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ABSTRACT 

This paper describes a holistic architecture for super real-time multi-agent simulation platforms by im-

plementing a complete and integrated simulation stack including a simulation runtime and an application 

layer that can be used for such situations as traffic simulations. With our prototype system, the first exper-

iment tested the performance scalability when simulating millions of agents on 1,536 CPU cores over 256 

nodes. By compiling the X10-based agent simulation system into C++ using MPI, we could run 600 

simulation steps in only 78 seconds, which is nearly 10 times faster than real time. We then tested a na-

tional network spanning Japan, which was able to simulate a 100 million agents and at near-real time 

while using 128 nodes. This was the first attempt to deal with such a large number of agents and shows 

that this infrastructure could be used for large-scale agent simulations in various fields. 

1 INTRODUCTION 

Research in multi-agent simulation with simulating millions of agents is contributing to human society 

and the global economy in such areas as environmental protection, the analysis of human brain character-

istics, and our daily lives (Paulocci 2012). Previous research has described how distributed agent simula-

tion platforms can be applied to such goals, but related projects have shown their method scalable to the 

behavior patterns of millions of agents (Sanjay 2005; Parker 2005; Theodoropoulos 2006; Sislak  2009; 

Kalyan 2011) but we need to pursue more high performance scalability. We are working on the first infra-

structure platform that will be able to simulate millions of interacting agents. Our previous research intro-

duced an X10-based agent simulation platform with tens of millions of agents suitable for traffic simula-

tions. The performance was not further scalable due to various problems involving workload imbalances 

and global synchronizations. In this paper we present a new simulation stack with a runtime and the ap-

plication layer for X10 (Saraswat 2007) a state-of-the-art PGAS language. We tested our platform on 

highly distributed systems, approaching millions of agents running at near real time. We are reporting on 

two major experiments. The first set of results showed performance scalability up to one million agents 

running on 256 nodes with 1,536 CPU cores. By compiling an X10-based agent simulation system into 

C++ and MPI, we could run 600 simulation steps in only 78 seconds, which is nearly 10 times shorter 

than real time. Our second experiment used a national network spanning Japan as the underlying infra-

structure for the agents, and our near-real-time simulation of hundreds of millions of agents required only 

128 nodes. This is the first published attempt to deal with such large numbers of agents and we believe 

that this infrastructure will be used for large-scale agent simulations in various fields. 

 Here is a summary of the remainder of this paper. First, an overview of the X10 language as the un-

derlying language of XAXIS is presented in Section II. Section III describes the design and implementa-

tion of the XAXIS system. Section IV describes our performance evaluations and scalability. Our conclu-

sions and future directions are addressed in Section V. 
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2 X10 – HIGHLY PRODUCTIVE PARALLEL AND DISTRIBUTED LANGUAGE 

Since we use X10 as the underlying programming language of our simulation platform, XAXIS, we pro-

vide an overview of the X10 language in this section.  

 X10 is a novel parallel distributed programming language that IBM Research is developing as an 

open source project. It allows the development of highly efficient applications with high throughput in a 

distributed system in mixed environments with various configurations of multiple cores, accelerators, and 

other resources. In environments with many execution cores, it is important to assess the parallelism and 

memory configurations. X10 offers a global address space that is partitioned into multiple places, called 

the Partitioned Global Address Space (PGAS).  

 A place is an abstraction for the locality of memory, and it typically corresponds to one compute node 

with two or more CPU cores. An activity can be generated dynamically in each place as an asynchronous 

execution subject equivalent to a lightweight thread. An activity can be generated using the syntax of an 

“async” sentence, and can be moved to other places using an “at” sentence. Conventionally, to run a sim-

ulation using a massive computer where each node has multiple cores and that are combined using a net-

work, the Message Passing Interface (MPI) is used as the messaging mechanism among nodes. Program-

ming models such as OpenMP and POSIX threads are used for thread-parallel execution in one node. 

However, the concepts of "Place" and "Activity" in X10 support executive operating systems on a mas-

sive computer cluster using a unified programming model with high throughput.  

 X10 supports parallelism for both concurrent and distributed code. Parallel code uses asynchronous 

un-named activities created by the async struct and waits for activities to finish by using the “finish” con-

struct. Distributed code is run in multiple places that do not share memory, and therefore objects are deep-

ly copied from one place to another when captured by the “at” struct. Copying is done by first serializing 

the object into a buffer, sending the buffer to the other place, and then de-serializing the buffer at the oth-

er place.  

 Currently the X10 compiler is implemented as a translator for other programming languages. X10 can 

be compiled to Java or C++ environments, as shown in Figure 1. An X10 environment running on Java is 

called Managed X10, while X10 on C++ is called Native X10. X10 compiler has two parts: a front-end 

and a backend. The front-end analyzes the X10 source and checks the types to create an AST (Abstract 

Syntax Tree). The backend generates code from the AST as Java code or C++ code. 

