Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

THE RELOGO AGENT-BASED MODELING LANGUAGE

Jonathan Ozik
Nicholson T. Collier
John T. Murphy
Michael J. North

Argonne National Laboratory
Decision and Information Sciences
9700 S Cass Ave
Argonne, IL 60439, USA

ABSTRACT

Relogo is a new agent-based modeling (ABM) domain specific language (DSL) for developing agent-
based models in the free and open source Repast Suite of ABM tools; the Java based Repast Simphony
ABM toolkit and the C++ high performance computing Repast HPC toolkit both incorporate RelLogo.
The language is geared towards a wide range of modeling and programming expertise, combining the
sophisticated and powerful ABM infrastructure and capabilities in the Repast Suite with the ease of use
of the Logo programming language and its associated programming idioms. This paper will present how
ReLogo combines a number of concepts, including object-oriented programming, simple integration of
existing code libraries, statically and dynamically typed languages, domain specific languages, and the use
of integrated development environments, to create an ABM tool that is easy to learn yet is also capable of
creating large scale ABMs of real world complex systems.

1 INTRODUCTION

The free and open source Repast Toolkit was originally developed by Sallach, Collier, and others (Collier
et al. 2003) at the University of Chicago in 2000. It was expanded by Argonne National Laboratory as
software infrastructure that could support rapid social science discovery based on extensive computational
experimentation (Sallach and Macal 2001). The most current version of the Repast Toolkit includes the
Java based Repast Simphony (North et al. 2013) and the C++ based high performance computing Repast
HPC (Collier and North 2012).

Repast Simphony ReLogo wraps much of the Repast Simphony library’s functionality into a semantically
simple but powerful package. The goal is to provide a fast track so modelers can quickly develop simulations
that can later be scaled up, as needed, using the features of the full Repast Simphony or Repast HPC libraries.
ReLogo semantics are drawn from the pedagogically oriented Logo lineage of software (Logo Foundation
2013, Harvey 1997), informed especially by the StarLogo (Resnick 1996) and NetLogo (Wilensky 1999)
variants, while maintaining the object-oriented nature of Repast Simphony. ReL.ogo provides a streamlined
approach to creating Repast Simphony models using environmental agents (Patches), networks (Links),
coordinating agents (Observers) and mobile agents (Turtles), collectively referred to as PLOT entities.
ReLogo models are programmed using the Logo-style ReLLogo domain-specific language.

978-1-4799-2076-1/13/$31.00 ©2013 IEEE 1560

Ozik, Collier, Murphy, and North

2 BACKGROUND

Logo (Logo Foundation 2013, Harvey 1997) is a widely used educational programming language commonly
found in K-12 classes. For many users it is easier to conceive and design a model using the Logo paradigm.
Logo provides the basis for several other ABMS platforms, most notably StarLogo (Resnick 1996) and
NetLogo (Wilensky 1999).

2.1 StarLogo

StarLogo is a library and environment that uses a Java interpreter and interface. StarLogo is a pedagogically
oriented system that leverages the Logo language to make it easier to learn to develop agent models. StarL.ogo
is free and open source for non-commercial use. StarLogo extended Logo by increasing the allowed number
of mobile agents (turtles) from tens to thousands, by giving turtles more interactive behaviors, and by
transforming the turtles’ environment from a rectangular array of pixels into a grid of environmental
agents (patches). The organizing principle of StarLogo, according to (Resnick 1996), is the modeling of
decentralized complex systems.

2.2 NetLogo

NetLogo is a free and open source (General Public License [GPL]) agent-based simulation environment that
further extended the Logo programming paradigm. NetLogo builds on StarLogo (Tisue 2004). In addition
to turtles and patches, NetLogo introduces links that connect turtles to form networks. While NetLogo was
designed to provide a basic laboratory for teaching complexity concepts, it can be and has been used to
develop sophisticated applications. NetLogo is distributed with a large number of example simulations to
help beginning and experienced users quickly get up to speed with building models. NetLogo specifically
does not try to avoid programming but rather endeavors to make the syntax and semantics as accessible as
possible while maintaining the flexibility to create complex models for teaching and research purposes.

