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ABSTRACT

Developing a useful agent-based model and simulation typically involves acquiring knowledge of the
model’s domain, developing the model itself, and then translating the model into software. This process
can be complex and is an iterative one where changes in domain knowledge and model requirements or
specifications can cause changes in the software that in turn may require additional modeling and domain
knowledge. Test-driven development is a software development technique that can help ameliorate this
complexity by evolving a loosely coupled flexible design, driven by the creation of many small, automated
unit tests. When the focus shifts to writing small tests that exercise the simulations behavior, the larger
problem of translating a conceptual model into working code is decomposed into a series of much smaller,
more manageable and highly focused translations. This paper explores the application of this technique to
agent-based simulation development with examples from Repast Simphony, ReLogo and Repast HPC.

1 INTRODUCTION

Developing a useful and useable agent-based simulation typically involves acquiring sufficient knowledge
of the model’s domain, developing the model itself, often while grounding it in more abstract theories of
the domain, and then translating the model into software. The work itself can be complex and is rarely
a waterfall type process where each step is completed before the next begins. Rather, the process in an
iterative one where the development of the model may require additional domain knowledge that in turn
requires changes in the software. Furthermore, model specifications and requirements may change also
requiring changes in the software. Test-driven development (TDD) is a general software development
technique that can help ameliorate this complexity. In TDD the development of the application code is
driven by the creation of many small automated unit tests each of which exercise some small part of the
larger application’s behavior. An aspect of the extreme-programming movement that has gained popularity
since the late 1990s, the technique itself gained currency with the publication of Kent Becks seminal
Test-Driven Development by Example in 2003 (Beck 2003). It remains an important part of agile software
development methodologies (Martin 2002) such as SCRUM (Rubin 2012)

This paper explores the application of this technique to agent-based simulation development. We
begin with a discussion of TDD itself, followed by an exploration of TDD in the context of Agent-based
Simulation development.

2 TEST-DRIVEN DEVELOPMENT

The fundamental characteristic of TDD is that the development of the application code is driven by the
creation of many small automated unit tests (Beck and Gamma 1998). Each of these small tests exercises
some aspect of the application code. Focusing on many small tests helps to evolve a loosely-coupled flexible
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design and provides built-in verification at a low-level of granularity. These tests are written iteratively in
conjunction with the code they are intended to test. TDD proceeds in the following manner.

1. Identify what to test (Think Small)
2. Write a test
3. Write the code that makes the test pass
4. Repeat

The canonical process prescribes that writing the test (step 2) occurs before the actual code it is intended
to test (step 3). This places the focus on the test and is intended to ensure that the “code that makes the
test pass”, that is, the application code, is granular enough to be testable. The emphasis is solely on the
behavior to test. In addition, Beck (Beck 2003) writes: “when we write a test, we imagine the perfect
interface for our operation. We are telling ourselves a story about how the operation will look from the
outside.” That story constitutes a kind of mini-specification of how to implement the required code.

In our own work, we have sometimes switched steps 2 and 3. However, in that case it is exceedingly
important to write the model code with testing in mind and thus the admonition to “Think Small” applies
equally well to the model code. The loop from step 3 back to step 1 is motivated by the obvious necessity
that a single unit test and the software code that makes it pass do not constitute the entire application.
Additional tests and code have to be written. More importantly though, “Repeat” also refers to running
existing tests as additional functionality is added to the application and cleaning these tests up or possibly
eliminating them entirely. Beck (Beck 2003) calls this latter implication of “Repeat”: “making it right.”
In this way, the tests and the code evolve together and the programmer has confidence that the code is
behaving as expected. This cycle of steps 1 through 4 and back again is intended to be executed quickly.
Testing frameworks such as JUnit (Junit 2013) and the Boost Test Library (Rozental 2013) allow the tests
to be easily executed individually or in batches, providing the developer with very quick feedback.