 

 
 

Figure 1: X10 Runtime Overview - Native X10 and Managed X10 

3 XAXIS: SCALABLE X10-BASED AGENT SIMULATION MIDDLEWARE 

XAXIS (X10-based Agent eXecutive Infrastructure for Simulation) (Suzumura 2012) is a highly scalable 

multi-agent simulation middleware that allows application developers to run their applications produc-

tively on large-scale environments. The programming model of XAXIS was derived from the Java-based 

agent simulation middleware called IBM Zonal Agent-based Simulation Environment (ZASE) (Yamamo-
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to 2007). This section reviews overviews of the agent model, its software stack, and the implementation 

model of XAXIS. 

3.1 XAXIS Agent Model 

In XAXIS each agent has internal states, handles messages, and updates its own states as needed. Mes-

sages are sent by a simulator or by other agents. When a message object is delivered to an agent, a 

callback method of the agent is called. A returned message object will be sent back to the sender. The 

XAXIS framework provides functions to create and to delete agents. Developers can add services to an 

agent runtime. Agents can search for the reference to a service and can directly invoke methods of ser-

vices. Each service object also has functions similar to those of agents. Messages are exchanged among 

agents, simulation runtimes, and agent runtimes. XAXIS provides point-to-point messaging and multicast 

messaging. XAXIS also provides message distribution and aggregation functions.  When a simulator 

sends a multicast message to an agent runtime, the agent runtime will distribute the message to agents. An 

agent runtime aggregates the reply messages from agents into an aggregated message and sends that mes-

sage to a simulator. 

3.2 XAXIS Software Stack 

The full software stack of XAXIS is illustrated in Figure 2. An advantage of adopting X10 is that the 

XAXIS APIs can be implemented in a highly productive manner without implementing thread manage-

ment or a messaging layer for the distributed environments, since the X10 language itself includes those 

functions at the language level. The software stack in Figure 2 includes two bridges, Java bridge  and X10 

bridge depending on whether Java or X10 is being used. The Java-based bridge is for Java-based simula-

tions on XAXIS. This is because Java is still more of a commodity language than X10 when developers 

implement simulations. However, we also provide an X10-based bridge so that the full software stack can 

be implemented entirely in X10 and compiled into an X10 C++ backend with high performance commu-

nication libraries such as MPI for developers who want to implement their simulations directly in X10. 

 

 
Figure 2: XAXIS Software Stack 

3.3 XAXIS Implementation with X10 

Figure 3 shows how the simulation model of XAXIS on a distributed environment is implemented with 

X10. An agent manager manages the agents running asynchronously in X10 at each place in an agent 

simulation. For communication with the agents at other places, the place managed by a particular agent 

manager is selected based on the agent's identifier, and a communication message is sent there. This 

communication message is hidden from the users, so the simulation developers can concentrate only on 

the logic of the agents. A message that is developed using X10 can be transmitted and received in XAXIS 

without explicit message communication in the distributed computer, but simply by calling the method of 
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the agent managers at other places using the at syntax. A mechanism for communication between places 

using activities that implement asynchronous threads and at syntax allows us to easily mount the simula-

tion execution environment. 

 

 

Figure 3: Simulation Model Implementation with X10 

4 A NATIVE X10 APPROACH TO OPTIMIZING PERFORMANCE AND SCLABILITY OF 

DISTRIBUTED AGENT SIMULATIONS 

To run much larger agent simulations or make it more high performance, we had to drastically improve 

the existing simulation software. First, we rewrote all of the programs in X10, not just the simulation plat-

form XAXIS, but also the traffic application, IBM Mega Traffic Simulator (namely Megaffic) (Osogami  

2013). By rewriting for native executables by using C++ source code, the need for a Java VM. Second, 

we reduced communication volume to gain scalability and high performance when running many nodes. 

We also improved procedures related to migration of vehicles. The main reason why the simulation time 

is not reduced with more computation nodes is communication overhead between nodes. We tried to re-

duce communication volume by adjusting the frequency and size of each migration. 

4.1 The Develeopment of Megaffic and XAXIS 

We are developing traffic simulation programs using this agent-based model. We began by porting Meg-

affic to the XAXIS simulation platform Because Megaffic was implemented in another simulation plat-

form written in Java, we had to compile XAXIS as a Java program to be compatible with Megaffic. First 

we ran simulations with relatively small road networks like a city in Japan and a relatively small number 

of vehicles. However, even for small scale traffic agent simulation, the scaling effects were not efficient. 

