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ABSTRACT

We propose an agent-based computational mode to investigate sequential Dutch auctions with particular
emphasis on markets for perishable goods and we take as an example wholesale fish markets. Buyers
in these markets sell the fish they purchase on a retail market. The paper provides an original model of
boundedly rational behavior for wholesale buyers’ behavior incorporating inter-temporal profit maximization,
conjectures on opponents’ behavior and fictive learning. We analyse the dynamics of the aggregate price
under different market conditions in order to explain the emergence of market price patterns such as the
well-known declining price paradox. The proposed behavioral model provides alternative explanations for
market price dynamics to those which depend on standard hypotheses such as diminishing marginal profits.

1 INTRODUCTION

This paper uses and agent-based computational model to analyse sequential Dutch/descending auctions in
order to explain the emergence of certain well-known “stylized facts” such as the declining price paradox.
Starting from the Ashenfelter’s (1989) observation of the declining price phenomenon at wine auctions,
a considerable theoretical and empirical literature on this topic has developed. This paper pursues this
strand of research with a specific focus on the nature of sequential descending auction in the context of
fish markets. A related literature on this specific subject exists and ranges from theoretical/computational
approaches to empirical investigations (Kirman and Vignes 1991; Weisbuch et al. 2000; Kirman and Vriend
2001; Kirman et al. 2005; Graddy 2006). Fish markets are particularly suited to the analysis of price
formation since they have a number of “good” properties. Fish is a perishable good and therefore there is
no possibility for the sellers to postpone the sale of the good (fresh fish cannot be stocked for more than
a day and still be characterised as ”fresh”), so the total quantity on must be traded. This greatly simplifies
the economic analysis and makes the conclusions easier to analyse and to see to what extent they are in
line with the empirical evidence.

The most common agent-based modeling approach is to exploit a well-established behavioral model
which determines certain minimal behavioral requirements for the agents’ decision making process capable of
replicating “styled facts” such as the declining price paradox at the aggregate level. Such models deliberately
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avoid to carefully addressing context-dependent modeling assumptions which necessitate departing from
standard learning models.Too often, the same algorithms are adopted for different economic context where
the level of information available varies or where the repeated nature of the interaction among the same
market actors is neglected.

We adopt a different approach in this paper and propose to identify a “rich” decision-making model
which incorporates behavioral assumptions which are consistent with the empirical evidence. The authors
had the opportunity to visit fish markets organised as sequential Dutch auctions and to discuss with market
participants. In the economic context which we analyses, we aim to give an accurate reflection of the
available level of information available to market operators about the market mechanisms and conditions,
these conjectures about opponent’s behavior and the inter-temporal arbitrage opportunities inherent in the
daily sequential descending auctions. Thus we propose so to implement a non standard computational
learning algorithm which captures behavioral aspects which can help us to reproduce the emergence of
certain well-known “stylized facts”. One outcome of this research work is thus to show how behavioral
aspects which are frequently neglected can give rise to relevant economic phenomena.

2 COMPUTATIONAL MODEL

The goods, which are assumed here to be indivisible units of a perishable and homogenous good, are traded
daily in the early morning wholesale market and are then sold on retail markets. The former market is
modeled as a sequential Dutch/descending auction market comprising T identical rounds in each of which
only one unit of the good is traded. The latter is represented by assuming that each buyer on the wholesale
market is a monopolistic seller facing a linear demand on his own retail market. Every period/day d the
same sequential trading procedure comprising T rounds is repeated. Furthermore, we assume, as is in fact
the case, that each market participant meets all the other participants every day and the same population of
agents is always present on the computational market model. Indeed, the wholesale buyers, on the markets
that we have studied, meet repeatedly among themselves on a daily basis. The major focus of this research
is on the functioning of the wholesale market. In what follows, we sketch its characteristics.

