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ABSTRACT 

Agent based models are very useful tools for exploring and building theories on human behavior; howev-

er, only recently have there been a few attempts to empirically ground them. We present different models 

relating to theories of human behavior and compare them to actual data collected during experiments on 

irrigation games with 80 individuals divided in 16 different groups. We run a total of 7 different models: 

from very simple ones involving 0 parameters (i.e., pure random, pure selfish and pure altruistic), to in-

creasingly complex ones that include different type of agents, learning and other-regarding preferences. 

By comparing the different models we find that the most comprehensive model of human behavior be-

haves not far from an ad hoc model built on our dataset; remarkably we also find that a very simple model 

presenting a mix of random selfish and altruistic agents performs only slightly below the best performing 

models.  

1 INTRODUCTION 

Behavior in social dilemmas cannot be explained by the traditional model of rational and selfish deci-

sions makers. Humans cooperate to a much larger extent than can be expected from predictions based 

on homo economicus (or economic human). However, no generally agreed alternative theory has been 

developed. Experiments on decision making have been used to test hypotheses to build alternative 

theoretical frameworks (Camerer 2003). Those experiments have revealed important insights into the 

importance of learning, other-regarding preferences, risk aversion, etc. 

Our own research focuses on social-ecological systems and we study especially common-pool re-

source problems. Experiments performed by Ostrom and others show that participants do not behave 

as selfish rational actors in common-pool resource dilemmas (e.g., Ostrom et al. 1994). Since the late 

1990s agent-based models have been used to explore alternative models of human behavior (e.g., 

Deadman 1999; Poteete et al. 2010). 

Experimental data provides individual level data within a well-constructed problem. Therefore, 

such data might can be used to develop empirically-grounded agent-based models (Janssen and 

Ostrom 2006). However, there is the challenge of how to compare the small sample of observations 

with a stochastic model. Which metrics do we use for our comparison and how do we weight them? It 

is a common practice to calibrate one structural model to the data (e.g., Arifovic and  Ledyard 2012). 

However, we will test alternative structural models to the data to compare a variety of possible expla-

nations. 

The aim of this paper is to demonstrate a systematic comparison of alternative models and the 

challenges we experienced. We use data from so-called irrigation games since those are the kind of 

experiments we do ourselves. Not only do we have a good understanding of the data, we have also 
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experienced the limitations in using the traditional econometrics analysis (Rollins et al. in prepara-

tion). Our experiments let participants make multiple decisions during each round in a particular or-

der. Since econometric models are based on the independence of the assumptions, there is a limitation 

in using econometrics to understand the interlinked mechanisms. We first discuss the irrigation 

games, and the basic results of these experiments. Then we discuss the models we compare and how 

we will compare them. We then present results and perform some sensitivity analysis. Finally, we 

conclude with lessons learned on model comparison and provide some suggestions for future work. 

1.1 Irrigation Games 

Our research focuses on the robustness and governance of social-ecological systems, and we use 

small-scale irrigation systems as a model system. Over the years we have done experiments in the lab 

and field on a variety of questions that are beyond the scope of this paper. For the purpose of this pa-

per we use data from laboratory experiments of so-called irrigation games (Janssen et al. 2012).  

 In the irrigation game participants have positions A, B, C, D or E.  A has the first choice to har-

vest water from the common resource. Then B has the next turn to harvest water from whatever 

amount was left by A, and so on. The order of the five players is randomly determined before the first 

round and remains fixed over the rounds of the game. Participants receive an endowment ω of 10 to-

kens in each round. First each participant makes a decision xi on how much to invest in a public fund 

that generates the infrastructure and therefore determines the amount of water available for the whole 

group to share. In Table 1, the water provision generated is defined as a function f() of the total in-

vestments of the five participants. This production function is based on the challenge actual irrigation 

systems face. Upstream participants cannot generate an irrigation system alone, and therefore they 

will need the contributions of downstream participants. 

 Experiments used for this paper include variability of water availability given a certain level of 

infrastructure (Rollins et al. in preparation). The variability is calculated as the probability of having 

low, medium or high water availability. We distinguish different levels of uncertainty. When variabil-

ity is low we use either the low, medium or high water availability column of Table 1 with probability 

1/6, 2/3, 1/6, respectively, in order to define whole group water availability. In case of high variabil-

ity, we use the low, medium and high column of Table 1 with probability 1/3, 1/3, 1/3, respectively, 

in order to assess group water availability. 

