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ABSTRACT 

This paper studies the size distribution of hospitals and its underlying generative mechanisms. Based on 
the U.S. hospital data, we find that the size distribution is sub-lognormal (a leptokurtic distribution more 
skewed than normal but less skewed than lognormal). This distribution is different from those of firms 
and cities. We develop an agent-based simulation model to simulate the preference behavior of patients 
and the service processes of hospitals. The model can produce a sub-lognormal size distribution similar to 
the U.S. hospital size distribution. Sensitivity analysis shows that the patients’ preference behavior and 
search distance are two key factors for the emergence of the sub-lognormal size distribution. 

1 INTRODUCTION 

Many human systems are found to have a power law or lognormal distribution on their sizes or degrees. 
Among many examples are actor collaboration network, power grid, Internet (Barabasi and Albert 1999, 
Newman 2001), city sizes, firms, and frequency of words in any human language (Axtell 2001, Eeckhout 
2004, Newman 2005).  

The size distribution of firms and cities has been extensively studied in the last several decades, for it 
is the basis for modeling the growth and evolution dynamics of those systems. Back to 1931, Gibrat es-
tablished a well-known proposition called the proportionate growth law or Gibrat’s Law, which states that 
the growth rate of size is independent of the size itself (Sutton 1997). According to this law, the propor-
tionate growth process gives rise to the lognormal distribution of size. A number of studies have shown 
that this law holds true for cities and firms (Simon and Bonini 1958, Hart and Oulton 1996, Eeckhout 
2004). Many empirical studies have also reported that cities and firms size distributions satisfy the power 
law (Axtell 2001, Rozenfeld et al. 2011). Regardless of whether the size distribution is lognormal or pow-
er law, there is sufficient evidence to convince one that the size distributions of both firms and cities are 
highly skewed to the right.  

From a service point of view, both firms and cities provide certain types of services to people (e.g., a 
product or a living environment). Hospitals are also one type of service systems providing healthcare ser-
vices to people.  

Would hospitals exhibit a size distribution similar to those of firms and cities? If not, what are the fac-
tors that make the hospital service system special? These questions will be studied in this paper. We first 
conduct an empirical study to show that the size distribution of hospitals is sub-lognormal as defined in 
the following. 
 Definition 1 A sub-lognormal distribution is a leptokurtic continuous probability distribution that is 
more skewed than a normal distribution but less skewed than a lognormal distribution.  
Roughly speaking, a sub-lognormal distribution lies in-between the normal and lognormal distribution. 
Both the lognormal and sub-lognormal distributions are more skewed than the normal distribution. The
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 differences between the lognormal and sub-lognormal distributions can be seen from the logarithm of the 
distributions. The logarithm of the lognormal distribution is normal, which is symmetric. The logarithm 
of a sub-lognormal distribution is left skewed. Therefore, the sub-lognormal distribution is less skewed 
than the lognormal distribution. In addition, to be qualified as sub-lognormal, the distribution must also 
be leptokurtic.  

Motivated by the empirical results, we then construct an agent-based simulation model to explain the 
empirical results, and more importantly to reproduce the underlying mechanisms that give rise to the sub-
lognormal size distribution. The agent-based method has been used for studying size distribution of firms 
and cities (Axtell 1999, Gulden and Hammond 2012). What makes our model different from existing ones 
is the  integration of ABS and queuing models to mimic the service processes of hospitals. With this 
model, we will perform sensitivity analysis to examine the effects of various potential factors that could 
influence the size distribution of hospitals.  

Chan (2008) introduces the incorporation of queuing models into agent-based models. Classic queu-
ing models usually treat customers as non-autonomous objects who simply come, join, and leave the sys-
tem. In other words, customers lack human-like behaviors. Agent-based simulation provides a solution to 
these limitations. In an agent-based model, agents are objects capable of reproducing various behaviors 
(Chan et al. 2010). The agent-based method allows us to investigate and test the underlying mechanisms 
giving rise to the size distribution.  

To our best knowledge, unlike firms and cities the literature on the size distribution of hospitals is un-
seen. Most of the studies on hospital sizes focus on the relationship between service quality and size, and 
are mostly reported on the Internet rather than on journal publications (Blizzard 2004). 