The market actors are one auctioneer, several sellers and buyers. In each round of the auction the
auctioneer is responsible for choosing the starting price P. The starting price is seldom varied by the
auctioneer. This behavior is motivated by the attempt to avoid buyers’ strategic reasoning. One auctioneer
that we interviewed mentioned an analogy with the card game of bridge saying that auctioneers do not
want buyers to implement the similar strategy of counting and memorizing the cards which have already
been played so as to work out which remain in the hands of their opponents.

Several sellers or equivalently a representative seller are modeled in order to determine the daily
supply of the good which is assumed to be exogenous. Sellers are characterized by a reservation price P
corresponding to an opportunity cost related to a sale in another market. In our model, both sellers and
the auctioneer are assumed to be ”zero-intelligence” actors, the rationale for this is that this enables us
to focus on the buyers who exhibit the most interesting and relevant behavior among market actors with
respect to price formation. The n who are assumed to learn generate the daily demand. Both demand and
supply may vary on a daily basis. The profit function of the buyer i for day d is:

Π
i
d(pi,m

k ,qi
k) = Qi ai−Qi

bi
−

K

∑
k=1

pi,m
k (1)

where Qi = ∑
K
k=1 qi

k is the number of units bought in the wholesale market in K auction rounds where she
won, which are then sold in the retail market. We assume that she can resell the total amount in the retail
market where the buyer i is supposed to face a linear demand Di,r(pi,r) = ai−bi pi,r. On the other hand,
costs correspond to the daily sum of wholesale market prices pi,m

k paid in order to buy Qi units of the good.

1708



Guerci, Kirman, and Moulet

At round t of the auction of the day d, the winning buyer i, having already bought Qi units of good,
obtains a reward equal to the marginal profit of buying one more unit of good Qi +1:

π
i
t (Q

i +1) = Π
i
d(Q

i +1)−Π
i
d(Q

i) =
ai− (2Qi +1)

bi
− pi,m

t , t ∈ 1, ...,T (2)

since the profit is a quadratic function:

Π
i
d(Q

i) = (pi,r
t (Qi)− pi,m

t )Qi =
(ai−bi p

i,m
t )Qi−Qi2

bi
(3)

Buyers rationally exit the current daily market when the marginal profit at price 0 is negative, in other
words when there is no positive price at which it would be profitable to trade and this in turn determines
the maximum amount of quantity to buy in current day Qi > (ai−1)/2.

Figure 1 shows two distinct market scenarios derived of two different retail demand models, the linear
model that we have described and a perfectly inelastic retail demand model. In the left-hand side of
the figure, the linear retail demand model is sketched and both the continuous profit curve and discrete
marginal profit values are drawn. The diminishing marginal profit effect is evident and the profit region
where marginal revenue is greater or equal to marginal costs is shown as a grey area. We propose a second
market scenario, in the right-hand side of the figure, where the retail demand is perfectly inelastic. The
resulting marginal profits are constant up to the amount of goods bought in the retail market and after
they decay linearly. This assumption might appear rather extreme, but it captures an interesting effect.
When we refer to demand on the retail market we are referring to a short term (daily) demand. In the
long run the demand is never perfectly inelastic, but in our model the retail demand is determined by the
daily behavior of the customers. The seller has to daily forecast the retail demand and to buy the fish in
advance on the same day in the auction-based wholesale market. The buyers who are the sellers on the
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Pro�t
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Figure 1: Retail demand models.

retail market, learn in the long run to maximize their long-term profits by means of an original learning
algorithm that we refer to as the qEWA-learning model which is based on several behavioral assumptions.
In particular, we adopt an action-state representation (condition-action rule), a reinforcement learning rule
(explore and exploit mechanisms (Roth and Erev (1995)), the possibility of using counterfactual reasoning
(EWA based, Camerer (1999)) and finally an intertemporal decision-making (q-learning (Sutton and Barto
(1998), Watkins (1989)).