The main constraint is the connection overhead for synchronization with other nodes and for sending 

agent data. In particular with Java, the data transmission procedures are too slow because the Java objects 

have to be serialized and deserialized when being sent to other nodes. 

4.2 Implementing Fully X10-Based Traffic Simulation 

Generally speaking, a native executable program is faster than a Java program because Java runs in a vir-

tual machine although dynamically compiled with Java Just-in-time compiler. In contrast, Java is more 

productive for programmers than C++. The same X10 source code can be compiled into Java or C++, de-

pending on the environment and user applications. However, because our Megaffic program is written in 

Java, it must be compiled into Java with Managed X10. Java programs run any machines with a Java vir-

tual machine, but many specialized supercomputers do not support the Java virtual machine. Even when 

Java is supported on a supercomputer, it rare pushes the machine to its full cap. 
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 We decided to rewrite the Java source code in XAXIS and Megaffic into X10 source code. Fortunate-

ly, because X10 was designed to combine high  performance with high productivity, the syntax of X10 is 

similar to Java, is the porting work is not too difficult. Then we compiled the traffic simulation to a native 

executable from the C++ source code. 

4.3 Reducing Communication Among Nodes 

In the previous simulation XAXIS platform and Megaffic application (Suzumura 2012), the simulation 

did not scale well even with fewer than 100 places. This was because the increasing numbers of vehicles 

that were migrating to other nodes divided the road network into more partitions, and there was too much 

associated copying of large objects. 

 We could not reduce the number of migrations, so we simplified the migrating objects with vehicle 

data. In X10, if a migrating object has non-primitive field variables, then the X10 runtime will copy all of 

the objects referenced by that object. The vehicle agent object has referring types of cross points, roads, 

and other model classes, so even if one vehicle copies to a neighboring node, unnecessary objects will be 

copied and large amounts of the heap memory and connection bandwidth will be wasted. Therefore, we 

changed the data types of the vehicle data that has to be copied. All of vehicle data is converted to Long 

or Double primitive values. Example types such as cross points and road objects only require the ID in-

formation, so the ID data is extracted and sent from such objects. 

5 PERFORMANCE EVALUATION 

In this section we describe a performance evaluation of the pure X10-based simulation system on super-

computers with a national network and millions of agents and describe the scalability. 

5.1 Evaluation Environment - TSUBAME 2.0 Supercomputer 

A Pure X10-based traffic simulation was run on XAXIS using the TSUBAME 2.0 supercomputer at the 

Global Scientific Information and Computing Center of the Tokyo Institute of Technology. TSUBAME 

2.0 is a production supercomputer operated by the Global Scientific Information and Computing Center 

(GSIC). TSUBAME 2.0 has more than 1,400 compute nodes interconnected by high-bandwidth full-

bisection-wide Infiniband fat nodes, which differ in their local memory capacity. All of the compute 

nodes share a scalable storage system with a capacity of 7 PB. 

 Each TSUBAME 2.0 node has two Intel Westmere EP 2.93-GHz processors (Xeon X5670, 256-KB 

L2 cache, 12-MB L3), and 50 GB of local memory. The operating system is SUSE Linux Enterprise 11. 

Each node has a theoretical peak of 1.7 teraflops (TFLOPS). The main system consists of 1,408 compu-

ting nodes, and the total peak performance can reach 2.4 PFLOPS. Each of the CPUs in TSUBAME 2.0 

has six physical cores and supports up to 12 hardware threads with Intel’s hyper-threading technology, 

with a theoretical peak of 76 gigaflops (GFLOPS).  

 The interconnect that links the 1,400 computing nodes with storage is the latest QDR Infiniband (IB) 

network, which has 40 Gbps of bandwidth per link. Each computing node is connected to two IB links, so 

the communication bandwidth for the node is about 80 times larger than a fast LAN (1 Gbps). Not only 

the link speed at the end-point nodes, but the network topology of the entire system heavily affects the 

performance for large computations. TSUBAME 2.0 uses a full-bisection fat-tree topology, which ac-

commodates applications that need more bandwidth than provided by such topologies as a torus or mesh. 

One of the key features of the TSUBAME 2.0 architecture is high-bandwidth hardware that transmits data 

efficiently. To sustain high rates of intra-node communications, the memory bandwidth is 32 GB/s for 

each CPU. 
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Figure 4 : Performance data (a) Simulation Time for 1 Million Trips, (b) Memory used per Node, (c) Si-

mulation Time for 1 Million Trips with C++ Backend, (d) Speed-up Ratio compared to 8 Nodes, (e) CPU 

Usage Ratio, (f) Simulation Time in Relation to Nodes and Trips 

5.2 Experimental Road Network Data and Graph Partitioning for Multi-Node Environment 

We used the national road network data for Japan from the Open Street Map. It contains almost one mil-

lion cross points and over two million roads. It is impossible to store all of the road network elements at 

each node, so we divided the road network by the number of nodes used in each experiment. Partitioning 

the whole network in chunks provides another positive effect in that the time for parsing the road network 

data on each compute node is greatly reduced. 