The rest of the paper is organized as follows. Section 2 analyzes the data for the sizes of U.S. hospi-
tals. Section 3 introduces the agent-based model for investigating the underlying mechanisms of hospital 
size distribution. Section 4 presents the simulation results and sensitivity analyses. Section 5 offers a con-
clusion.  

2 EMPIRICAL STUDY 

In this section, we analyze the size distribution of U.S. hospitals. The dataset is obtained from (American 
Hospital Directory 2012). The size of a hospital is measured by patient days. Patient days are used for ac-
counting purposes by healthcare facilities and healthcare planners. One patient day is “a unit of time dur-
ing which the services of the institution or facility are used by a patient” (Medical Dictionary 2013). For 
example, 100 patients in a hospital for one day is equivalent to 100 patient days. Patient days can be 
viewed as a scale measure of a hospital in both facility size (such as the number of beds) and facility utili-
zation. This also makes patient days a better (more informative) size measure than the number of beds. 
There are also other measures for size; for example, in the business and economic literature, the size of a 
firm can be measured by asset, sales, revenue, or number of employees. For hospitals, these statistics 
however are not always available to the public and can depend on the economic environment of the city, 
state, or country. The patient days on the other hand is more stable and less economic dependent.  
After removing zero data points, the dataset contains data for 3454 hospitals across the US. Figure 1(a), 
(b), and (c) show the histogram of U.S. hospital sizes, the histogram of logarithmic sizes and the QQ-plot 
of the logarithmic sizes, respectively. Figure 1(a) shows that the size distribution is highly right skewed, 
which is an important characteristic of the lognormal distribution. However, a further investigation of the 
logarithmic sizes reveals unfavorable support for the lognormal distribution as the histogram of the loga-
rithmic sizes deviates from a symmetric bell-shaped curve and skews to the left (see Figure 1(b)). The 
QQ-plot of logarithmic sizes Figure 1(c)) further shows that the sample quantiles of upper tail and lower 
tail are less than those of the theoretical quantiles. All these results indicate that the distribution of the 
logarithmic sizes is thin tailed and leptokurtic.  

To formally test the characteristics of the U.S. hospital size distribution, we conduct the Shapiro-wilk 
normality test on the logarithmic size. The null hypothesis that the logarithmic size follows a normal dis-
tribution is rejected at the 0.001 significance level. The skewness and kurtosis of the logarithmic size are, 
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respectively, -0.86 and 4.43, which indicates that the distribution of the logarithmic size is left skewed 
and leptokurtic. Therefore, the size distribution is a sub-lognormal distribution. 

We next examine the data at the state level. Most of the states with more than 50 hospitals are found 
to have a similar characteristic as the U.S. data. Due to space limitations, we shall only present the data 
for California (CA), which is one of the states with a large number of hospitals. The histograms of sizes, 
logarithmic sizes, and Q-Q plots of CA are given in Figure 2(a)-(c). These figures share similar character-
istics with the U.S. hospital data and the size distribution is also sub-lognormal. 

 

 

Figure 1: Hospitals Size Distribution in U.S.: (a) Histogram of Sizes, (b) Histogram of Logarithmic Sizes, 
(c) Q-Q Plot of Logarithmic Sizes. 

 

Figure 2: Hospitals Size Distribution in CA:  (a) Histogram of Sizes, (b) Histogram of Logarithmic Sizes, 
(c) Q-Q Plot of Logarithmic Sizes (The Shapiro-Wilk normality test on the logarithmic sizes rejects the 
null hypothesis with p-value<0.001. The skewness and kurtosis of logarithmic sizes are -0.84 and 3.87 re-
spectively.) 

In short, the U.S. hospitals data is sub-lognormal that exhibits the following characteristics; (1) the 
size distribution is right skewed; (2) the logarithmic size distribution is left skewed; and (3) the logarith-
mic size distribution is leptokurtic.  