However in our market model, there is no room for belief-based reasoning (belief-based models assume
that agents explicitly model opponents’ behavior) because of the large number of buyers and the fast
decision-making process. Indeed, as previously mentioned, in reality the auctioneer speeds up the trade
by occasionally diminishing the starting price.
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The action space P is a discrete set of bid prices p ∈ {P, ..., p̂, ...P} which is common to all buyers.
We consider both prices below and above the true reservation price p̂ for each buyer. The state space
S i = S i

int ×S i
ext is given by the cartesian product of an internal (private) state set S i

int and an external
(common) state S i

ext set. The internal state is represented by the number of units of good that the buyer
i has already bought qi ∈ 0, ...,Qi. The buyer can modify her reservation price conditional on the amount
of units she has already obtained. The external state enables each buyer to determine the number of the
current auction t ∈ {0, ...,T}. So, the buyer modifies her reservation price conditional on the time lasting
until the daily market close.

We incorporate the action-state space representation in the classical EWA-learning model (Camerer
(1999)) as follows.

The key element of the EWA algorithm are attractions Ai : P i → R. They represent a numerical
measure of how much it is worth to play an action. In the classical EWA model, attractions are defined
only over actions, because no state space is considered. We extend the original formulation by defining
attractions over both actions and states Ai : P i→ R×S i.

Attractions values evolve over time on the basis of current experience. Buyers are assumed to have a
complete representation of the state space when participating in the market, thus they update attractions
values conditioned on the state they are experimenting. In particular, the rule for updating attractions is
the following:

Ai
t(s

i
t , pi) =

φNt−1Ai
t−1(s

i
t , pi)+ [δ +(1−δ )I(pi

t , pi)]Ri(pi, p−i,si
t)

Nt
, (4)

where pi
t is the last action played, si

t is the current state, I(·, ·) is the indicator function and Nt stands for
number of “observations equivalents” of past experience which are updated according to:

Nt(si
t) = φ(1−κ)Nt−1si

t +1. (5)

For a detailed explanation of the role played by the three parameters δ , φ , κ , see the original paper by
Camerer (1999). The reward term Ri(pi, p−i,si

t) depends on the current state, in particular on the internal
state because of the marginal profit of the current unit. Furthermore, we adopt a different reward function
than the standard instantaneous reward/profit Ri

t(pi
t , p−i

t ,si
t) = π

i,q+1
t . We use as a basis the Q-learning

reward formula.

Ri
t(pi

t , p−i
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i
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t), i f pi
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t (6)

· = γA∗,it (si
t), i f pi
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t (7)

where:
A∗,it (si

t) = max
pi∈P i

Ai
t(s

i
t+1, pi). (8)

The A∗,it (si
t) term enables the optimizing agent to be forward-looking. She can anticipate the potential

optimal profits in next state given past experience. The agent can thus incorporate in her current utility
the expectation of the maximum future rewards in the next round/state. The probability of choosing an
action is then monotonically related to the attractions by implementing a classical logit probabilistic choice
model:

π
i
t (a

i) =
eλt Ai

t(a
i)

∑ai eλt Ai
t(ai))

. (9)

It is worth noting that, the original EWA learning model assumes that the buyer reinforces not only
the most recently played action but all other actions as well. Our qEWA learning model allows for almost
full updating, because buyers need to be able to determine with certainty and by means of counterfactual
reasoning the resulting reward and the next state. This is easy to understand with the following analysis of
the consequences of a bid. In particular, we can infer the new state if the buyer lost in the following cases:
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• she can easily understand that any other private reservation prices that she would have had below
the market price would have yielded an identical profit equal to zero and the same future state.

• she can also infer what would have happened if her reservation prices had been above the market
price.

and if the buyer won:

• she can easily understand that had she had any other private reservation prices above the second
best market price (where the first was her own winning bid price) would have yielded a similar
outcome of the market game (but different profit) and the same future state.

• she can also infer that for prices below the second best market price she would have had zero
profits, previous internal state and next external state (one auction round more).

• finally, we assume that she is not capable of guessing what would have happened in the case where
her bid at the same price of the second best market price.

In line with our modeling assumption, such as the reinforcement of the actions that were not taken, we
adopt the following set of parameter of the original EWA model which corresponds in the EWA cube
representation to the fictitious play corner: φ = 1, δ = 1, κ = 0 and λ = 10−6.