The starting point of a TDD cycle is the identification of some small concrete result and the behavior
necessary to produce that result. As an example, lets assume the development of a epidemiological
simulation that models the transmission of a disease among a given population. Persons in the population
can be in one of three disease states: uncolonized, colonized, and infected. The transition from one state
to another is determined by a variety of factors: the presence of colonized or infected persons, the type
of activity a person is performing in the presence of such persons and a set of numeric model parameters
governing the probability of transmission. Ultimately, in order to explore the spread of the disease, the
model simulates a population of persons performing hourly activities during which they come into contact
with other persons.

Given this simple description (and of course the real specifications would certainly be more detailed),
we could start with any number of expected concrete results as test candidates. However, TDD recommends
that we “think small” and this applies both to the test and the code that will make the test pass. The code
that will make the test pass should not include extraneous details and untested dependencies. The transition
algorithm is then a natural place to begin. Under certain conditions, we expect a transition to occur and
under others we do not. A possible test will look like:

@Test
public void testTransition() {

TransitionAlgorithm ta = new TransitionAlgorithm();
float activityRisk = 1f, colonizedPersons = 1f, infectedPersons = 0f;
assertEquals(DiseaseState.COLONIZED,

ta.runUncolonized(activityRisk, colonizedPersons, infectedPersons);
}

Leaving aside the details of the testing framework, this test tests that the transition algorithm when run
for uncolonized persons will return a result of COLONIZED when the risk associated with the activity is
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equal to 1 and a colonized person is present. Additional tests might test that the result is UNCOLONIZED
when the risk is 0 or no colonized persons are present. Above, we mentioned that a test like this should
be written first as it would focus the development on implementing the algorithm for an uncolonized to
colonized transition and and guide what the interface for this might look like. Regardless of the order in
which the code is written, the important point is that only the part of the TransitionAlgorithm that we are
testing should be written. Anything else is extraneous at this point.

The process of building the simulation application then is one of working “inside-out.” We start with
small testable pieces of behavior and compose or combine these into larger pieces. For example, the
TransitionAlgorithm may become part of a Person object. These larger pieces will have their own behaviors
that need to be tested and these behavior will typically combine some of the behavior of their components.
The components have already been tested and thus the tests of this composite behavior can focus on that
without regard for the validity of the component pieces.

The benefits of working in this way can be hard to see if the the simulation is relatively simple, the
domain is well-known and the scope or specifications are unlikely to change much over the course of
the project. Even in this case though, TDD can still be useful in translating the conceptual model into
software. Inexperienced programmers are often confused about where to start when confronted with any
model. TDD can help by focusing the development on small behaviors and providing a process for coding
the simulation.

The benefits are clearer when the simulation is more complex and the agent behaviors are also of a
sufficient complexity to warrant this kind of “inside-out” style. In this case, the process of translating a
more complex conceptual model into working code code is decomposed into a series of much smaller, more
manageable, highly focused and above all testable translations. Furthermore TDD forces the developer to
code in small meaningful units and these are much easier to evolve in the face of changing requirements:
the “think small” dictum encourages a loose coupling between software components. More complex
simulations are often developed in teams and the tests themselves provides a medium of communication
between developers. The test is a kind of mini-specification that explains how to accomplish some particular
task (e.g. transition a person from uncolonized to colonized).

Lastly, TDD plays an important in the verification and validation (V&V) of agent-based simulation.
V&V has been discussed at length elsewhere (North, Howe, Collier, and Vos 2007, North and Macal 2007),
but briefly verification is matching an implemented model to its conceptual specification. Validation is
matching an implemented model to the part of the real world it ostensibly represents. Working test-first
entails that each significant bit of functionality as described in a conceptual specification has a test (in
fact the test is prior to the implementation of the functionality itself). This provides a very high degree of
low-level verification that the code is doing what it is intended to do.