3 REPAST SIMPHONY RELOGO

Repast Simphony is the Java based toolkit of the Repast Suite. Repast Simphony ReLogo is based on the
Groovy (Groovy 2013) dynamic language. Groovy itself is a widely used, free, and open source Java Virtual
Machine (JVM) language that both compiles to Java bytecode and tightly integrates with Java. Thanks to
its Groovy foundations, ReLogo freely interoperates with Groovy and Java. ReLogo programmers can use
any Java or Groovy library without special syntax. They can also write Groovy and most Java code fluidly
at any point in a ReLogo file to gain access to the advanced features of either language.

A ReLogo model is compiled by using the Groovy Eclipse joint compiler (Groovy Eclipse Plugin
2013). Dynamic user methods are created via automated code generation and Abstract Syntax Tree (AST)
transformations are used to generate additional Java byte code. The resulting code is run as a regular Repast
Simphony model.

ReLogo adds the capabilities of Repast Simphony to the semantic simplicity of Logo, and in doing
so contributes a number of concepts to building Logo-like ABMs; object-oriented programming, simple
integration of existing code libraries, statically and dynamically typed languages, domain specific languages,
and the use of integrated development environments. The result is an ABM tool that is easy to learn yet
is also capable of creating large scale ABMs of real world complex systems.

3.1 Object Oriented Programming

From it’s origins in the Simula67 computer language (Holmevik 1994) and earlier, object oriented pro-
gramming (OOP) has evolved into one of the major programming paradigms in computation (Gamma et al.
1994, Booch et al. 2007). ReLogo introduces OOP into the Logo world by separating the patches, links,
observers and turtles (PLOT) entities into their own class hierarchies. Figure 1 demonstrates the PLOT class

1561

Ozik, Collier, Murphy, and North

hierarchies in the Zombies_Demo model included in the Repast Simphony distribution. By separating each
entity type into its own class hierarchy, the ReLogo modeler can make use of encapsulation, inheritance
and dynamic dispatch, three of the main characteristics of OOP. Encapsulation isolates the internals of the
PLOT classes, separating the implementation of the various capabilities from the interface made available
to external classes. Inheritance allows for gathering common attributes and behaviors of PLOT entities
into generalized classes (or parent classes) from which the specialized classes (or child classes) inherit.
This way the code implementing the attributes and behaviors is in one location, reducing the likelihood
of introducing bugs in the form of divergent implementations and increasing the maintainability of the
developed models. Dynamic dispatch enables specializations to override the default behaviors of their
parent classes. The overall result of integrating OOP is to endow the modeler with the ability to create

more modular, increasingly complex, yet maintainable ABMs.
zombias
T

(©ReLogoObserver
zombies
£\

GReLngnPatch‘ GReLngnLlnch>‘

zombies zombies

@ Infection
zombies.relogo

(©® UserObserver ©®Human ©Zombie
zombies.relogo zombies.relogo zombies.relogo

® UserPatch
zombies.relogo

Figure 1: PLOT class hierarchies in the example Zombies_Demo model distributed with Repast Simphony.

3.2 Simple External Library Integration

The widespread use of Java as a general programming language has resulted in large number of libraries and
framework that are available for use within any Java based program. The libraries are usually distributed
in the form of Java Archives or JAR files. A JAR file will contain all the necessary binary assets, metadata
and in some cases even source files, for the library. Simply making the JAR file visible on the compilation
and execution Java classpaths of a Java program will make all the functionality of the library available. To
include a JAR file in a ReL.ogo model it’s enough to place it in the 1ib folder within the model and add
it to the build path (see Figure 2). With this simple step, all the capabilities included in the JAR file are
immediately available for use in any part of the model’s files.
v (= lib
=/ myjar.jar

D ReadMe.txt New >
Open F3
Open With >
Show In CHW >
= Copy #®=C
Bz Copy Qualified Name
T Paste E: AT
Delete =

Build Path |] & Add to Build Path

[TP R A= AanTT

Figure 2: Adding a library (mylJarjar) to a ReLogo model. Place the JAR file in the 1ib folder and add
it to the build path (in this case by right-clicking to reveal the contextual menu while the file is selected).