3 SIMULATION RESULTS

In Figure 2 the experimental setup is illustrated and the parameters which are varied for the different scenarios
are as follows. by providing some notations used for defining the different scenarios. T represents the
amount available, or equivalently the number pf auction rounds, on a particular day, for the daily amount of
auction, and D is the number of days for which one simulation is repeated. To analyse what happens once
the learning process has had time to take place we select, F a number of days at the end of the simulation
to examine the behaviour to which the buyers have converged. Finally, R is the number of independent
simulations or repetitions of each market scenario. A scenario is also characterized by several parameters
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Figure 2: A daily market is composed of T identical auction rounds, on each of which only one unit of
good is traded. One simulation is composed of D days. A number R of simulations, giving the same
market and experimental condition, are run independently for each scenario studied in order to compute
the results at the equilibrium as an average over the last F days of each simulation.

specifying the supply and the demand on the market. This is shown in Figure 3 and Table 1 for the first
scenario we simulated.

3.1 Scenarios 1: one learning buyer plus one random buyer

Table 1 gives the simulation settings for the two scenarios, 1A and 1B, investigated in this session. Table 1
is composed of three parts: the left part lists the simulated scenarios, the central part reports the values of the
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Table 1: Simulation settings for scenarios 1A and 1B.

Scenarios

1A
1B

Simulation
R D F
20 10000 50
20 10000 50

Supply ‖ Demand
T P1 Pr

8 10, 6 1
8 10, 10 1

simulation settings defined previously in Figure 2, whereas the right part reports the values for characterizing
supply and demand in each of the simulated scenarios. Let us look at the left part. The number of days
that we have chosen before we consider that learning has taken place might appear excessive. However,
this ensures that we can be reasonably confident of any evidence of statistical regularities that we find. By
repeatedly exploring all possible states and actions given opponents’ behavior over several days we ensure
convergence. It is worth remembering that only the last F=50 days are then considered for studying market
results. As far as supply is concerned, the parameter T (daily auction rounds) fully describes the daily
overall supply given our assumption that one unit is traded in each round. Finally, demand is generated by
n learning agents P1, P2, . . . Pn or (and) a “zero-intelligence” buyer who chooses uniformly at random from
the action space P . The presence of the latter agent guarantees that there is always positive demand for
each unit of the good. The action space is the set of 11 prices p ∈ {0,1 = P,2,3, ...,10 = P}. We introduce
the action corresponding to a bid price at 0 which is below the reservation price of the seller P, in order
to give buyers the option to simply exit the market.

The first scenario (1A) is thus characterized by 8 auction rounds and one learning agent willing to buy
two out of the eight traded units of good with diminishing marginal profits (10 and 6) and by the presence
at each auction round of one uniformly random buyer. The internal states are given by the set of possible
goods bought S i

int ∈ {0,1,2} and the external states, by the set of auction rounds S i
ext t ∈ {0,1,2, ...,8}.

Figure 3 presents one plot representing the averaged action-state matrix of attractions (estimated over
the final S days) for the learning buyer. The action-state attraction matrix reports what a buyer has learned
about the desirability of an action/bid price (y-axis) given a specific state (x-axis). The figure shows with
dots the best action for each state given the information that the individual has obtained while learning. It
can be thought as the mental map adopted by the buyer to play on the market. Indeed, the dot correspond
to the bid price played at each state, because after learning the buyer always select the action with the
highest attraction given the state. The states (y-axis) are represented by first fixing the internal state and
then running over the external states. Thus, states from 1 to 8 refer to the eight auction rounds, respectively,
when the buyer has bought 0 unit of good out of the 2 units she is willing to buy. States from 9 to 16 refer
to the sequence of the eight auction rounds when the buyer has bought only one unit of good (she still
needs one more). It is worth noting that in Figure 3 there is one state where all actions are indicated with
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Figure 3: Action-state matrices for scenario 1A (linear demand). The plot highlights the best action for
each state.