3 AGENT-BASED SIMULATION AND TDD

Agent-based modeling and simulation (ABMS) is a method of computing the potential system-level
consequences of the behaviors of sets of individuals (North and Macal 2007). ABMS allows modelers to
specify each agent’s individual behavioral rules; to describe the circumstances or topology in which the
individuals act; and then to execute the rules to determine possible system-level results. Agents themselves
are individually identifiable components that usually represent decision makers at some level. Coding
an ABMS consists of implementing these individual behavioral rules, the circumstances in which the
individuals act, and a mechanism for executing the rules. A variety of ABMS toolkits exist that simplify
this process, enabling the developer to focus more on the model-specific individual behavior and less on
topology and rule execution.
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3.1 Agent Behavior and TDD

We saw above in the transition algorithm example, how TDD works well as a method for developing
the implementation of agent-based behaviors. The ABMS emphasis on individual behavior fits well with
TDD. The process consists of writing tests for core or elemental functionality and then building up broader
agent behavior from that functionality. For example, if we begin with the transition algorithm, we can
then compose our agent behavior on top of it. Exploring further the specifications of our disease model,
we know persons perform activities associated with individual places (workplace type activities in the
workplace, home type activities in the home and so on). Certain activities and thus certain places carry
a different risks of transmission. The type of activities performed in the home entail a higher degree of
contact between persons than the workspace and thus the risk of transmission between persons is higher.
An initial unit test that incorporates places and persons in transmission might then look like:

@Test
public void testPersonTransmission() {

Workplace place = new Workplace();
Person person = new Person();
person.setStatus(UNCOLONIZED);
person.setPlace(place);
person.runTransmission();
assertEquals(COLONIZED, person.getStatus());

}

Recall that unit test is a kind of story, a mini-specification, in this case a story about the elements in
our simulation cooperating to implement the place specialized disease transmission. However, once we try
to write the code based on this mini-specification, that is, the code that makes the test pass, the flaws in
this specification become apparent. The intention is to build upon previously tested code. In our case, we
are building on the tested transition algorithm. It requires an infected and colonized person count. In the
implementation implied by the test above, there is no way to compute such counts. There is no collection
or grouping of persons such that a count of the infected and colonized persons in that group can be tallied.

A new unit test that implies a more compatible specification and replaces the previous one might then
look like:

@Test
public void testPlaceTransmission() {

Person infected = new Person();
infected.setStatus(INFECTED);
Workplace place = new Workplace();
place.addPerson(infected);

for (int i = 0; i < 10; ++i) {
place.addPerson(new Person());

}
place.runTransmission();

for (Person person : place.persons()) {
assertEquals(COLONIZED, person.getStatus());

}
}

Here we create a single infected person and add it to the place. Ten other non-infected persons are also
added. We then run the transmission on the place, and check that all the persons in that place have become
colonized.
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This example is perhaps a bit facile, but the intention is to demonstrate how tests can help define a
specification for larger agent behavior, a specification that builds on those already implemented in response
to previous tests. In this case, the first attempt was a poor specification, but that is precisely the advantage
of TDD. The test reveals without any extraneous distractions that it was a poor way for the place and
person components of the simulation to interact. It can be quickly scrapped and a better test created. The
implementation of the model evolves in an iterative manner building upon what has come before, guided
by the unit tests.

3.2 Agent Behavior, Toolkit Components and TDD

The examples we have seen so far have focused solely on the agent behavior and have not included any
components from ABMS toolkits such as those that represent topology or facilitate rule execution. Agent
behavior often requires such functionality and thus its crucial that these components can be included as part
of tests. The discussion below will feature the Repast suite of ABMS tools. Repast Simphony provides
a pure Java ABMS platform and dialect of Logo, called ReLogo as well as the ability to define agent
behavior with state charts and system dynamics diagrams. More on Repast Simphony can be found in
North et al. (2013). Repast HPC is a parallel distributed C++ implementation of Repast Simphony for
Java and to a lesser extent of ReLogo. It attempts to preserve the salient features of Repast Simphony for
Java and provide Logo-like components similar to ReLogo, while adapting them for parallel computation
in C++. More on Repast HPC can be found in Collier and North (2012).

In order to properly apply TDD when agent behavior tests require toolkit infrastructure, the toolkit
itself must supply its functionality as more-or-less loosely coupled components that can be used in tests.
If the toolkit components are tightly coupled to the entire runtime infrastructure, it is difficult to achieve
the desired level of granularity and testing can only be performed by running the model in the toolkits full
runtime. In order to integrate toolkit components into model behavior tests, we must be able to create just
enough of the toolkit infrastructure in order to run the tests.