These results imply that the hospital size distribution is different from those of firms. In the business 
and economic literatures, many empirical studies show that the lognormal distribution (or a more skewed 
distribution like power law) is a good approximation for the size distribution of firms. For example, 
Cabral and Mata (2003), Angelini and Generale (2008) suggest that the logarithms of firm size of a given 
cohort is skewed to the right at the beginning, and gradually evolves towards a more symmetric distribu-
tion. However, for firms aged over 30, the distribution of log size is still far from symmetric. The total logarithms 
of firm size, in turn, is fairly stable over time, and somewhat skewed to the right.  
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3 GENERATIVE MODEL FOR HOSPITAL SIZE DISTRIBUTION 

Why does the hospital service system differ from the service systems of firms and cities? In this section, 
we develop an agent-based model combined with queuing models and try to answer this question. The ob-
jective of the agent-based model is to simulate the underlying mechanisms and factors that give rise to the 
sub-lognormal size distribution observed in Section 2.  

We assume that the hospital service system is a system with a number of hospitals providing 
healthcare services to a population of patients. Patients are able to choose their preferred hospitals so long 
as a certain number of constraints are not violated. From the supply and demand points of view, the pos-
sibility of losing patients (i.e., customers) due to long wait times (e.g., reaching the capacity) drives the 
hospitals to grow in size to respond to demand increase. On the other hand, hospitals may reduce their 
size if the demand is low to cut down cost and increase revenue. If the resource of a hospital cannot meet 
the current demand, the hospital will expand its size, and vice versa.  

A central question is: what will the hospitals size distribution be as a consequence of the interactions 
between patients and hospitals (i.e., patients’ choosing behaviors and hospitals’ response to demand 
changes)?  

To investigate the underlying mechanisms for the stylized facts of hospitals size distribution, we de-
velop an agent-based model incorporating both the patients’ choosing behavior and hospitals’ response to 
demand changes. There are two kinds of agents: patients and hospitals. All agents are situated in a two-
dimensional n x n lattice. Each cell has a hospital and each hospital consists of multiple service stations. 
For simplicity, we assume that all the service stations are homogeneous with identical exponential service 
time distribution. Let μ be the mean service time of a single service station and QSi be the number of ser-
vice stations in the ith hospital. The patients are randomly distributed over the lattice with each cell con-
taining a number of patients (see details in Section 4). We describe the behaviors of patients and hospitals 
in the next two subsections respectively. 

3.1 The Patients 

Patients visit hospitals according to a Poisson process, i.e., the intervals between two consecutive visits 
follow the exponential distribution.  If it is the time to visit a hospital, the patients must decide which 
hospital they will visit. Patients can only visit the hospitals within a distance threshold, Search-Radius. 

When making their decisions, patients mainly consider two factors: the waiting time and reputation of 
the hospitals. Patients prefer a high-reputation and short-waiting-time hospital over a low-reputation and 
long-waiting-time one.  

Following the size definition in Section 2, we also use the patient days to measure the hospital size. In 
addition, patient days is also the indicator of reputation because a large patient days value tells the choice 
of the majority. We can assume that reputation is a monotonic increasing function of the majority choice. 
This assumption can be justified as studies have shown that the choice of popular products or service 
tends to minimize potential risk. For example, DeSarbo and colleagues (2002) argue that consumers pre-
fer popular products because popularity represents a type of social cue, and following the social cue tends 
to reduce perceived risk. In a similar vein, the literature on herding suggests that it is sometimes optimal 
for consumers to ignore or not seek private information and to follow the crowd (e.g., Banerjee 1992; 
Bikhchandani, Hirshleifer, and Welch 1992). 

We note that a high patient days value does not necessarily mean long waiting time if the hospital is a 
huge facility with sufficient beds. However, when the resources (e.g., beds) become insufficient, long 
waiting time would result.   

With the above connection among patient days, reputation, and hospital size, we can say that the larg-
er the size, the greater the reputation of the hospital will be. This size-reputation indicator propels the pa-
tients to choose larger size hospitals over small ones if everything else is equal.  
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The decision rules of how patients choose hospitals, Patients-Choose-Hospital-Process are defined as 
follows. 