a dot, that is, state 9. This reflects the fact that such a state is impossible since it would be one in which
the buyer at the outset of the auction has already purchased one unit. Since this state is never explored
its attractions values always remain at zero and thus equivalent. On the y-axis only the prices between P
and P are shown, but, as previously mentioned, we have introduced a further action corresponding to a
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bid price at 0 (which we do not plot) providing the buyer with the possibility to exit the market. This exit
strategy is never chosen since the buyer is always willing to buy until she obtains the second unit. Indeed,
one more state is always added in the simulation which we never mention and shows in the plots. This
state is a final absorbing state, where buyers end when they have bought all the units they need. In the
absorbing state, buyers bid at 0. When a new trading day occur buyers exit from this absorbing state and
they restart from state 1.

The “mental map” of the unique learning buyer (reflected in Figure 3) represents the learned behavior
of the buyer after several days of “practice”. The first finding is that a significant difference exists between
the set of states (1 to 8) when the buyer has not yet bought any good and the set of states from 9 to 16
when one good has been bought. The former set exhibits bid prices higher than the latter set for each
corresponding auction round. This behavior simply reflects the fact that, in this scenario, the marginal profit
yielded by the second unit is lower than that of the first unit. It is worth noting that all the best actions are
significantly below the corresponding marginal profit, namely, 10 and 6. A second and original feature of
the learning algorithm is that the buyer learns to recognise time pressure. As time passes without success
the buyer learns to increase her bids. Thus, as auction rounds go by the bid price increases for both internal
states. In the last auction rounds, the buyer still willing to buy some units of good increases her chance to
win by raising the bid price. Given this and the fact that the disturbance term (the random buyer or ”noise
trader”) has mean 5, we can understand how the level of the price evolves. For states from 1 to 8, bid prices
are significantly below the corresponding marginal profit (10), but progressively in the later auction rounds
bid prices increase very close to the average disturbance price. The buyer learns, in particular in earlier
auction rounds, to make a risky bet (bidding at a price significantly lower than the average disturbance
price), because she knows that she has still in the future a certain number of opportunities in the subsequent
auction rounds to increase her chance of winning the first unit of good by raising her bid price. Similarly,
the reasoning applies to states from 10 to 16, but it is also obvious that the bid for the last unit will be
lower in the case where the individual has already obtained a unit. In effect, the buyer learns t0 bid against
the distribution of bids with which she is actually faced.

Now we give the results for the inelastic retail demand market scenario (1B) where the marginal profits
for the learning buyer are constant and equal to 10. One might expect the first finding in the previous
scenario to vanish, and that a constant behavior (price strategy) would appear irrespective of the internal
state, that is, how many units of good she has already bought. Figure 4 plots the action-state attraction
matrix and the best action in each case. It is evident that the bidding behavior does not change significantly,
in the sense that both previous findings are confirmed, while the second one is now obvious (given the
experimental evidence of previous scenario), the first is not trivial. The buyer learns a different bid price
for trying to obtain the first unit of good compared to the second one. This phenomenon cannot be due
to different profitability of the units (marginal profits are constant), it is more the outcome of a betting
behavior faced with time pressure, that is, the buyer can take more risk (diminishing bid prices) after having
bought at least the first unit of good (states from 9 to 16). In other words with one unit in hand and the
option of bidding in later rounds the buyer can bid lower.

Finally, Figure 5 reports the price dynamics for four averaged generic days for both scenarios. The
comparison shows clearly and the previous discussion explains why. It is worth noting that the noise
trader imposes an exogenous reference price level for trading, for the purchase of both units of the good.
This scenario is extreme in one sense, the market environment with which the learning buyer is faced is
stationary. We will see that the next scenario is extreme in another sense.

Scenarios 2: four learning homogeneous buyers

Table 2 shows the simulation settings for two new scenarios, 2A and 2B. In these scenarios we propose to
investigate market outcomes with four learning buyers plus one uniformly random buyer or noise trader.
The four buyers co-evolve determining a highly non-stationary environment where four interdependent
learning dynamics occur. In a certain sense this scenario is at the opposite extreme to the previous one.
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Figure 4: Action-state matrix for scenario 1B (inelastic demand).
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Figure 5: Transaction prices for four generic days (eight auction rounds per day) after l earning for both
scenarios 1A (black curve) and 1B (red curve).

