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ABSTRACT

Business process modeling is a well established methodology for analyzing and optimizing complex
processes. To address critical challenges in ubiquitous black-box approaches, we develop a two-stage
business process optimization framework. The first stage is based on an analytical approach that exploits
structural properties of the underlying stochastic network and renders a near-optimal solution. Starting
from this candidate solution, the second stage employs advanced simulation optimization to locally search
for optimal business process solutions. Numerical experiments demonstrate the efficacy of our approach.

1 INTRODUCTION

Business processes, the defined sets of activities by which organizations set out to achieve specific business
goals, are often highly complex due to their associated large number of interrelated decisions and high
degree of uncertainty. Business process modeling, the process by which the structural representation of
the business process is created and the relationship between different entities in the business process is
defined, has been leveraged as an effective tool to improve and optimize business process performance
and/or financial metrics, thus contributing to improvements in these overall metrics for an organization.
Representative examples of business processes include order management by an online retailer and the
flow of patients through a hospital emergency room. A critical component associated with the successful
execution of many business processes is optimal resource capacity management. The resources in business
processes may be human resources (e.g., physicians treating patients in a hospital emergency room) or they
may be machine resources (e.g., resource capacity allocation in cloud computing environments).

Complex business processes are often characterized by the existence of one or more types of resources
serving one or more system demand flows where types of resources may be differentiated according to their
attributes (e.g., skills or service rates) and demand flows may be differentiated according to their workloads
(e.g., arrival or processing rates) and quality of service (e.g., performance guarantees). The objective of
resource capacity management is to determine the capacity allocation for each type of resource supporting
the business process that optimizes the organizational performance/financial goals. Often, constraints are
imposed that may limit the value of the achievable performance/financial goal or the total quantity of
resources that may be allocated. Contributing to the complexity of this resource capacity management
problem is the uncertainty inherent in business processes. This uncertainty may be present, for example,
due to uncertain demand arrival patterns or uncertain processing requirements.
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1.1 Common Solution Approach

Stochastic networks are often used to model the topology of a series of activities that comprise the business
process and to represent the dynamics and uncertainty associated with the resource capacity management
optimization problem. To facilitate optimal decision-making in the business process, the stochastic network
is analyzed. Optimal solutions yielded from the analysis of the stochastic network are translated into
requirements for optimal management of the business process. Two approaches are commonly adopted
for analyzing and deriving optimal solutions for stochastic networks associated with capacity management
problems for complex business environments. The first approach relies on the application of product-form
stochastic network results. Although the underlying stochastic network typically does not satisfy the strong
restrictions of a product-form queueing network, the results of this class of queueing networks are used to
provide simple approximate solutions of the resource allocation problem. The solution is typically combined
with additional heuristics to yield a final solution (see, e.g., Menasce and Almeida 2000). Although these
solutions can be quickly obtained, the approximations required by this approach often result in solutions
that suffer from inaccuracies that are of both theoretical and practical concern.

The second approach that is commonly adopted is based upon simulation-based optimization. Unlike
the simplifications that are often required when adopting analytical approaches to solve stochastic network
problems, simulation has the benefit of allowing for the incorporation of all forms of uncertainty as well
as complex interactions that may be present in the stochastic network. Within this solution approach, the
literature may be classified into two broad categories. The first category of approaches applies metaheuristics
such as tabu and scatter search to control the sequence of simulation runs that are evaluated in order to
identify the optimal solution to the resource capacity management problem (see, e.g., Nelson and Henderson
2007). At each step, the simulated objective function value for the current set of decision variables is
compared with the objective function values yielded for previously evaluated sets of decision variables. The
“best-to-date” set of decision variables (i.e., best objective function values) is noted. A stopping criterion
(e.g., run time-based or percentage improvement) is used to determine when the procedure should halt
and the “best-to-date” set of decision variables is declared the optimal solution. Although metaheuristics
have been incorporated in a wide array of simulation software products that support optimization (e.g.,
Crystal Ball, Arena, AnyLogic, and SIMUL8), they have associated accuracy and long runtime concerns
for business processes because they fail to consider any structure of the underlying stochastic network.

The second category of simulation-based optimization approaches consists of direct methods, such
as stochastic approximation, which analyze the convergence behavior of the objective function to guide
the selection of simulation runs to be evaluated (see, e.g., Asmussen and Glynn 2007). The use of direct
methods such as stochastic approximation is not as prevalent as the use of metaheuristics. A challenge
in the efficient application of stochastic approximation is the need to identify “good” starting values for
key parameters. However, these “good” starting values vary depending upon the problem instance being
solved, and thus limit the successful application of stochastic approximation in practice. Direct methods
may also suffer from long runtimes in large part because of the numerous parameters involved in each
method that must be set via experimental tweaking for every problem instance.