 

Table 1: Water production as a function of units invested in the public infrastructure. 

Total tokens invested into 

Public Fund 

Water Available 

Low 

LowVar: 1/6 

HiVar: 1/3 

Medium 

LowVar: 2/3 

HiVar: 1/3 

High 

LowVar: 1/6 

HiVar: 1/3 

0 – 10 0 0 0 

11 – 15 2 5 8 

16 – 20 8 20 32 

21 – 25 16 40 64 

26 – 30 24 60 96 

31 – 35 30 75 120 

36 – 40 34 85 136 

41 – 45 38 95 152 

46 – 50 40 100 160 
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Second, each player, in sequential turns from upstream to downstream players decides how much to 

extract from the water available to her, that is, the water produced minus the water extracted by those 

before her in the sequence. Each token kept (not invested) in the first stage has a monetary value for 

the player that is equal to the value of each unit of water extracted in the second stage.  

 This experiment includes a first dilemma of upstream participants who need the contribution of 

downstream participants to maintain the structure of their common resource, which is crucial for the 

production of water in the game. However, the downstream participants can only obtain benefits from 

the resource if upstream participants avoid the temptation to deplete the common resource and leave 

little water for downstream players.  

 Experimental data used in this paper do not include scenarios in which participants can communi-

cate or coordinate. After all five have made their investment decision, the total water available for the 

extraction phase is announced. Then, participants can only see how much water is available to them 

before they decide how much to extract. Hence, individual levels of decisions or extractions are not 

known. The water left by participant E will not be available for future rounds. In practice no E partic-

ipant ever left any water behind. 

 The game is asymmetric since upstream participants have first access to the resource compared to 

downstream participants. Under this asymmetric game, participants first experience a provision di-

lemma in the contributions stage, and then face a resource appropriation dilemma when they extract 

from the generated resource. The earnings of the participants are the result of provision – xi – and ex-

traction – yi – decisions, and the resulting payoff zi for player i is defined as 

 
 

(1) 

where: 

  
Rational, self-interested individuals would not invest in infrastructure provision in the first stage. 

Since the upstream participant is expected to collect the whole resource, downstream participants will 

not invest. For participant A there is no benefit to invest when others don’t.  If this is the reasoning of 

the participants in the last round of experiment we find via backward reasoning that the same happens 

for all earlier rounds. Thus, the Nash equilibrium for this game is that no one invests and all receive 

10 tokens for group earnings of 50 tokens. 

To define the cooperative solution we calculate the maximum amount of the infrastructure plus 

the tokens not invested. There are multiple social optimum outcomes. For a 41-token investment, a 

resource of 95 tokens is generated, and for a 46-token investment a resource of 100 tokens is generat-

ed in each round. The total earnings of the group in the cooperative solution amounts to 104 tokens, 

doubling the social earnings of the Nash equilibrium. 

1.2 Experimental data 

We use data from experiments run at Arizona State University with 22 groups of five individuals 

each. A detailed analysis of the experimental results can be found in Rollins et al. (in preparation). 

Results from the experiments are shown in Figure 1.  
 The inequality can also be quantified by Gini coefficients. We calculate the Gini coefficients for 

investments as well as extractions. The average Gini coefficient for investments is 0.30.  The average 

Gini coefficient for extractions is 0.38. 

 Analysis in Rollins et al. (in preparation) shows that the order of the treatments has no significant 

effect. Figure 1 reports the main results regarding investment and extraction during the experiments. 

Treatments are not statistically significantly different, thus the order in which the different levels of 

uncertainty have been introduced did not affect the results. We calibrate models on all treatments 
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simultaneously. This mean that the outcome is one model that aims to explain the observed patterns in 

all treatments 

 

 

Figure 1: Average group investment per round with +/1 standard deviation and average contribution 

and collection level for each position with standard errors. 

2 MODELS 

We compare the outcome of different models grounded in theory and simulated against the experi-

mental data. We start by comparing three null models, acting as benchmarks to more complex models 

with multiple parameters needing calibration. 

 The models define agent types where each agent type is a representative agent for that type de-

fined by a set of parameters. Some of the models below define two or three types of agents in the 

population of players. The calibration procedure estimates the mix of different agent types. 

 If all agents are of the same type, they do not all make the same decisions. The reason is that de-

cisions of most agent types are probabilistic. We also implement a version of calibrated models that 

assumes that parameters for the agent behavior varied among the agents using normal distributions 

among the average parameter values. We do not find this to improve the performance of the models 

significantly. Hence we only discuss the model with homogenous agent types. 