Table 2: Simulation settings for scenarios 2A and 2B.

Scenarios

2A
2B

Simulation
R D F
20 10000 50
20 10000 50

Supply ‖ Demand
T P1 P2 P3 P4 Pr

8 10, 6 10, 6 10, 6 10, 6 1
8 10, 10 10, 10 10, 10 10, 10 1

Now, we are assuming that the learning dynamic for each buyer starts from scratch and simultaneously,
indeed, they have no priors at all over the market environment. In reality, of course, except in rare cases,
buyers do not learn simultaneously from scratch, they do have priors based on their previous experience.
For instance a market entrant faces expert players who have already developed a more stable bidding
behavior.

Figure 6 and Figure 7 report the action-state attraction matrices after the learning period for both
scenarios 2A and 2B, respectively. We report the action-state attraction matrix for only one of the four
learning buyers, since, as one would expect, the four matrices are extremely similar in their structure, as
all buyers are homogeneous and the situation is therefore symmetric.

We now observe significant difference between the bidding behaviors in the elastic and non elastic
demand situations emerges. In the first scenario (see Figure 6), both the diminishing marginal profit and the
time pressure effects are present as in previous scenarios. However, the level of the “optimal” bidding price
with respect to each state, is now considerably higher. Obviously, we have generated a market condition
with more demand. If the noise trader wins in any round the players can no longer all purchase two units.
There are three more learning buyers competing for the same amount of scarce resource as in previous
scenarios. Given this, figure 7 reports that there is now no difference between the bidding price for all
states (both internal and external), the only effect which is still slightly present is the time pressure.
Figure 8 reports the price dynamics for four averaged generic days, after learning, for both scenarios. The
comparison now reveals that the declining price phenomenon is not common to both scenarios. This effect
is present only in the 2A (linear demand) model. The diminishing marginal profit condition is now the

1714



Guerci, Kirman, and Moulet

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10

States
P

ric
es

Figure 6: Action-state matrix for scenario 2A (linear demand).
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Figure 7: Action-state matrix for scenario 2B (inelastic demand).

only cause for the declining price paradox. In earlier auction rounds, the units of good with the highest
value to the buyers are bought, in later rounds the remaining ones. This effect vanishes in the 2B (inelastic
demand) model. The buyers have learned to compete strongly to get the desired amount of goods and the
prices bid remain at the same level for both units of the good. Indeed, the opposite effect, a slight increase
in the price levels as rounds go by, now emerges, because the time pressure effect now plays a prominent
role. It is worth noting that the purchases of both units of good occur at prices significantly higher than
the average disturbance price or noise trader bid.
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Figure 8: Transaction prices for four generic days (eight auction rounds per day) after learning.

Scenario 3: four learning homogeneous buyers plus random buyers

Table 3: Simulation settings for scenarios 3A and 3B.

Scenarios

1A
1B

Simulation
R D F
20 10000 50
20 10000 50

Supply ‖ Demand
T P1 P2 P3 P4 Pr

8 10, 6 10, 6 10, 6 10, 6 1
8 10, 10 10, 10 10, 10 10, 10 1

Finally, Table 3 shows the simulation settings for the last two scenarios considered, 3A and 3B. These
scenarios are identical to scenarios 2A and 2B except for the fact that one day is composed of 12 auction
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rounds instead of eight. The aim is to explore what happens when the demand of the learning buyers is
kept the same whilst more units of the good are available. The competition amongst the learning buyers
is thus, in effect, diminished. Figure 9 and Figure 10 report the action-state attraction matrices for both
scenarios. Comparing the previous scenario 2A and the new one 3A, similar bidding behavior emerges.
The bids for the first unit of good are again around 6, whereas those for the second one are slightly lower
4 instead of 5, just below the average disturbance price of 5. In the new market context, buyers can take
more risk and the presence of the random buyer is more strongly felt.