While simulation approaches permit an exact representation of the stochastic network without simplifying
approximations, significant drawbacks are the temporal and computational requirements to identify an optimal
solution for large-scale business processes. Indeed, real-world problems involve multiple resource classes
and demand classes, leading to a multidimensional stochastic network that increases the time required to
identify an optimal solution. A recent study illustrates how simulation-based optimization may require on
the order of days to determine optimal resource capacity levels in a class of business processes (Heching
and Squillante 2013). As the complexity and scale of business processes continue to grow, there remains
a critical need to address the costs in both time and resources of a purely simulation-based optimization
approach even with continuing improvements in simulation-based optimization methods.
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1.2 Our Solution Approach

In this paper, we describe a two-stage solution approach that has been successfully applied to solve resource
allocation problems across diverse complex business processes; see Dieker et al. (2012) and Heching and
Squillante (2013). Our solution combines the efficiency of an analytical approach with the accuracy of a
simulation approach. The first stage of our two-stage approach exploits mathematical approximations to
efficiently obtain a nearly optimal solution to the business process optimization problem. Depending on
the nature of the complex business process and the underlying stochastic network, different mathematical
methods may be adopted. Further refinement of the solution may be required to address inaccuracies due
to the approximations and relaxations required to efficiently obtain analytical approximations to stochastic
network representations of complex business processes. Hence, the approximate solution from the first
stage is used as a starting point for the second stage of our solution approach. In this second stage,
simulation-based optimization is used to identify a high-quality optimal solution to the original stochastic
network, where any simulation method may be employed including metaheuristics and direct methods.

As illustrated in Fig. 1, the first stage of our general solution approach can be further divided into two
phases. The first phase is based on direct stochastic approximations and consists of applying mathematical
methods to simplified approximate models, parameterized by the original stochastic network inputs, in order
to yield an analogous resource allocation problem that is amenable to direct analysis without further aid of
any simulation. The second phase is based on stochastic decoposition and functional-form approximations,
and consists of a combination of mathematical approximations and numerical or simulation-based solvers,
using as a starting point the first-phase results. More specifically, the objective function of the original
stochastic network is represented using parametrized canonical functional forms that arise from the stochastic
network literature, where some parameters of the functional forms can only be estimated via numerical
or simulation solvers; the optimal solution is then derived in terms of the separable functional form and
an iterative procedure is used together with the outputs of numerical or simulation solvers to obtain a
very good candidate solution for the second stage of our methodology. Depending upon the application
model of interest, one may either use this combination of both phases of the first stage of our general
solution approach, or simply choose one of these phases to provide the first-stage results. Finally, the
resource allocation decisions from the first stage subsequently serve as a starting point for the second
stage of our general solution approach. The second stage consists of a general search capability based on
simulation-based optimization methods that deal directly with the original stochastic network to further
improve upon the first-phase results and obtain a locally optimal solution for the original business process.

There are several important reasons for adopting such a two-stage solution approach to support the
stochastic optimization of complex business processes. It is of primary importance to be able to determine
optimal solutions in a highly accurate and efficient manner. The combination of the two phases of the first

Figure 1: Two-Stage Solution Framework

1858



Ghosh, Heching and Squillante

stage yields nearly optimal solutions within only a few numerical/simulation runs, and thus significantly
outperforms state-of-the-art approaches for evaluating and optimizing business process objective functions
by several orders of magnitude in reduced time and resources. Such tremendous improvements realized
through our first-stage methodology for stochastic optimization of complex processes enables a much
broader and deeper exploration of the entire business process design space. When this nearly optimal
solution is used as a starting point in the second-stage methodology, the latter may be exploited more
surgically to explore regions of the design space of greatest importance or sensitivity to obtain optimal
solutions. This in turn provides significant improvements in both the efficiency and quality of the stochastic
optimization of large complex processes in practice as compared with state-of-the-art approaches, thereby
successfully benefiting from the positive aspects of its analytical-based and simulation-based components.

The remainder of this paper is organized as follows. Sections 2 and 3 respectively detail the first and second
phases of our first-stage methodology, including analytical approaches for the analysis and optimization
of a general class of stochastic models that yield a nearly optimal solution. Section 4 briefly discusses our
second-stage methodology, which renders the final solution to the original stochastic optimization problem.
Section 5 provides some examples where this approach is used, along with representative numerical results.