1562

Ozik, Collier, Murphy, and North

3.3 Statically and Dynamically Typed Languages

Dynamic languages (e.g., Ruby, Python, JavaScript, or Groovy) have gained popularity in recent years.
Features such as dynamic typing enable individuals and small teams of programmers to rapidly develop
applications and engage in prototype exploration, while test-driven development mitigates the loss of type
checking when moving away from a statically typed environment (e.g., Java, C, or C++). Although not
a characteristic of every dynamic language, in many cases there is a great reduction of boilerplate code,
making the code much more expressive and readable by humans. As a practical reality, some computation
tasks are better done in a dynamic environment and others in a static one. Moreover, when two languages
share object orientation, integration issues are more easily localized. Groovy steps into this “sweet spot,”
bringing advanced dynamic language features to one of the most widely used, robust, and well-supported
(statically typed) language, Java, via seamless integration. (As of Groovy 2.0, Groovy can also be used as
a statically typed language itself.)

The dynamically typed nature of ReLLogo affords the modeler the ability to pay attention to or ignore
type information as desired. As a simple example, in Figure 3 the local variable varOne has the dynamic
def type. The modeler expects varOne to be a turtle so they can move the turtle by issuing the turtle’s
forward command. The compiler allows this and (optionally) underlines forward as an indication
that the method may not exist on varOne. For varTwo the type is specified so the forward method
is known to exist on the variable. In addition to it’s convenience for modeling, dynamic typing can be
very helpful for pedagogical purposes when conveying to a lay audience the essence of a model without
allowing them to get distracted by the potentially extraneous type information.

def varOne = oneOf(turtles())
varOne. forward(1)

Turtle varTwo = oneOf(turtles())
varTwo. forward(1)

Figure 3: Dynamically typed expressions with def type (varOne) and explicit type (varTwo) variables.
The forward method call is underlined following varOne indicating that the method is a statically
unknown reference (which may get resolved at runtime). This semantic highlighting is an optional setting.

Models developed with ReLogo can seamlessly use statically compiled components (Groovy or Java)
for computationally intensive parts if computational bottlenecks are identified. In addition, since Java 7 the
invokedynamic instruction (Rose 2009) was introduced to the JVM in an effort to improve compilers
and runtime systems for dynamic languages. Groovy has begun utilizing invokedynamic which, among
other benefits, results in faster execution of dynamically typed code. Looking ahead, the performance
of dynamically typed code is expected to continue to improve as the JVM does a better job optimizing
invokedynamic, potentially allowing the modeler to more often remain focused on the modeling domain
rather than have to consider the statically or dynamically typed nature of their code.

3.4 Domain Specific Languages

Domain specific languages (DSLs) are increasingly used to enable subject matter experts in a variety of
fields to take advantage of the power and convenience afforded by advancements in computation. A DSL
is a language and associated idioms and concepts developed for a specific domain. A DSL can simplify
programming in a given domain by focusing on the concepts and constructs relevant to that domain. DSLs

1563

Ozik, Collier, Murphy, and North

can also introduce paradigm changing research methodologies into areas that have not traditionally relied
on computation.

The ReLogo DSL is an agent-based modeling DSL that combines the Logo world of PLOT entities
and their associated primitive operations with a simplified syntax, resulting in a focused and semantically
simple yet powerful package. A summary of the PLOT primitive categories are show in Table 1. For
further details see (Ozik 2013b).

Table 1: Summary of ReLogo primitive categories for PLOT entities and Utility.

Turtle Patch Link Observer Utility
Motion Color
Spatial Spatial String
Turtle creation Turtle creation Turtle creation Turtle creation Collection
Rotation AgentSet
Turtle property Patch property Link property Math

Ask
Turtle-centric

Ask
Turtle-centric

Ask
Turtle-centric

Ask
Turtle-centric

Random number
Time and ticks

Patch-centric Patch-centric Patch-centric Patch-centric Input/Output
Link-centric Link-centric Link-centric Link-centric

AgentSet AgentSet AgentSet AgentSet

World World World World

Query Query Query

Pen Tie Diffusible

Visibility Visibility Clear

Miscellaneous Miscellaneous Miscellaneous Miscellaneous Miscellaneous

In addition, whenever a new turtle type is defined a number of methods become automatically available
to the PLOT entities. These methods are dynamically generated as source code, with accompanying
auto-generated documentation, into the parent classes of the model PLOT entities and are made available
to the compiler. As an illustrative example, the specific methods generated when a Zombie turtle type is
defined are listed in Table 2. These are similar in functionality to existing ReL.ogo primitives with similar
names but specialized for the particular turtle type (in this case the Zombie type). Analogously, when a
new link type is defined a number of link methods become available to PLOT methods. See (Ozik 2013a)
for further details on the generated link methods.