Continuing with the disease transmission example, we have an additional specification to test: persons,
once colonized, will become infected after fourteen days. Typically, a simulation toolkit provides a
mechanism for simulating the passage of time. In the Repast Simphony and Repast HPC case, the Schedule
component performs this function. Actions are placed on the Schedule with a “tick” value that specifies
when that action will execute with respect to other actions. This can be used to simulate time: one tick
can equal one hour and so forth. In order to write a test for persons becoming infected after fourteen days
using the Repast Simphony toolkits then we need to use the Schedule component.

@Test
public void testColonizedToInfected() {

Schedule schedule = new Schedule();
RunEnvironment.init(schedule, null, null, false);
Context context = new DefaultContext();
RunState.init().setMasterContext(context);

Person p = createPerson(schedule, context);

assertEquals(COLONIZE, p.getStatus());
for (int i = 0; i < 14; ++i) {

schedule.execute();
}
assertEquals(INFECTED, p.getStatus());

}

The intention here is that we create enough of the Repast Simphony scheduling infrastructure to run the
person’s behavior for fourteen simulated days, at the end of which, we expect the person to have transitioned
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from colonized to infected. The createPerson method mentioned above creates a colonized Person and
schedules that Person’s daily behavior on the Schedule object. We can then execute the schedule fourteen
times in order to run fourteen days of simulated behavior. The simulation infrastructure components will
vary among toolkits, but the important point here is that the code that makes the test pass is the same code
that is used in the model. In this case, the Person object would presumably check the Schedule object for
the current time and transition accordingly. The only difference is in how the simulation infrastructure,
such as the Schedule and other rule executing type components are initialized for use.

One of the advantages of using toolkits like Repast Simphony and Repast HPC is that they allow the
user to focus on model rather than infrastructure concerns. This benefit is seen most clearly in Repast
Simphony’s ReLogo and Repast HPC’s Logo-like components. Logo (Logo Foundation 2013) is a widely
used educational programming language commonly found in K-12 classes. For many users it is easier
to conceive and design a model using the Logo paradigm. Logo provides the basis for several ABMS
platforms, most notably NetLogo (Wilensky 1999) and ReLogo (Ozik 2011). Repast HPC Logo attempts
to leverage the Logo paradigm and ReLogo in particular to promote ease of use and further hide the
complexities of implementing a parallel simulation.

Repast HPC and ReLogo use the core Logo constructs: Turtles, Patches, Links and the Observer.
Turtles are the mobile agents and can move in a two-dimensional continuous space. Patches are fixed
agents located at the discrete lattice points of this continuous space, one patch per point. Each patch covers
an area of 1 square unit around its location. In this way, turtles can be considered on or off particular
patches and many Logo-based models are written using the concept of a local patch neighborhood as their
central mode of interaction. Links are just that, network links that can be formed between two turtles.
The Observer provides overall model management: initializing the simulation and by default scheduling
a user-implemented ‘go’ method to execute every iteration of the simulation. The user only needs to
implement this ‘go’ method, the turtle and optionally the patch behaviors.

Turtle-based user defined agents are themselves created through the Observer and this can pose
complications for TDD. In order to test the Turtle behavior an Observer must exist and for the Observer to exist
a non-trivial amount of initialization has to take place. Both the Junit (Junit 2013) and the Boost Test (Rozental
2013) frameworks provide some help in this respect, allowing initialization code to be tagged as such so that it
only runs during an initialization phase. Junit has the “@BeforeClass” annotation for this and Boost Test has
the “BOOST FIXTURE TEST SUITE” macro. In both cases the code tagged by @BeforeClass or contained
within the BOOST FIXTURE TEST SUITE macro will be executed before any of the tests themselves. The
@BeforeClass runs once before all the tests are executed. BOOST FIXTURE TEST SUITE runs once before
each test. (Junit also has a @Setup annotation that functions like BOOST FIXTURE TEST SUITE.) Using
@BeforeClass (or @Setup) and BOOST FIXTURE TEST SUITE then its possible create a test harness
that makes the testing of Turtle-based agent behavior possible. In ReLogo this looks like:

static UserObserver observer;