2.1 Null models 

Selfish  

 Investment: all agents will always invest 0. 

 Extraction: all agents will always extract the maximum possible amount. 

 

Altruistic 

 Investment: all agents will always invest 10 tokens (= the maximum available). 

 Extraction: all agents will take an equal share of the amount of resource available. Hence 

agent in position i will take a share equal to 1/(6-i) of the amount available to i. 

 

Random 

 Investment: agents invest an integer amount uniformly distributed in the interval [0  10]. 

 Extraction: agents extract an amount uniformly distributed between 0 and the maximum 

amount available to them. 
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2.2 Calibrated models 

Mixed Strategy (mixedrsa) 

 Agents can act according to selfish, altruistic or random behavior according to probability ps 

(probability of being selfish), pr (probability of being random) and pa = 1 – (ps + pr) (proba-

bility of being altruistic). After an agent is classified as selfish, altruistic or random, he fol-

lows the rules of investment and extraction as described in section 2.1.  

 We calibrate the fraction of agents in the population using the selfish, altruistic and random 

strategy in order to minimize the difference between simulated and observed behavior in in-

vestment and extraction. 

 

Base level plus trembling hand (pseudorandom) 

 Investment: in the first round inv is derived from a truncated random normal distribution be-

tween 0 and 10 with mean minv and standard deviation stdevinv. In subsequent rounds (i.e., 

from round 2 to 15) investment levels are defined by the investment level of the first round 

plus a noise term drawn from a Gaussian distribution with mean 0 and standard deviation 

stdevn Investment is always bounded between 0 and 10. 

 Extraction: agents extract an amount corresponding to the equal share plus a noise term 

drawn from a Gaussian distribution with mean 0 and standard deviation stdevn2.Extraction 

level is bounded by availability. We calibrate mean and standard deviation of the initial in-

vestment distribution and the standard deviation of the added noise in the investment and ex-

traction phases. 

 

Simple rules based on statistical analysis (heuristic) 

 Initial investment : investment is drawn from a random uniform distribution between 0 and 5 

with probability ps and from a random uniform distribution between 6 and 10 with probability 

1-ps 

 Investment: 𝑖𝑛𝑣𝑡 = 𝑡𝑟 ∗ 𝑤𝑖
∆𝑖𝑒𝑡−1 where tr = trust parameter in the interval [0,1], wi = weight 

given to ∆𝑖𝑒𝑡−1 (difference between extraction and investment in the previous round). In-

vestment levels are defined only in the interval [0,10]. 

 Extraction: 𝑒𝑥𝑡𝑡 = (1/(6 − 𝑖))𝑤𝑒 where i = position of agent assuming value 1, 2, 3, 4, or 5 

and 𝑤𝑒 = parameter that weighs the importance of position in extraction. Extraction levels 

cannot exceed resource availability for player i. 

 We calibrate the weights given to investment and extraction and the variable representing 

trust.  

 

Other-regarding preference model with two types of agents (utilitarian):  

This is the most complex and the most comprehensive model based on findings from behavioral eco-

nomics (e.g., Charness and Rabin 2002; Camerer 2003; Arifovic and Ledyard 2012). We assume two 

types of agents. The model (from here on, utilitarian) has a probability ps to have complete selfish 

agents (defined as agents having α=β=0). We assume that agents maximize their utility. This utility ui 

is formalized in a general way to include different types of other-regarding preferences:  

 
 

(2) 

where: 

 αi and βi are drawn from the interval [-1,1]. 

zi is agent i’s earnings, and  is the average earnings of the other agents in the group. α can be re-

garded as the strength of an individual’s aversion to exploiting others, and β can be regarded as an in-
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dividual’s degree of altruistic tendency. A lower value of β compared to α implies that a player gives 

a larger weight to his own payoff when his payoff is smaller than the average payoff of others com-

pared to when it is larger. In line with Charness and Rabin (2002), we can define the following cases 

for β≤α≤1: Case 1: When β≤α≤0, the player is highly competitive. Case 2: When β<0<α≤1, the player 

prefers payoffs among all players to be equal. Case 3: When 0<β≤α≤1. The player feels guilt earning 

more than others, and gains a sense of pride in acting altruistic. Case 4: if α=β=0, we have the condi-

tion in which a player cares only about his or her own welfare. 

 In order to define the investment decision, agents are assumed to estimate the expected utility 

based on the expected behavior of others. 