2 FIRST PHASE OF STAGE 1 METHODOLOGY

The first phase of our stage 1 methodology consists of developing an approximate mathematical model of
the original multidimensional stochastic process that underlies the complex business process, deriving a
mathematical analysis of this stochastic process approximation, and then deriving an optimal solution to
the corresponding stochastic optimization problem. Such a mathematical analysis renders an approximate
expression for the objective function of the original stochastic optimization problem, often in closed form,
which can be solved more easily than the original optimization problem. We then determine an optimal
solution to the resulting approximate stochastic optimization problem, which often represents a nearly
optimal solution to the original problem. These results serve as a starting point for the second phase of
our stage 1 methodology, though in some cases our first-phase results are sufficiently accurate to directly
serve as a starting point for our stage 2 methodology.

Many stochastic process approximations are available to us. One set of general approaches is based
on stochastic decomposition of the complex multidimensional stochastic process into a combination of
various forms of simpler processes with reduced dimensionality (see, e.g., Squillante 2011), including
nearly completely decomposable stochastic systems, asymptotic independence together with fixed-point
equations, and priority structural properties together with recursion. Another set of general approaches
is based on mathematical analysis of the complex stochastic process and associated control problem in
some limiting regime (see, e.g., Chen and Yao 2001), including fluid limits, diffusion limits and strong
approximations respectively characterizing the asymptotic behavior via a functional strong law of large
numbers, a functional central limit theorem and a functional strong approximation theorem. In general,
any of the available algorithms and methods from applied probability, stochastic optimization/control, and
mathematical programming can be exploited as part of the first phase of our stage 1 methodology.

We consider two specific instances of our first-phase methodology. The first of these instances, developed
in Dieker et al. (2012), concerns a general feedforward stochastic network that is initially approximated by
the closest instance (Dieker et al. 2008) of a product-form Brownian network (Harrison and Williams 1992).
This yields a closed-form expression for the performance measures of interest and then the optimal resource
capacities are derived for the corresponding stochastic optimization problem, which are subsequently used
as a starting point for a specific instance of the second phase of our stage 1 methodology (see Section 3).
Another instance of our first-phase methodology, developed in Heching and Squillante (2013), concerns a
general multi-class stochastic network that is initially approximated by a collection of simplified stochastic
models. Then large deviations, strong approximation and other results are derived for the approximate
stochastic network. These results are used in turn to derive an efficient solution to the corresponding
stochastic optimization problem based on a combination of mathematical programming algorithms and
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the approximate stochastic analysis. The corresponding first-phase results are sufficiently accurate and
complete to directly serve as a starting point for our stage 2 methodology (see Section 4). In what follows,
we provide a summary of some of the technical details from this second instance of the first phase of our
stage 1 methodology; refer to Heching and Squillante (2013) for additional details.

We begin by defining and analyzing an approximate stochastic model. We partition the time horizon
of interest over time-varying workloads and resource capacity work shifts into stationary intervals and then
define a stochastic model for each stationary interval such that these stationary models are combined to
represent the entire time horizon. For each stationary interval indexed by i∈ I, the model involves a set J of
priority queueing systems, one for each group of resources indexed by j ∈ J. A customer request belongs
to one of a set K of request classes, indexed by k ∈K. Requests of class k arrive to the queueing system
according to a stochastic process {Ai,k(t); t ≥ 0} with Ai,k(t) := sup{n : Ai,k(n) ≤ t} and finite rate λi,k,
where Ai,k(n) := ∑

n
m=1 a(m)

i,k , Ai,k(0) := 0, the random variable (r.v.) a(n)i,k is the interarrival time between

the (n− 1)st and nth class k requests, and a(0)i,k := 0, n ≥ 1. Upon arrival, a class k request is routed to
the queueing system of group j in interval i according to a routing policy that renders a corresponding
class-group stochastic arrival process {Ai, j,k(t); t ≥ 0} with Ai, j,k(t) := sup{n : Ai, j,k(n) ≤ t} and finite
rate λi, j,k, where Ai, j,k(n) := ∑

n
m=1 a(m)

i, j,k, Ai, j,k(0) := 0, the r.v. a(n)i, j,k is the interarrival time between the

(n−1)st and nth class k requests served by group j in interval i, and a(0)i, j,k := 0, n ≥ 1. The class-group

sequences of interarrival time r.v.s a(n)i, j,k are such that λi,k = ∑ j∈J λi, j,k with λi, j,k fixed to be 0 whenever
group j does not have the appropriate capabilities to serve class k requests. The times required for resource
group j to serve class k requests in interval i are governed by a stochastic process {Si, j,k(t); t ≥ 0} with
Si, j,k(t) := sup{n : Si, j,k(n)≤ t} and finite rate µi, j,k, where Si, j,k(n) := ∑

n
m=1 s(m)

i, j,k, Si, j,k(0) := 0, and the

r.v. s(n)i, j,k is the time required to serve the nth class k request by group j in interval i, n≥ 1.
The queueing system for each group employs a fixed-priority scheduling policy; requests of class k