 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––   
Patients-Choose-Hospital-Process  
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 If there is at least one hospital available within the Search-Radius at time t, 
  pick one available hospital with the probability Pai as defined in Eq.(1) 
 Else 
  pick one hospital within the Search-Radius based the probability Puai as defined in Eq.(2) 
 Generate the next visit time   
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 
If there is at least one hospital available within the Search-Radius at time t, a patient will pick one 

from them with a probability proportional to the size ranks of the hospitals. Other than the ordinal ranking 
information, no other information is available to the patients. To pick a hospital, patients first sort all the 
available hospitals within the Search-Radius in ascending order of size and assign an ordinal number RSi 
of size rank to each of them. The smallest available hospital will have a rank of one and the largest avail-
able hospital a rank of K, where K is the number of all available hospitals within the Search-Radius at 
time t. Specifically, the ith available hospital for a patient will be selected by the patient with probability 
Pai: 

  ܲܽ ൌ
ோௌ

∑ ோௌ
಼
సభ

 (1) 

 
If there is no hospital available within the Search-Radius at time t, patients will make their choices by 

balancing the two decision factors, waiting time and hospital size. First, they still need to obtain the size 
rank ordinal number RSi of all the hospitals within Search-Radius. Then, they sort all hospitals within 
Search-Radius in descending order based on their earliest available times. They will assign an ordinal 
number RWi of waiting time rank to each of the hospitals. The hospital with the longest waiting time will 
have a rank one and the hospital with the shortest waiting time will get the largest waiting time rank num-
ber L, where L is the number of hospitals within the Search-Radius of a patient. Specifically, the ith hospi-
tal within the Search-Radius of a patient will be selected by the patient with probability Puai: 
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where a is a number between 0 and 1 which is the weight of the waiting time (and size or reputation) used 
in the patients’ decision making.  

After choosing the preferred hospital, a patient needs to generate the time for the hospital next visit. 
Since the intervals between two consecutive hospital visits follow an exponential distribution, that time 
can be computed by adding an exponential random number to the current time t. 

3.2 The Hospitals 

Each hospital consists of several “standard” service stations that provide patients with medical services. 
Once a patient selects a hospital to visit, this selected hospital will have to either put him/her into the 
waiting queue or provide service immediately. This procedure is modeled by the Service-Process in our 
model and is described in the following. 

The hospitals are somewhat adaptive. They will respond to the demand changes by adjusting their re-
sources (i.e., number of service stations). They increase (or decrease) the number of service stations if the 
average waiting time is longer than a upper threshold (or shorter than a lower threshold). By adding more 
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service stations, the average waiting time will drop, but the utilization will decrease as well. The hospitals 
try to keep an optimal balance between service quality (measured by average waiting time) and costs 
(measured by utilization rate). In our model, the hospitals adjust their sizes every Tadj time steps if needed. 
The adjustment rules and the adjustment process called Adjust-Facilities-Process are given below. It is 
followed by the definition of the variables and the explanation of this process. 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Service-Process 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Generate the exponential service time with mean μ. 
If there is at least one idle service station in this hospital, 

Begin the service using one of the idle service stations. 
Else 
 Choose the earliest available service station and add this patient to the waiting queue. 
Update the available time of the service station. 
Update the earliest available time of the hospital. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Adjust-Facilities-Process 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
For each hospital 
 If avg-wti > MAX_WT and exp-sum-svti > (QSi + 1) * Tadj  

 QSi  grow to  int (exp-sum-svti / Tadj) 
 If ut_ri < L_UT or avg-wti < MIN_WT   
  QSi  decreased by int (sum-spti / Tadj)  
  If QSi <1, set QSi =1 
 Reset avg-wti, sum-spti, exp-sum-svti, and ut_ri to zero. 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

In the pseudo code above, MAX_WT,  MIN_WT and L_UT are three constants specified at the begin-
ning of the simulation. MAX_WT and MIN_WT refer to the upper bound and the lower bound of average 
waiting time, respectively. L_UT is the lower bound of the system utilization rate. QSi, avg-wti, sum-spti 
and ut_ri are the number of service stations, the average waiting time, total spare time, and the utilization 
rate of the ith hospital, respectively. exp-sum-svti is the total service time (from the last adjustment till now 
plus the expected service time for those in queue). As at the end of this process, avg-wti, sum-spti, exp-
sum-svti, and ut_ri are reset to zero to prepare for the calculation in the next time step. 

Due to the randomness in the arrival and service processes, the condition for adding service stations is 
augmented by the criterion “exp-sum-svti > (QSi + 1) * Tadj. This is to add a safety margin on the number 
of service stations to handle variations in the arrival and service processes. 