The expected investment level of others is equal to 

  (3) 

where ηi is the expected level of cooperation by other agents, which is within the interval [0,1]. 

This enables each agents to estimate an expected level of the public infrastructure, 𝑝̂𝑖. For each 

level of investment xi, the expected level is  

  (4) 

Agents predict how much of the resource would be available to the group using the production func-

tion of Table 1 with the expected value 𝑝̂𝑖.  
 How much is expected to be available to agent i depends on how much upstream agents have tak-

en from 𝑝̂𝑖. The lower the level of cooperation they expect from the other participants, representing 

here the upstream participants, the less she expects to receive from the resource before it is her turn. 

Hence agents assume that an amount is available for agent i.   

  (5) 

If agent i expects that other agents are cooperative, ηi = 1, they will take an equal share from the re-

source. If they expect the other agents will be less cooperative, it is then expected that they will take 

more than an equal share.  

In rounds 2 to 10 a simpler estimation technique is used by the agent to determine 𝑦̂𝑖
𝐴. The agents 

are assumed to expect the upstream participants take a share si from the expected resource size. 

 
 

(6) 

 We use the values of αi and βi to define how much the agent takes from the share that is expected 

to be available to her. Agents who are selfish are expected to take the whole amount of available re-

sources, but those with other-regarding preferences are expected to take a lower level. 

  (7) 

 Now the agent can define her utility of investing xi and receiving ŷi from the resource. Using the 

expected earnings, we can estimate the expected utility for agent i for each level of investment. Based 

on the expected utility levels, agents make a probabilistic choice of how much to invest 

 

 

(8) 

where Pr(x) is the probability of investing an amount x in the public fund and λ  is the weight given to 

the utility values. If λ is 0 all options have an equal probability, while if λ is equal to infinity the 

agents choose the option with the highest expected utility. In the numerical calibration of the model 

we use an upper bound of 5. 

Based on the investment decisions of the agents the actual level of the public infrastructure p can 

be determined. Now, each agent decides how much to collect based on the available resource during 

the turn in which she can make the decision. Similarly to the investment decisions, the expected utili-

ty for each level of collection is determined, and decisions are made from upstream to downstream. 
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The agents update the expected level of cooperation ηi based on the information they received on 

the average investments of the other agents. The learning parameter τ1 defined the speed of learning. 

If τ1 is equal to 1, ηi remains the same, and agents are therefore assumed not to learn, while if τ1 is 

equal to 0 agents assume that the level of cooperation in the next round is the same as observed in the 

current round. 

  (9) 

 Similar to the share that upstream agents are expected to extract, we assume that agents update 

the value of si based on the observed share, where τ2 is a learning rate. 

 

 

(10) 

2.3 Defining the fit 

We calibrate the models described on the experimental data. We use the standard genetic algorithm of 

BehaviorSearch.org for the model that is implemented in Netlogo 5.0.3. The model code and docu-

mentation can be found at http://www.openabm.org/model/3854/version/1/view. For the fitness eval-

uation of each parameter configuration we run the model 100 times the number of groups present in 

each treatment (6, 5, 5 = 16 in total). We run each model 1600 times. For each of the groups we com-

pare simulated and actual data of group investment per round, investment per position, extraction per 

position and Gini coefficient for investment and extraction. 

 The fit between the model and the data is based on the normalized squared difference between 

simulated and observed data. We scale all data used for calculating the metrics to be between 0 and 1 

and define the fit as 1 minus the squared difference between simulated and observed metrics. Hence 

for each of the metrics included, we calculate the fitness score between 0 and 1, using  

  (11) 

Where the data of the experiments, de, and simulations, ds, are scaled to values between 0 and 1. Then 

the fitness values of all 5 metrics are aggregated to derive the final fitness score used in the calibra-

tion. We assign equal weight to all 5 fitness measures.  

 The metrics used to evaluate the performance of the model include (please see online supplemen-

tary material for more details on how fitness measures are calculated): 

 Average group level investments in the public infrastructure level over the 10 rounds (f1).  

 The average contribution per position (f2).  

 The average collection per position (f3). 

 The average Gini coefficient of contributions (f4). 

 The average Gini coefficient of collected tokens (f5).  

Aggregating fitness measures: 

There are different ways to aggregate the individual fits with the indicators.  However, we use the 

most conservative approach (i.e., the approach that, in value, gives the lowest fitness, thus penalizing 

more heavily low fitness in one of the five metrics used to evaluate the performance of the models. 