are given priority over requests of class k′ for all k < k′ with k,k′ ∈K. A preemptive-resume scheduling
discipline is deployed across request classes in which the serving of preempted requests is resumed from
the point where they left off without any overhead. Requests within each class are served in a first-come,
first-served manner. Let Ci, j denote the number of resources (capacity) that comprises group j, which we
relax by interpreting Ci, j ∈R+ to be a capacity scaling variable for the processing rate of a corresponding
multiclass GI/GI/1 fixed-priority queueing system for each group j and stationary interval i. Another
relaxation of the original stochastic model concerns the class-group routing decision process Λi, j,k(·) for
each request class k, resource group j and stationary interval i. To simplify the stochastic analysis, we
assume these routing decisions to be probabilistic such that a class k request is routed to group j with
probability Pi, j,k, independent of all else. We therefore have Λi, j,k = Pi, j,kλi,k, and thus determining the
optimal routing decision variables reduces to obtaining the optimal routing probabilities P∗i, j,k.

Performance measures of interest include the sojourn time process Ti, j,k = {Ti, j,k(t); t ≥ 0}, the aggre-
gated workload process Zi, j,k = {Zi, j,k(t); t ≥ 0} and the cumulative idle time process Yi, j,k = {Yi, j,k(t); t ≥
0}, where Ti, j,k(t) denotes the total sojourn time of class k requests at the group j queueing system in
stationary interval i at time t, Zi, j,k(t) denotes the total amount of existing work at the group j queueing
system in stationary interval i comprised of requests in classes 1 through k that are either in queue or in
service at time t, and Yi, j,k(t) denotes the cumulative amount of time that the group j queueing system in
stationary interval i does not serve requests in classes 1 through k during [0, t]. Define the net-put process
Ni, j,k(t) to be the total workload input from request classes 1 through k at the group j queueing system in
stationary interval i during [0, t] minus the work that would have been completely served if the queueing
system was never idle, Ui, j,k(t) to be the total amount of time spent serving class k requests at the group
j queueing system in stationary interval i during [0, t], Vi, j,k(t) to be the time that a class k request would
spend at the group j queueing system in stationary interval i if it arrived at time t, and Gi, j,k(t) to be
the time at which the first class k request arrives to the group j queueing system in stationary interval i
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during [t,∞). Let MX(θ) = E[eθX] denote the moment generating function of a r.v. X , and let f (n)∼ g(n)
denote that limn→∞ f (n)/g(n) = 1 for any functions f and g. Further define ρ

+
i, j,k := ∑k′≤k,k′∈K ρi, j,k′ ,

ρi, j,k := λi, j,k/(Ci, jµi, j,k), and (x)+ := max{x,0}.
Now, we turn to consider the derivation of results for key performance measures, focusing on, as a

representative illustration, deriving strong approximations of the class k sojourn time processes for the
above relaxation of the original stochastic model. Using standard definitions and notation for r-strong
continuous functions/processes and strong approximations over the space D |K| of |K|-dimensional real-
valued functions on [0,∞) that are right-continuous with left limits (Chen and Yao 2001), we denote by
X̃ = {X̃(t); t ≥ 0}, X̃(t) = mt + X̂(t), a strong approximation of a stochastic process X = {X(t); t ≥ 0} in
D |K| under appropriate conditions. In such cases, we write X(t)

r
≈X̃(t) or X

r
≈X̃. Then, for the previously

defined performance measures of interest, we have:

Zi, j,k(t) = Ni, j,k(t)+Yi, j,k(t), Ti, j,k(t) = Vi, j,k(Gi, j,k(t)), 0≤Gi, j,k(t)− t ≤ ai, j,k(Ai, j,k(t)+1), (1)

Ni, j,k(t) =
k

∑
k′=1

Si, j,k′(Ai, j,k′(t))− t, Yi, j,k(t) = t−
k

∑
k′=1

Ui, j,k′(t) = sup
0≤s≤t

{−Ni, j,k(s)}, (2)

Vi, j,k(t) = Zi, j,k(t)+
k−1

∑
k′=1

[Si, j,k′(Ai, j,k′(Vi, j,k(t)+ t))−Si, j,k′(Ai, j,k′(t))]+Si, j,k(Ai, j,k(t))−Si, j,k(Ai, j,k(t)−1).