@BeforeClass
public static void setUpBeforeClass() throws Exception {

String scenarioDirString = "./test_data/test_scenario.rs"
ScenarioUtils.setScenarioDir(new File(scenarioDirString));
File paramsFile = new File(ScenarioUtils.getScenarioDir(),

"parameters.xml");
ParametersParser pp = new ParametersParser(paramsFile);
Parameters params = pp.getParameters();
RunEnvironment.init(new Schedule(), null, params, true);

Context context = new DefaultContext();
SimBuilder builder = new SimBuilder();
context = builder.build(context);

1556



Collier, and Ozik

observer = (UserObserver) context.iterator().next();
}

The point here is to create an Observer with enough functionality that Turtle-based agents can be
created and have their behavior tested. We begin by creating a Java File object that points to the file
containing the model’s parameters. From this file, we create a Parameters object that is used to initialize
the RunEnvironment together with a Schedule instance. We then use a SimBuilder to create the Context.
The SimBuilder will use the information in the Parameters via the RunEnvironment to create an Observer
and place it in the Context. (UserObserver is an implementation of Observer). Once the Observer has
been created we can then use it to create turtle-based agents coded by the user and test their behavior in
subsequent tests.

In Repast HPC, the test initialization for a Logo-like Observer looks like:

class ObserverSetup {

public:
repast::relogo::Observer* obs;

ObserverSetup() {
repast::relogo::WorldDefinition def(0, 0, 10, 10, true, 0);
repast::relogo::WorldCreator creator(repast::RepastProcess::

instance()->communicator());
std::vector<int> vec(2, 1);
obs = creator.createWorld<MyObserver,

repast::relogo::Patch>(def, vec);
repast::Properties props;
obs->_setup(props);

}

˜ObserverSetup() {
delete obs;

}
};

BOOST_FIXTURE_TEST_SUITE(transmission_test, ObserverSetup);

The BOOST FIXTURE TEST SUITE macro takes two arguments. One is the name of the test suite,
that is, a named collection of tests, and the name of a C++ class that will run before each test in the suite is
executed. In this RepastHPC case, we begin by creating a WorldDefintion that defines the salient features
of the “world” in which the agents will operate, such as ithe minimum and maximum coordinates, whether
the world is wrapped into a torus and the size of the buffer between the distributed world partitions. We
then create a WorldCreator object that functions much as the SimBuilder does in the ReLogo case. The
WorldCreator createWorld method is passed to the Observer and Patch types as template arguments and
the WorldDefinition and a vector of ints are passed as method arguments. The vector defines the number
of partitions over which the space will be distributed along the X and Y axes. Lastly, the Observer created
by the createWorld method call is setup using a Properties object. In this case, we use an empty Properties
object as there are no model specific parameters or properties to pass to the Observer. Once the Observer
has been setup, the “obs” pointer can be used in tests to create turtle-based agents and then test their
behavior.

These two examples, ReLogo and Repast HPC, are obviously specific to the Repast Simphony toolkit.
However, the larger point should be applicable to any ABMS toolkit. Much agent behavior involves some
interaction with the ABMS toolkit with which it is developed. If it is possible to initialize the toolkit
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such these components are easily available to test code, then a deeper layer of TDD for ABMS becomes
possible.

4 CONCLUSION

In this paper, we have discussed TDD in relation to ABMS development. TDD promotes an “inside-out”
development style that ameliorates the complexity of turning a conceptual model into working code. The
translation of the model into code is decomposed into a series of much smaller, more manageable, highly
focused and above all testable translations. Furthermore, these unit tests provide much needed flexibility
in the face of changing project requirements, model designs and specifications. In the context of ABMS
development, we have demonstrated how TDD can be used to implement agents’ behavior when that
behavior is both independent from and dependent on ABMS toolkit components. Lastly, TDD has proved
exceedingly valuable in our experience, both in the actual development of the Repast Simphony ABMS
toolkit and the development of models such as the ABMS Cardiovascular disease model (Graziano et al.
2013).
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