When dividing the road network graph, we used METIS (Karypis 1998), which is a graph partitioning 

library to minimize the edge-cut value.  Each edge has a weight that is a multiplication of road length, 

maximum speed, and the number of lanes.   

In practical, due to the limitation of METIS, the original road network should be a strongly connected and 

contiguous graph. Therefore, we first had to extract the largest contiguous part of the raw road network. 

The result was a network with 770,192 intersections and 2,089,374 roads. This graph partitioning is con-

ducted is a static manner before running simulation. 

5.3 Distributing Agents Trip Data for Multi-Node Environment 

As the number of agents increases, it takes much longer to read the data files about the agents including 

each agent’s destination. If all of the nodes read all of the travel data file, the scalability will be limited by 

the data access. To obtain high scalability with larger numbers of nodes, we divided the file into smaller 

partial files for each node. 

5.4 Performance Scalability on Supercomputers 

We evaluated the scalability and acceleration with increasing numbers of supercomputer nodes for 

XAXIS simulations in the C++ backend compared to the Java backend. In this experiment, we simulated 

one million vehicles running for 10 minutes (600 simulation steps). As shown in Figure 4(a), the simula-
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tion with Managed X10 and Native X10 achieves good scalability with increasing number of nodes. Ac-

cording to Figure 4(d), both of them achieves more than 10 times speedup with 256 nodes with compari-

son to 8 nodes. The ideal linear speedup is 32 times (256 divided by 8), but this is strong-scaling compari-

son so we need more computation loads when using large number of nodes such as 128 and 256 nodes. 

Figure 5 shows the comparison in memory usage between Managed X10 and Native X10, but obviously 

the memory footprint of Native X10 is much smaller than Managed X10. Figure 4(c) focuses more on the 

performance scalability of Native X10 and the simulation time is dramatically decreased from more than 

800 seconds with 8 nodes to 78 seconds with 128 nodes to simulate 600 steps for the whole-country traf-

fic simulation.  

 The main reason the simulation time with the C++ backend greatly differs from the Java backend is 

that the native C++ executable runs more efficiently than the Java virtual machine. Also the serialization 

and deserialization cost in Native X10 is much more lightweight than Managed X10. In addition, we can 

use MPI connections with the C++ backend, which takes greater advantage of the fast communication 

hardware of TSUBAME 2.0. Figure 4(e) shows the CPU usage but Native X10 obviously takes advantage 

of the CPU power. 

5.5 Preliminary Performance Evaluation towards Billion-Scale Agent Simulation 

After estimating the computation time and memory consumption, we initially simulated 100 million 

agents (1/10 of billion agents) with 128 and 256 nodes. The experimental condition is the same as in Sec-

tion 5.4 with the C++ backend for the X10 runtime, 600 simulation steps, and the same computing envi-

ronment. The elapsed times are shown in Figure 4(f).  

 According to Figure 4(a), the traffic simulations using one million trips show few differences between 

128 and 256 nodes, since the numbers of agents are not sufficient to strain that many compute nodes. Fig-

ure 4(f) shows that the simulation time increases with the increasing number of trips on 128 and 256 

nodes. With 128 nodes the elapsed time with 10 million agents simulation is 1.5 times larger than with 1 

million agents and 8 times larger with 100 million trips. The same performance characteristics were ob-

served for 256 nodes when comparing 1 million trips and 10 million trips. This means that communica-

tion overhead is significant when many agents are migrating among multiple nodes and the calculations 

of the running agents in each node could not mask this overhead. This suggests future work is needed to 

increase the number of agents towards a billion agents. 

6 CONCLUSION AND FUTURE DIRECTION 

In this paper, we described the design and implementation of Native X10-based high performance scala-

ble simulations, and then showed how large-scale and high performance traffic simulation can be devel-

oped on top of such middleware. The experimental results demonstrated that only around 78 seconds were 

needed for 600 simulation steps for the national road network of Japan when using 1,536 CPU cores and 

128 compute nodes, which ran faster than real time. As far as we know, our work as described in this pa-

per is the first effort to design and implement multi-agent simulation middleware in the state-of-the-art 

PGAS language and the first large-scale experiments with such a system on a modern supercomputer.  

 Our future work will involve other applications of multi-agent simulations, such as viral marketing 

simulations, social network simulations, pandemic simulations, global economy simulations and so forth. 

To reach simulations with billions of agents, we will need to use more nodes. We believe that this work 

will lead to new scalability problems and new research fields. 
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