(3)

In Theorem 1 we establish the desired strong approximations for the key performance measures of the
sojourn time and aggregated workload processes. We subsequently leverage these results to directly obtain
the first moment, second moment, or tail probability associated with the sojourn time distribution for class
k requests served by group j in stationary interval i. Refer to (Heching and Squillante 2013).
Theorem 1 For class k ∈K requests served at the GI/GI/1 fixed-priority queueing system of resource
group j ∈ J with capacity Ci, j in stationary interval i ∈ I such that the strong approximation assumptions
hold for some r ∈ (2,4), we have (Zi, j,k,Ti, j,k)

r
≈(Z̃i, j,k, T̃i, j,k), where

Z̃i, j,k(t) = Ñi, j,k(t)+ Ỹi, j,k(t), (4)

T̃i, j,k(t) =
Z̃i, j,k(t)+Ri, j,k

1−ρ
+
k−1

≥
Z̃i, j,k(t)+ si, j,k

1−ρ
+
k−1

, (5)

Ñi, j,k(t) = (ρ+
i, j,k−1)t +

k

∑
k′=1

[Âi, j,k′(t)/µi, j,k′+ Ŝi, j,k′(λi, j,k′t)], (6)

Ỹi, j,k(t) = sup0≤s≤t{−Ñi, j,k(s)}+, and Z̃i, j,k(t), T̃i, j,k(t) are r-strong continuous.
Next, we consider the formulation of a corresponding stochastic optimization problem whose objective

is to determine the capacity of resource groups j and the routing of class k requests to resource groups
j that maximize profit in expectation under the foregoing stochastic model across all stationary intervals
comprising the time horizon together with the overlap of work shifts, subject to model inputs and constraints.
We therefore seek to determine the optimal capacity C∗i, j for resource groups j and the optimal routing
decision process Λ∗i, j,k(·) for class k requests and groups j, both in stationary intervals i, over the time
horizon of interest T with respect to every performance guarantee, given class-group routing constraints
and exogenous arrival and service time processes Ai,k(·) and Si, j,k(·). The optimal class-group routing
decision vector process {ΛΛΛ∗(t); t ≥ 0} with ΛΛΛ

∗(t) := (Λ∗i, j,k(t)) includes determining the set of stochastic
arrival processes A∗i, j,k(t) with finite rates Λ∗i, j,k = λ ∗i, j,k. To simplify the formulation, suppose the optimal
routing of class k requests satisfy λi, j,k/(Ci, jµi, j,k) < 1. Further, consider the performance guarantees of
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class k to be such that penalties are incurred with respect to
(
P[Ti, j,k > Zk]−αk

)+, where Ti, j,k denotes the
corresponding generic stationary sojourn time r.v. The revenue, penalty, and cost functions are linear in
the total number of requests, number of performance guarantee violations, and number of resources.

Define the capacity vector C := (Ci, j) and the class-group routing rate vector ΛΛΛ := (Λi, j,k). We then
have the following general formulation of the stochastic optimization problem over the time horizon T :

max
C,ΛΛΛ

∑
i∈I

∑
j∈J

∑
k∈K

E[Ni, j,k(T )]R j,k−E[Ni, j,k(T )]P j,k
(
P[Ti, j,k > Zk]−αk

)+−C j,kCi, j, (7)

s.t. ∑
j∈J

Λi, j,k = λi,k, ∀i ∈ I,∀k ∈K,

Λi, j,k = 0, if I ( j,k) = 0, ∀i ∈ I,∀ j ∈ J,∀k ∈K,

Λi, j,k ≥ 0, if I ( j,k) = 1, ∀i ∈ I,∀ j ∈ J,∀k ∈K,

where Ni, j,k(t) is the cumulative number of class k requests routed to group j in interval i through time t,
and I { j,k} := 1{class k requests can be served by resource group j}. The capacity vector C and routing
vector process ΛΛΛ(·) are the decision variables we seek to obtain, with all other variables as input parameters.

Towards obtaining the optimal solution, we first determine the minimum resource capacities required
to ensure that each of the resource group queueing systems is stable. This must hold for any feasible
solution of the stochastic optimization problem and therefore requires that ρ

+
i, j,|K| < 1 for all i ∈ I and j ∈ J.

The above model relaxations allow us to focus on the capacity vector C ∈ R|I|×|J|+ and the class-group
routing rate vector ΛΛΛ ∈R|I|×|J|×|K|+ as the decision variables of interest. The remaining step for an explicit
formulation is to deal with the probabilities P[Ti, j,k > Zk] in (7). Based on our stochastic analysis above,
we directly substitute (5) and derive an analytical expression for the objective function (7).

The best mathematical programming methods to solve the stochastic optimization problem will depend
upon the fundamental properties of the specific optimization problem of interest. When the objective
and constraint functions are concave in (C,ΛΛΛ), we exploit these and related properties of the equations
in Theorem 1 together with convex programming methods (see, e.g., Boyd and Vandenberghe 2004) to
efficiently obtain the unique optimal solution. More generally, when the objective or constraint functions are
not concave, we exploit advanced nonlinear programming methods to efficiently obtain an (locally) optimal
solution of the stochastic optimization problem by leveraging some of the best interior-point algorithms
and implementations. We further note that this mathematical programming solution approach applies more
generally to problem instances with nonlinear revenue, penalty and cost functions.