Table 2: Methods generated when a Zombie turtle type is defined.

Generated for each

Turtle Patch Link Observer
hatchZombies sproutZombies
zombiesHere = zombiesHere
zombiesAt zombiesAt
zombiesOn zombiesOn zombiesOn zombiesOn
isZombieQ isZombieQ isZombieQ isZombieQ
zombies zombies zombies zombies
zombie zombie zombie zombie
createZombies
createOrderedZombies

1564

Ozik, Collier, Murphy, and North

Some of the simplified syntax in ReLogo is achieved with the use of code blocks, or closures, in
combination with the ask primitive. Within an ask block it is understood that the commands should be
executed on the entity or entities being ask-ed, alleviating the need to specify this (see Figure 4).

ask(turtles()){
forward(1)

Figure 4: The ask primitive in ReLogo. The ask command switches context to the entity or entities being
ask-ed.

Perhaps most importantly, the simplicity and flexibility of the ReLogo DSL can itself be used as a
basis for developing further DSLs. See (Ozik et al. 2012) for an example of a DSL that was developed
from the ReLLogo DSL to represent geopolitical scenarios.

3.5 Integrated Development Environment

Integrated development environments (IDEs) have become an increasingly common way for developing
computer code. With features that help the developer with common tasks (e.g., compilation/building,
collaborating in teams, template code generation) and the ability to create specification of specialized
components (e.g., graphical user interfaces, model logic), great efficiency is gained when compared to
more simple and ad hoc text editor based development approaches. Eclipse (Eclipse Foundation 2013) is a
widely used, free, and open source IDE. Eclipse can be used to develop code in many languages, including
Java and C++. Repast Simphony uses Eclipse as its primary development environment, leveraging Eclipses
plug-in architecture to provide a rich set of development options.

ReLogo leverages many of the Eclipse IDE’s capabilities to help model builders create robust models
efficiently. One of the most helpful features offered by IDEs is code-completion, a way to suggest possible
completions for the code being typed. This directly connects the modeler with the ReLogo application
programming interface (API), without having to look for documentation elsewhere. Figure 5 shows an
example of code-completion at work, including the specification of the suggested completion.

varTwo. fo

© forward(Number num) : void - Turtle (Groowvy) Steps turtle forward by a distance.
Parameters:
num a distance

Figure 5: Code completion in Repast Simphony ReLLogo. As code is typed possible completions and related
information is displayed.

The Groovy Eclipse plugin (Groovy Eclipse Plugin 2013) offers the ability to specify DSL descriptors
(DSLDs) that “describe domain-specific extensions to Groovy-Eclipse’s inferencing engine and content
assist” (Groovy Eclipse DSLD 2013). ReLogo defines a custom DSLD that allows the inference engine to
determine the appropriate context for context changing methods such as the ask method. In Figure 6 we
see that within an ask command block where patches are being ask-ed the inference engine correctly
understands that patches are the relevant entities and suggests patch appropriate completions. In Figure 7,

1565

Ozik, Collier, Murphy, and North

on the other hand, there is a nested sequence of ask method calls, and the inference engine knows to
suggest turtle appropriate completions within the innermost command block.

ask(patches()){
)

@ pcolor : double - Patch (ReLogo)
< plabel : Object - Patch (ReLogo)
© plabelColor : double - Patch (ReLogo)
© pxcor @ int - Patch (ReLogo)
© pycor : int - Patch (ReLogo)
} @ patch{Number arg0, Number argl) : Patch - Patch (ReLogo)
@ patchAt(Number arg0, Number argl) : Patch - Patch (RelLogo)
@ patchAtHeadingAndDistance(Number arg0, Number argl) : Patch - P
@ patchesi) : AgentSet - Patch (Relogo)

Figure 6: Code completion within an ask command where patches are being ask-ed.

ask(patches()){
ask(turtlesHere()){
f

} © face(Patch arg0) : void - Turtle (ReLogo) Faces the caller towards a patch.