Therefore we use a multiplication function between the 5 fitness values. Janssen (in press) compared 

different fitness measures and did not find a qualitative difference in the results. Formally, (12) re-

ports the equation by which the fitness measure is calculated:  

  (12) 
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Calibration process 

Null models are not calibrated (as they have no parameters), and their fitness is calculated in order 

compare them to the calibrated models. While selfish and altruistic models are non-stochastic (i.e., re-

sults are always the same no matter how many times we run the model) the random behavior model is 

run 100 times and averages are taken for comparison. 

 Calibration for the calibrated models is performed using a genetic algorithm with 10*100 indi-

vidual randomized starting conditions per model run. Fitness for each model run represent an average 

of 100 runs with the same initial parameters. The calibration process allows for 10,000 different per-

mutation per run. We present parameter values and the best fitness score given by 𝑓𝑚𝑙𝑡.We use the 

standard GreyBinary Chromosome genetic algorithm from BehaviorSearch 1.0, with population size 

= 50,  mutation rate  = 0.02, and  cross-over rate  = 0.7. We stop the genetic algorithm after 2,000 fit-

ness evaluations. It is important to note here that the fitness is only calculated for new parameter 

combinations. We recheck our best fitness 20 times in order to avoid results driven by chance as all 

calibrated models have a certain degree of stochasticity. We perform 10 different searches per model.  

3 RESULTS  

We first begin assessing the fitness of the different models proposed. As Table 2 and Figure 2 show, 

more complex models (i.e., models with more parameters) do not always lead to better results.  The 

best fitness is reached through the heuristic model (our model based on statistical analysis). All other 

models lead to statistically significantly lower performance (based on Wilcoxon-Mann Whitney test). 

 

Table 2: Maximum fitness (fmlt) reached by the different models (null and calibrated) 

Model 
fmlt 

avg stdev min max 

selfish 0.013 0.000 0.013 0.013 

altruistic 0.052 0.000 0.052 0.052 

random 0.408 0.001 0.405 0.411 

mixedrsa 0.489 0.000 0.488 0.490 

pseudorandom 0.315 0.001 0.313 0.315 

heuristic 0.577 0.019 0.539 0.588 

utilitarian 0.549 0.007 0.532 0.557 

 

 
Figure 2: Average (column), minimum and maximum (bars) fitness (fmlt) of different model types. 

Models are in order of complexity, from least complex models (selfish) to the more complex ones 

(utilitarian). 
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Table 3 shows parameter configuration  as defined by the genetic algorithm. The parameter configu-

ration represented in Table 3 are the configurations leading to max(fmlt) for each model type. Mixe-

drsa shows that the estimated share of selfish agents is zero, the share of random agents is 75% and 

the share of altruistic agents is 25%. It is remarkable that this simple model performs only slightly 

worse compared to the best performing models. The parameters concerning the pseudorandom model 

seem to maximize heterogeneity regarding extraction (stdev(n2)=1), while investment is closer to 0 

than expected (i.e., baseline investment = 0 and noise added to investment equals to a normal distri-

bution with mean 0 and standard deviation  = 0.49). The heuristic model shows a parameter configu-

ration that is different, but not dissimilar to the coefficient of the statistical model on which it is based 

(where tr = 0.55, wi = 1.03 and we = -1.85). 

 

Table 3: Parameter configuration leading to the best (max) fitness (i.e. fitness = max in Table 2). Only 

calibrated models are taken into account. The last two columns represent percentage loss in fitness 

when specific parameters are increased/decreased by 10%. 

Model Parameter 

Max(fmlt) values Δfmlt 

Value StDev 
Parameter 

+10% 

Parameter 

– 10% 

mixedrsa 

ps 0.00   na na 

pt 0.75   -1.905 -2.248 

1- (ps + pt) 0.25   na na 

pseudorandoma 

inv 0.00 

 