3 SECOND PHASE OF STAGE 1 METHODOLOGY

The second phase of our stage 1 methodology also works with an approximate mathematical model of
the original stochastic process. However, the approach is distinguished from the first phase in its use of
a numerical or simulation solver for further evaluations of the approximate model. Hence, the numerical
or simulation solver serves as a function evaluation oracle. The reasons for further refinements of the
first-phase results are due to the complexity of solving resource capacity management problems, which are
due in turn to the technical difficulties of solving for functionals of general multidimensional stochastic
processes involving various dependencies and dynamic interactions among the different dimensions. Often,
the mathematical methods exploited in the first phase of our stage 1 methodology do not adequately and
completely capture these complexities. In such cases, the second phase of our stage 1 methodology is
invoked. We consider in this section one particular approach for the second phase of our stage 1 methodology
that addresses such difficulties. Due to the highly nonlinear and possibly nonconvex nature of resource
capacity management problems in general, our focus here is on finding “good” local optima.

The second-phase model renders an approximation for the objective function of the original problem
based on information from the foregoing function evaluation oracle. Here, the functional evaluations are
often localized to a current region of interest in the solution space, and thus the approximation of the true
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objective function is good only locally. We then derive an optimal solution to the approximate objective
function, which may also be constrained to fall within some region of trust around the current point of
interest. The procedure may iteratively follow up with the re-construction of the approximate model using
functional evaluations around this next candidate solution and further optimization of the new model. Hence,
this second phase is usually based on a fixed-point iteration approach where observed function values at the
current iterate determine the candidate resource capacity allocation for the next iterate. The next iterate will
re-balance resource capacity allocation such as to obtain desirable changes in the value of the approximation
to the true objective function of interest, and is thus consistent with optimizing the true objective function
at least in approximation. This process repeats, forming the basis of an efficient fixed-point iteration that
renders a nearly (locally) optimal solution to the resource capacity management problem. The iterations
proceed until the candidate solutions identified exhibit little change under some appropriately defined
stopping criterion. Depending on the stochastic network setting in which our general solution framework
is applied, the required function evaluation may be obtained via (a combination of) advanced analytical
(e.g., Harrison and Williams 1992), numerical (e.g., Dai and Harrison 1992) or simulation-based methods
(e.g., Asmussen and Glynn 2007). As a result, this second phase may be applied to stochastic networks
that are analytically intractable as long as they can be simulated or otherwise numerically evaluated.

The key distinction between this second phase approach of the first stage and the general simulation-
based optimization of the second stage is the assumption of a (local) separable functional form for the
objective function. For the second phase to substantially improve upon the objective function value beyond
the first phase, the separable functional form must be carefully selected. Our primary example for this
phase of the methodology is the problem of identifying optimal resource allocations in a stochastic network
setting that minimizes a functional of the queue lengths at each node in the network. The general functional
form for the queue length at a node of the network is not known as a closed-form function of the resource
allocation at all the nodes of the network. In this example, our second-phase functional form for the queue
length is assumed to be (locally) similar to the queue length of a G/G/1 queue with similar arrival and
service characteristics. Our iterative algorithm then updates resource allocations based on the square root
of the observed queue lengths, as motivated and formalized below. Roughly speaking, our updating rule is
derived from an appropriate separable functional form for the performance metrics of each station in the
network, such as expected steady-state queue length or expected steady-state sojourn time at the queue. The
functional form is given by τ/(β −λ ), where λ and β are the arrival and service rates for the queue and τ

is a function of various characteristics of the arrival and service processes at all stations in the network, and
must be estimated from evaluations of the true business process. This particular functional form naturally
arises in all known queueing formulas.

In what follows, we provide a summary of some of the technical details from one specific instance of
the second phase of our stage 1 methodology, developed in Dieker et al. 2012. We formalize our approach
in a setting where the goal is to minimize the sum of the weighted expected queue lengths in a stochastic
network serving customers of a single class and is subject to a budgetary constraint. The discussion is
geared towards application of our approach to generalized Jackson networks (e.g., Chen and Yao 2001) and
their Brownian counterparts (e.g., Harrison and Williams 1987). In particular, γγγ represents the effective
arrival rate vector and βββ represents the vector of service rates. (Further parameters of the network, such
as the routing matrix and the exact external interarrival and service distributions, need not be specified to
present our approach and thus we do not introduce them here.) Let Zβββ

i denote the steady-state queue length
at the i-th station. (Alternatively, one can similarly study steady-state sojourn times). The dependence on
βββ is made explicit since we are interested in comparing a functional of the steady-state vector ZZZβββ as we
change the service-rate vector βββ . Assume that each unit of resource capacity at station i costs ci, comprising
a cost vector ccc, and that we have a total budget of C for allocating resources in the network.