@ face(Turtle argQ) : woid - Turtle (Relogo) Parametears:alm
} @ facexy(Mumber arg0d, Number argl) : woid - Turtle (RelLogo) AL

@ fd(Number argQ) : void - Turtle (ReLogo)

Figure 7: Code completion within two nested ask commands, where ask-ed patches are in turn ask-ing
turtles.

4 REPAST HPC RELOGO

Repast HPC is a C++ based high performance computing ABM toolkit that is part of the Repast Suite
(Collier and North 2012). Simulations can be written directly in C++ or using the constructs in Repast
HPC ReLogo (or HPC ReLogo). HPC ReLogo aims to promote ease of use and hides many of the
complexities of implementing a parallel simulation. Like its Java counterpart, HPC ReLogo uses the core
PLOT entities and many of the associated ReLogo primitives. The need for the simulations to run on large
distributed architectures does introduce some semantic differences, including the fact that the ReLogo world
is distributed across computational processes and that observers are defined per process rather than per
ReLogo world. There are also a few differences due to the fact that Java (and Groovy) do not map directly
to all C++ constructs. For example, while HPC RelLogo does use the ask construct, rather than taking
blocks of code as arguments, the ask accepts functors-type objects (Collier and North 2012). Additionally,
the models themselves are only run as headless processes (i.e., without a graphical user interface).

Perhaps the largest differences between the two RelLogo variants are that, due to the inherent compli-
cations of parallel programming, HPC ReLogo requires a lot more computational expertise. Nevertheless,
one of the goals of HPC ReLogo is to provide a pathway for agent-based modelers to dramatically increase
the scale of their simulations when necessary. Thus, a moderately large Repast Simphony ReLogo (RS
ReLogo) model, taking advantage of all the associated conveniences of developing within Repast Simphony,
can be ported to HPC ReLogo to run at dramatically larger scales without having to re-conceptualize the
fundamental logic of the model.

As an example of this process, an epidemiology model (Macal et al. 2012) was ported from RS ReL.ogo
to HPC ReLogo. In this case, a single developer was able to port the entire model written in RS ReLogo
to HPC ReLogo in approximately a week. The resulting model could be run more efficiently with millions
of agents. The developer was already familiar with the API of both ReLogo variants, but the similarity of

1566

Ozik, Collier, Murphy, and North

the ReLogo constructs and their expression in the two APIs did provide a smooth pathway for scaling up
the simulation.

5 CONCLUSION

This article has presented an overview of the the ReLogo agent-based modeling domain specific language.
Combining the semantic simplicity of Logo with the capabilities of Repast Simphony, Repast Simphony
ReLogo introduces a number of computational concepts to building Logo-like ABMs in the Java ecosystem,
including object-oriented programming, simple integration of existing code libraries, statically and dynam-
ically typed languages, domain specific languages, and the use of integrated development environments.
Repast HPC ReLogo extends Logo constructs into distributed high-performance computing. Together, the
two ReLogo variants seek to create ABM tools that are easy to learn yet are also capable of creating large
scale ABMs of real world complex systems.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under
contract #DE-AC02-06CH11357.

REFERENCES

Booch, G., R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Conallen, and K. A. Houston. 2007, April.
Object-Oriented Analysis and Design with Applications. 3 ed. Addison-Wesley Professional.

Collier, N., T. R. Howe, and M. J. North. 2003. “Onward and Upward: The Transition to RePast 2.0”. First
Annual North American Association for Computational Social and Organizational Science Conference.

Collier, N., and M. North. 2012, November. “Parallel agent-based simulation with Repast for High Perfor-
mance Computing”. SIMULATION.

Eclipse Foundation 2013. “Eclipse”. http://eclipse.org/.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994, November. Design Patterns: Elements of Reusable
Object-Oriented Software. 1 ed. Addison-Wesley Professional.

Groovy 2013. “Groovy - Home”. http://groovy.codehaus.org/.