But now a big difference emerges between scenarios 3A and 3B. The decline in competitive pressure
allows learning buyers in later rounds become more aware of the presence of the random buyer. Thus they
start to decrease their bids for the second unit of the good. Again a different valuation is present in the
context of constant marginal profits. This effect is evident also in Figure 11. Figure 11 shows the price
dynamics for four averaged generic days after learning for both 3A and 3B scenarios. The declining price
phenomenon is now present again in both scenarios.
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Figure 9: Action-state matrix for scenario 3A (linear demand).
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Figure 10: Action-state matrix for scenario 3B (inelastic demand).

1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 101112
1

2

3

4

5

6

7

8

9

10

Auction rounds

P
ric

e

 

 

linear demand inelastic demand

Figure 11: Transaction prices for four generic days (twelve auction rounds per day) at convergence.

4 CONCLUSIONS

This paper has proposed an agent-based computational model to investigate the market price dynamics of
sequential Dutch auctions in particular in the context of fish markets. Our approach was to see to what
extent learning by market participants who reinforce on their previous experience and can do counterfactual
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reasoning will generate the sort of phenomena observed in empirical perishable good markets. The particular
market on which we based our model, that in Ancona is one on which wholesale buyers meet each other
repeatedly and participate in a sequence of Dutch auctions at which the catch of the previous night is
sold. The model focuses on the behavior of buyers, and, in particular incorporates inter-temporal profit
maximization, conjectures on opponents’ behavior and fictive learning. Nonetheless, some behavioral
aspects have been neglected. We implicitly neglect the emergence of loyalty among buyers and sellers. In
reality, auctioneers try to mitigate this inefficient market outcome by randomly ordering the presentation
of the goods of the various sellers throughout the auction rounds. Obviously, this action is not sufficient,
because buyers might wait, taking some risk, given that the identity of the vessel that caught the fish that
is currently being sold is posted. However this is offset by buyers not knowing when and if fish from
the vessels that they favour will appear. Indeed, some empirical studies on auction-based fish markets
(Giulioni and Bucciarelli (2011), Gallegati et al. (2009)) have statistically confirmed the presence of loyalty.
However, this aspect does not seem to be important in explaining the declining price phenomenon, since
there is no obvious reason for the random sorting of the vessels to induce a decline in price as auction
rounds go by.

A further behavioral component which has not been incorporated in our buyer’s behavioral model
concerns the formation of expectations about daily supply. In reality, when buyers come to the market in
the early morning, they start to form expectations about the daily overall market supply. They can collect
information by looking at the amount of boxes or even speaking with other market actors, they also will
have an idea as to how much impact the weather will have had on the catch. Buyers thus form priors
about the expected daily supply and bid accordingly. Conversely, our behavioral model, which is a first
step to modelling the results of learning in this complex context, has been trained over different scenarios
which have been kept stable throughout each independent simulation (number of buyers, number of auction
rounds/unit of goods sold).

In conclusion then, our agent-based computational model has successfully replicated the price declining
phenomenon which has long been thought of as paradoxical in economics. Our approach involves three
potential sources for this feature. They are diminishing marginal profits (linear retail demand model),
time pressure (perfectly inelastic retail demand model) and more abundant supply. All these aspects
in a more complex and realistic market settings can jointly contribute to the emergence of such price
formation phenomenon. Finally, it is worth remembering that all the simulated scenarios have considered
an homogeneous population of learning buyers. The heterogeneity of buyers (in particular in terms of
marginal profits) is an aspect that has not been addressed here and has been left for future research.
Obviously, this may further contribute to “exogenously” generate the declining price effect.

The other important line of research on this topic will be to undertake experimental and empirical
analysis in order to validate the behavioral model. Statistical investigation of human-subjects experiments
and the bidding data of participants on real wholesale fish markets will enable us to confront our theoreti-
cal/computational findings to the empirical and experimental evidence for some of the apparently anomalous
features of market prices.
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