The main stochastic optimization formulation is given by

(OPT) min
β∈(0,∞)L

L

∑
i=1

wiEZβββ

i s.t. 〈c,βββ 〉 ≤ C, βi > γi, i = 1, . . . ,L.
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The expected steady-state queue lengths weighted by a vector www is minimized, subject to the constraints
that (i) spend may not exceed the budget C and (ii) the queueing system is stable. Throughout, we shall
assume 〈c,γγγ〉<C so that the above mathematical program is feasible. It is shown in Dieker et al. (2012)
that the solution to (OPT) satisfies 〈c,βββ 〉=C.

After defining τi(βββ ) := (βi−γi)EZβββ

i as noted earlier, the objective function takes the form t(βββ ,www,τττ(βββ ))
for some function τττ(βββ ), where for βββ − γγγ,www,τττ > 0 we have

t(βββ ,www,τττ) =
L

∑
k=1

wk
τk

βk− γk
. (8)

For a queue in a single-class product-form network, τττ is known to be equal to λ and 1 for expected
queue length and sojourn time, respectively. Furthermore, τ correspondingly equals λ (c2

A + c2
S)/2 and

(c2
A + c2

S)/2 in a single-class Brownian product-form network of GI/GI/1 queues, where c2
A and c2

S denote
the second-order variation terms for the arrival and service process, respectively; see Harrison and Williams
(1992). In general stochastic networks, however, τττ(βββ ) is mathematically intractable.

Our approach relies on the idea that βββ 7→ t(βββ ,www,τττ(βββ )) can be reasonably approximated locally by
βββ 7→ t(βββ ,www,τττ(β̄ββ )) in the neighborhood of a given point β̄ββ . Through this functional form, the i-th term
in the approximating objective function only depends on βββ through the one-dimensional quantity βi, thus
effectively “decomposing” the objective function. The explicit incorporation of βi− γi in the denominator
is motivated by the aforementioned product-form results, which effectively result from one-dimensional
queueing formulas. We note that the idea of locally approximating the objective function is a well-known
principle in trust-region based optimization; refer to, e.g., Conn et al. (2000). Our approach, however,
differs significantly from traditional trust-region methods in the motivation, method and analysis.

The following lemma, which is readily proved by applying standard Lagrangian methods, then becomes
an essential ingredient in our analysis.
Lemma 2 The minimum of t(βββ ,www,τττ) over the feasible region in (OPT) is βββ

∗(www,τττ), where for `= 1, . . . ,L

β ∗` (www,τττ) = γ`+(C−〈ccc,γγγ〉)
√

w`τ`/c`
∑

L
k=1
√

wkτkck
.

As an extension of the idea that queue lengths may be approximated locally by functions of the form
in (8), and as noted in Section 2, we use the capacity allocation βββ

∗ determined through the following
system of nonlinear equations as the second-phase solution of our approach: For ` = 1, . . . ,L, β ∗` =

γ` + (C−〈ccc,γγγ〉)
√

w`τ`(βββ
∗)/c`

∑
L
i=1

√
wiτi(βββ

∗)ci
. Dieker et al. (2012) show that this system of equations is guaranteed

to have a unique solution for a certain precisely defined class of stochastic networks. In an attempt to
numerically find a vector βββ

∗ that satisfies the above equation, assuming existence, one can use the fixed-point
iteration scheme with iterates {βββ (k) : k ≥ 0} given by

β
(k+1)
` = γ`+(C−〈ccc,γγγ〉)

√
w`τ`(βββ

(k))/c`

∑
L
i=1

√
wiτi(βββ

(k))ci

or
β
(k+1)
i − γi

β
(k+1)
j − γ j

=

√√√√√ β
(k)
i − γi

β
(k)
j − γ j

×
wiEZβββ

(k)

i /ci

w jEZβββ
(k)

j /c j

, (9)

The second equation is implied by the first, establishing an important connection with a resource capacity
iteration scheme based on observed queue-length information. Since we must allocate at least capacity γi
to station i, (βi− γi)/(β j− γ j) is the ratio of “additional” resource capacities allocated to station i and j,
respectively. Equation (9) expresses this ratio in terms of the ratio of mean queue lengths, so that more
capacity is allocated in the next iterate to stations with disproportionally long queue lengths in the current
iterate. The right-hand side of (9) may be interpreted as the geometric mean of two fractions. The geometric
average in our case arises from the assumed functional form (8). The effect of building in the asymptote
into our algorithm is that the iterates avoid the boundary.
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The key approximation is the separable functional form τ/(β −λ ), which constitutes a nearly universal
phenomenon in stochastic networks under a wide range of queueing dynamics. We therefore expect that
resource capacity management optimization through an iterative algorithm based on ratios of observed
queue lengths and slow-down via geometric means is promising for many different settings. For instance,
given a discrete decision space in which to allocate a number of servers to each station, one could use
Lemma 2 together with a local search algorithm over the discrete space to generate an iterative scheme.
Another interesting variant is the dual formulation of the problem discussed earlier, where the aim is to
minimize the total expenditure subject to a bound on the sum of the weighted expected queue lengths.