To reduce the number of service stations, both the utilization rate and average time are considered. 
The amount to decrease is equal to the total spare time divided by Tadj. As the size must be greater than 
one, it will be reset to one if the amount of decrease will cause it to go lower than one.  

The main procedure of the simulation model is given in the following.  

4 SIMULATION RESULTS 

4.1 Benchmark Case 

We build the agent-based model using NetLogo (Wilensky 1999). All the parameters and their particular 
values are listed in Table 1. We simulate a system with 11×11 cells. Each cell is initially occupied by one 
hospital. The initial patient population at each cell is generated according to the lognormal distribution 
because it is well-known that the size distribution of cities (measured by population) is roughly a lognor-
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mal distribution (Eeckhout 2004). The initial size of hospitals are proportional to the population of local 
patients. Other parameter values are selected for simplicity and are listed in Table 1. 

 
 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Main-Procedure 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

At time t, each patient and hospital runs independently. 
For each patient 
 If it is time to visit a hospital, run the Patients-Choose-Hospital process. 
For each hospital 
 If there are new arrivals, run  the Service-Process 
 If time t is a multiple of Tadj, run the Adjust-Facilities-process. 

  Calculate waiting time, utilization rate and other queuing system indicators. 
Advance the simulation clock to next time step. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Table 1:  Parameters In the Agent-based Model. 

Parameters Value 

Environment 11x11 lattice (121 cells) 

Number of hospitals 121 

Number of patients in Celli (lognormal distribution) Int (100×logN(0,1)) 

Initial size of hospitals Int (Num-Patientij /5) 

μ, Mean service time (exponential distribution) 30 

Mean visit interval of patients (exponential distribution) 100 

Step size (time increment) 1 

MAX_WT , upper bound of average waiting time 3 

MIN_WT , lower bound of average waiting time  10 

L_UT, the lower bound of system utilization rate 0.9 

Tadj , the interval to adjust the hospital sizes 500 

a, weight parameter in equation (2) 0.5 

Search-Radius 2 

Patients’ size preference larger 

 
The simulation results are shown in Figure 3(a)-(c). It can been seen that the agent-based model can 

adequately reproduce the characteristics of the U.S. hospital data; the size distribution is highly skewed 
with its logarithmic skewed to the left and leptokurtic, i.e., a sub-lognormal distribution.  

As we will see later, among all the parameters in the model, the patients’ size preference and search 
radius are the key factors that allow the model to reproduce the characteristics of the U.S. hospitals size 
distribution. This simulation along with the parameters in Table 1 will be the benchmark case for compar-
ison with other settings in the sensitivity analyses in Section 0. 
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4.2 Sensitivity Analysis  

In this section, we conduct sensitivity analysis on the patients’ size preference, search radius, initial beds 
distribution and environment size.  

In Section 4.1, we assume that the patients prefer larger size hospitals. We now examine how this size 
preference affects the results. We study both neutral and opposite situations: What will happen if the pa-
tients have no preference to size? And what will happen if the patients prefer smaller hospitals? Figure 4 
and Figure 5 give the results for the neutral size preference and smaller size preference, respectively. Sta-
tistical tests fail to reject the null hypotheses of lognormal distribution. Therefore, it is clear that size pref-
erences play an important role in shaping the sub-lognormal size distribution.  
 

 

Figure 3: Simulation Results of Benchmark Case:  (a) Histogram of Sizes, (b) Histogram of Logarithmic 
Sizes, (c) Q-Q Plot of Logarithmic Sizes (The Shapiro-Wilk normality test on the logarithmic sizes rejects 
the null hypothesis with p-value<0.001. The skewness and kurtosis of logarithmic sizes are -0.98 and 4.70 
respectively.). 

 

Figure 4: Neutral Size Preference:  (a) Histogram of Sizes, (b) Histogram of Logarithmic Sizes, (c) Q-Q 
Plot of Logarithmic Sizes (The Shapiro-Wilk normality test on the logarithmic sizes fails to reject the null 
hypothesis with p-value=0.83. The skewness and kurtosis of logarithmic sizes are -0.09 and 3.10 respec-
tively.). 