Groovy Eclipse DSLD 2013. “Groovy Eclipse DSLD”. http://groovy.codehaus.org/DSL+Descriptors+for+
Groovy-Eclipse.

Groovy Eclipse Plugin 2013. “Groovy Eclipse Plugin”. http://groovy.codehaus.org/Eclipse+Plugin.

Harvey, B. 1997. Computer science logo style: Symbolic computing. Vol. 1. MIT Press.

Holmevik, J. R. 1994, December. “Compiling SIMULA: A Historical Study of Technological Genesis”.
IEEE Ann. Hist. Comput. 16 (4): 2537.

Logo Foundation 2013. “Logo Foundation”. http://el.media.mit.edu/logo-foundation/.

Macal, C. M., M. J. North, N. Collier, V. M. Dukic, D. S. Lauderdale, M. Z. David, R. S. Daum, P. Shumm,
R. S. Daum, J. A. Evans, J. R. Wilder, and D. T. Wegener. 2012. “Modeling the spread of community-
associated MRSA”. In Proceedings of the Winter Simulation Conference, WSC *12, 73:173:12. Berlin,
Germany: Winter Simulation Conference.

North, M. J., N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen, and P. Sydelko. 2013, March.
“Complex adaptive systems modeling with Repast Simphony”. Complex Adaptive Systems Modeling 1
(1): 3.

Ozik, J. 2013a. “ReLogo Getting Started Guide”. http://repast.sourceforge.net/docs/ReLogoGettingStarted.
pdf.

Ozik, J. 2013b. “RelLogo Primitives”. http://repast.sourceforge.net/docs/api/repast_simphony/
ReLogoPrimitives.html.

1567

Ozik, Collier, Murphy, and North

Ozik, J., N. Collier, M. North, W. Rivera, E. Palomaa, and D. Sallach. 2012, July. “The vmStrat Domain
Specific Language”. In Advances in Applied Human Modeling and Simulation, Advances in Human
Factors and Ergonomics Series, 447-459. CRC Press.

Resnick, M. 1996. “StarLogo: an environment for decentralized modeling and decentralized thinking”. In
Conference Companion on Human Factors in Computing Systems, CHI ’96, 1112. New York, NY,
USA: ACM.

Rose, J. R. 2009. “Bytecodes meet combinators: invokedynamic on the JVM”. In Proceedings of the Third
Workshop on Virtual Machines and Intermediate Languages, VMIL 09, 2:12:11. New York, NY, USA:
ACM.

Sallach, D. L., and C. M. Macal. 2001, August. “Introduction The Simulation of Social Agents”. Social
Science Computer Review 19 (3): 245-248.

Tisue, S. 2004. “NetLogo: Design and implementation of a multi-agent modeling environment”. In Pro-
ceedings of Agent 2004. Chicago, USA: Agent 2004 Conference on Social Dynamics: Interaction,
Reflexivity and Emergence.

Wilensky, Uri 1999. “NetLogo”. http://ccl.northwestern.edu/netlogo/.

AUTHOR BIOGRAPHIES

JONATHAN OZIK, Ph.D., is computational scientist at the Center for Complex Adaptive Agent Systems
Simulation within the Decision and Information Sciences Division of Argonne National Laboratory and a
Fellow at the Computation Institute at the University of Chicago. His email address is jozik@anl.gov.

NICHOLSON COLLIER, Ph.D., is a software engineer at the Center for Complex Adaptive Agent Systems
Simulation within the Decision and Information Sciences Division of Argonne National Laboratory and a
staff member at the Computation Institute at the University of Chicago. His email address is ncollier @anl.gov.

JOHN T MURPHY, Ph.D., is a post-doctoral appointee at the Center for Complex Adaptive Agent Systems
Simulation within the Decision and Information Sciences Division of Argonne National Laboratory and
a staff member at the Computation Institute at the University of Chicago. His email address is jtmur-
phy @anl.gov.

MICHAEL J NORTH, MBA, Ph.D., is the deputy director of the Center for Complex Adaptive Agent Sys-

tems Simulation within the Decision and Information Sciences Division of Argonne National Laboratory and
a Senior Fellow at the Computation Institute at the University of Chicago. His email address is north@anl.gov.

1568