-76.420 na 

n 0.00 0.49 -0.009 -0.005 

n2 0.00 1.00 na -1.991 

heuristic 

ps 0.40   -0.149 0.000 

tr 0.63  -0.901 -0.842 

wi 1.30  -3.448 -11.112 

we -1.40  -5.835 -8.547 

utilitarian 

ps 0.00   -5.087 na 

α 0.96  -1.493 -7.891 

β 0.57  -1.913 -3.652 

η 0.41  -0.489 -0.218 

λ 0.61  -0.326 -0.210 

τ1 0.90  -2.368 -0.482 

τ2 0.26  -0.071 -0.015 

Notes: Δfml = fmlt – max(fmlt) / max(fmlt) * 100. Δfml indicates percentage change in fitness compared to the 

maximum fitness as reported in Table 2. na = non available as calibration did not take parameter value in-

to account (parameter value falls outside the interval given in the calibration process). Standard deviations 

are always kept between 0 and 1 for maximization purposes. a = for the pseudorandom model,  mean in-

vestment in the sensitivity analysis is augmented by 1 unit (i.e., inv = 1) and sensitivity for the noise pa-

rameters is calculated by increasing/decreasing the standard deviation by 10% as the mean is fixed at 0.  
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The parameters of the utilitarian model require more explanation, and allow us to infer some general be-

havioral traits. According to the definitions put forth by Charness and Rabin (2002), we can affirm that 

individuals take social welfare in serious consideration being 0<β<α<1. Further, individuals have moder-

ate but noticeable expectation of others cooperating (η). Finally, the parameters of the utilitarian model 

shown in Table 3, allow us to draw a conclusion about learning. Specifically, learning tends to be slow 

with regard to expected cooperation (i.e., τ1=1 = no learning), at the same time, learning regarding the ex-

pected share of extractions by upstream users is faster (τ2 < τ1). 

 Table 2 displays the most performing models. We take the three best performing models (mixedrsa, 

heuristic and utilitarian) and show a detailed comparison between them and our original data. Figures 3 

and 4 portray detailed results for investment per round, and investment and extraction per person. The re-

sults show that different models seem to have different strengths. For example the utilitarian model is the 

most accurate in predicting inequality in distribution for extraction (i.e., 0.38 for simulated and original 

data) and extraction levels per position (Figure 4). On the other hand, the heuristic model performs best in 

predicting average investment level per position (Figure 4) and inequality in investment levels (0.30 for 

simulated and original data). Accurate prediction of investment per round are very difficult to infer with 

the model proposed and analyzed (Figure 3). 

 

 
Figure 3: Investment per round for the simulated and original data 

 

 

 
Figure 4: Average investment and extraction per position (original and simulated data) 
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3.1 Sensitivity analysis 

Sensitivity analysis is performed only for calibrated models (as null models do not have parameters). We 

increase/decrease the parameters’ values by 10% and rerun the model in order to assess sensitivity of the 

fitness value on the parameters of interest. We are not only interested in the best performing model, but 

also on the most robust one. Results of fitness sensitivity are reported in Table 3. 

 Our analysis show robust estimates for fitness to moderate changes in parameter values. The largest 

fitness decreases occur when we increase the mean of investment for the pseudorandom model. However, 

we do not take into consideration changes of multiple parameters. Maximum decrease in fitness is higher 

if we change multiple parameter at the time (i.e., -2.235% for mixedrsa, -78.032% for pseudorandom,-

19.222% for the heuristic, and -19.748% for the utilitarian model). From our sensitivity analysis we can 

conclude that more parsimonious models (i.e., models with less parameters) are more robust to changes in 

parameters. 

4 CONCLUSIONS 

Lately there is an increased interest in empirically calibrating ABM. Here we try an approach that is 

based on theory and relies less on actual data mining. We avoid the use of machine learning algo-

rithms (as in Wunder et al 2013) because to advance social science, the ABMs need to have been the-

oretically grounded in order to provide insights and theory development that go beyond a specific da-

taset. We tested various models that make assumptions according to specific behavioral theories (i.e., 

selfish agents, altruistic agents, mixed agents, and agents that maximize utility having other-regarding 

preferences), we compare different theoretical models to a high quality dataset stemming from exper-

iments we have performed. Further, we compare these theoretical models with a null random and a 

pseudorandom model and with a model that is based specifically upon the dataset (heuristic).  

Although models that are tailored to a specific dataset (and thus are built upon data-mining) per-

form better, the most complex behavioral models do not lag far behind in terms of performance. Fur-

ther, models that assume agents who behave altruistically and randomly reproduce data quite well, 

leaving open questions on how individuals behave during controlled experiments in a laboratory set-

ting.  

Finally, based on the parameters presented in Table 3 we can draw tentative conclusions on the 

behavior and characteristics of individuals. Individuals seem to be socially concerned (i.e., concerned 

with social welfare), do expect an intermediate level of cooperation, and have a hard time in learning 

expected cooperation but are faster learner when it comes to predicting the behavior of others based 

on past instances.  
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