Next, we investigate whether the Search-Radius is a key factor for the sub-lognormal distribution. We 
test two scenarios: no search (i.e., a search radius 0) and global search (i.e., a search radius 5 as the envi-
ronment is a 11×11 lattice). All other parameters are the same as in the benchmark case. The results for 
the no search scenario are presented in Figure 6. The size distribution is approximately lognormal as the 
logarithmic size is roughly normal. This lognormality result can be explained by the fact that a zero 
search radius completely eliminates the competition among hospitals (as patients can only visit the local 
hospital) and therefore, hospitals only need to grow their size to accommodate their local demands, which 
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are initialized to lognormal. In the global search case, all hospitals compete for patients. The outcome is 
the emergence of a normal distribution for size (see Figure 7).   

We now test the sensitivity of the initial size distribution of hospitals. We repeat the experiment by 
using three different initial size distributions: uniform, normal, and exponential. It turns out that regard-
less of the initial size distributions, a similar sub-lognormal distribution is obtained after a long period of 
time.  

 

Figure 5: Smaller Size Preference:  (a) Histogram of Sizes, (b) Histogram of Logarithmic Sizes, (c) Q-Q 
Plot of Logarithmic Sizes (The Shapiro-Wilk normality test on the logarithmic sizes fails to reject the null 
hypothesis with p-value=0.49. The skewness and kurtosis of logarithmic sizes are -0.07 and 2.96 respec-
tively.). 

 

Figure 6: No Search Scenario (Search-Radius = 0):  (a) Histogram of Sizes, (b) Histogram of Logarithmic 
Sizes, (c) Q-Q Plot of Logarithmic Sizes (The Shapiro-Wilk normality test on the logarithmic sizes fails 
to reject the null hypothesis with p-value=0.67. The skewness and kurtosis of logarithmic sizes are 0.05 
and 2.70 respectively.). 
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Figure 7: Global Search Scenario (Search-Radius = 5):  (a) Histogram of Sizes, (b) Histogram of Loga-
rithmic Sizes, (c) Q-Q Plot of Logarithmic Sizes (The Shapiro-Wilk normality test on the logarithmic siz-
es fails to reject the null hypothesis with p-value=0.14. The skewness and kurtosis of logarithmic sizes are 
-0.23 and 2.59 respectively.). 

Another sensitivity question of interest is related to the size of the environment. It is well-known that 
the agent population of an agent-based model could significantly affect simulation results. This phenome-
non is called the “finite size effects” (Alfi et al. 2009). To investigate whether this finite size effect exists 
in our model, we repeat the simulation at larger lattices: 15×15 and 21×21. A larger lattice means more 
agents and hospitals. Once again, the results from these two experiments are similar to what we found in 
the benchmark case. Therefore, the sub-lognormal size distribution is insensitive to the agent population.  

All the sensitivity analysis results are summarized in Table 2.  From these sensitivity analysis results, 
we can conclude that the model can reproduce the characteristics of the U.S. hospitals size distribution 
and that the two factors, size preference and search radius, are determining factors.  

Table 2:  Sensitivity Analysis Results. A check mark “√” indicates a size distribution matching the U.S. 
hospitals size distribution. 

Parameters Value Results 

Patients’ Size Preference 
Larger √ 
None Lognormal 

Smaller Lognormal 

Search Radius 
2,  √ 
0 Lognormal 
5 Normal 

Initial distribution of hospital 
sizes 

Lognormal, Uniform, Normal 
and Exponential 

√ 

Size of lattice 11×11, 15×15  and 21×21 √ 
 

5 CONCLUSION 

Despite the public’s great amount of interest in the size distribution of firms and cities, the size distribu-
tion of hospital, however, has not been rigorously studied. This paper analyzes the empirical data and 
found that the size distribution of hospital is sub-lognormal, which is different from those of firms and 
cities. An agent-based model equipped with queuing models mimicking the service processes of hospitals 
is developed and adequately reproduced the sub-lognormal size distribution. It is also found that the size 
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preference and search distance are the two key factors for the emergence of the sub-lognormal distribu-
tion. 

The hospital service system is different from other profit-oriented service systems, such as firms. 
Public service systems, such as hospitals, could be set up to provide high quality and timely services. The 
hospital service system is a queuing system taking feedback from customers. Therefore, customers’ pref-
erences are an important factor in determining the size distribution. Location is also a key factor influenc-
ing customers’ decisions. 
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