed in Table 4, there are 90 settings tested in Experiment 3.

The simulation results of Experiment 3 are shown in Figure 5 and 6. From both figures, the performance
of n = 5 (red lines) is robust. In the average closing price graphs, the n = 5 line remains one of highest
curves across all three graphs. And in the price dispersion curves the ncc = 5 lines are clearly the lowest
line in each graph. It is also interesting to see that when n increases, the price dispersion first decreases
and then increases again. According to the discussion earlier, it is beneficial for the online auction website,
when the average closing increases and the price dispersion decreases. Therefore, from Experiment 3, we
have the same conclusion as in the Experiment 2 that the MinPrice in 5 Earliest Rule is the best strategy
for online auction website.

5 CONCLUSION

In this paper, we have described and examined a multi-auction agent-based model to examine switching
behavior in auction platforms. Using this model, we show that it is possible to reduce the price disparity
among auctions by encouraging users to switch between auctions of a similar type product on an auction
platform. We also have made a concrete suggestion about what this recommendation should be, namely
that the platform should recommend the 5 auctions with the minimum price that will be ending the soonest.
We also show that this rule is robust to a variety of starting rates of auction prices.

It is interesting that the recommendation rule that is discovered to be optimal is to recommend auctions
that are ending soon and have a minimal price, but this results in the highest average final closing price.
This is because by recommending auctions that are ending soon, but that have a low price the auction
platform encourages the bidders to stay in the platform. This in turn increases competition and drives
up the overall prices. As a result, the recommendation system the is discussed would have three major
benefits: (1) it would reduce the price disparity among auctions, (2) it would encourage bidders to stay on
the auction platform, and (3) it would increase the final price of the auction. Competition between auctions
is inevitable, and a savvy auction platform can use that fact to engage their users, which has a benefit for
all parties involved.
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