4 STAGE 2 METHODOLOGY

The second stage of our solution approach uses the latest simulation-based optimization techniques. Here,
the literature may be broadly divided into methods that use a broad spectrum of metaheuristics (e.g., tabu
search, scatter search, neural networks) to control a sequence of simulation runs in order to find an optimal
solution and those that apply several direct methods (e.g., stochastic approximation) which have been widely
studied to address simulation-based optimization problems with a more rigorous theoretical foundation.

The metaheuristic approach is often the method of choice for major commercial simulation software
products that support optimization.At each step of these metaheuristics, the control procedure selects a new
set of candidate optimal solutions by comparing between the simulation results for the current set of decision
variables and previously evaluated solution. The choice of the next set of solutions is often motivated by a
philosophy of randomized search that is independent of specific problem structure. This structure-agnostic
approach gives these methods their greatest appeal (that of being applicable very generally) but is also the
source of their greatest weakness, namely the long runtimes that can be incurred in problems of even a
modest dimension; see e.g. Heching and Squillante (2013).

The stochastic approximation algorithm for simulation-based optimization has been extensively studied
in great generality with rigourous results available on the rates of convergence under reasonable conditions
for the objective function. These iterative schemes are effectively the “stochasticization” of a Newton-type
iterative optimization (or root-finding) algorithm. Suppose the objective function of a resource allocation
optimization problem can be denoted by z(βββ ). The stochastic approximation iterative algorithm to solve
the optimization problem minβββ z(βββ ) is βββ

(n+1) = βββ
(n)− εnKY(n+1), where the variable Y(n+1) is an

estimator of the gradient of z(βββ ) with respect to βββ , and the best scaling matrix K to use is the Hessian of
z(βββ ) at the optimal solution, just as prescribed for Newton-Ralphson type iterative schemes. These methods
are regrettably not as common in practice as the metaheuristic approach. One stumbling block has been that
the method requires the setting of the critical parameters εn to “good” values in order to realize an efficient
implementation, where practitioner experience demonstrates that “good” values typically depend on each
instance of the problem being solved. Other significant implementation issues surround the efficient and
consistent estimation of Y, the gradient of z(βββ ), as well as its Hessian K. So, though these methods have
strong theoretical underpinnings, their use in practice is limited.

5 COMPLETE METHODOLOGY: EXAMPLES

Our solution approach consists of a first-stage analytical-based methodology, comprised of two phases of
stochastic approximations, whose results are then used as a starting point for a second-phase simulation-based
methodology. We provide two examples of the application of this two stage methodology to solve resource
allocation problems in two very different business contexts, both of which demonstrate that our general
approach provides optimal solutions at least as good as purely advanced simulation-based optimization
methods while taking several orders of magnitude less time to find these optimal solutions.

In the first example, studied in detail in Heching and Squillante (2013), an IT service delivery center
is challenged with responding to customer requests that arrive from geographically dispersed customers
with widely varying request arrival patterns, service times, and service level agreements. Different agents
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Figure 2: Quality of fixed point iteration result is within 5%, typically 1% for convex settings. Non-Convex
cases can have a gap of up to 10%, while average is around 4-5%.

available to respond to requests are capable of serving different subsets of the requests, depending upon
their skill. The two-stage methodology is instantiated in this example with the first stage being represented
by a first-phase strong-approximation of this optimization problem. In this problem setting, the second
phase was not required for the first stage. The metaheuristic Tabu-search method provided the second-
stage methodology. Numerical experiments across a wide variety of real-world scenarios demonstrate that
leveraging our first-phase results as a starting point provides the same optimal capacity decisions as purely
advanced simulation-based optimization methods but with several orders of magnitude reduction in time
and resources. In many cases, the first-phase solution for each type of resource differs by at most one from
the optimal solution for each work shift and requires four to five orders of magnitude less processing time.

In the second example, studied in detail in Dieker et al. (2012), resource allocation is considered in
a stochastic network setting where tasks (or jobs) can be routed between various processing nodes of the
network. The underlying stochastic network structure representing the business process for this second
example is very different from that of the first example. In this setting, the method treats business processes
with a different form of complex network structure. This resource allocation problem is applicable to a
variety of stochastic network settings that arise naturally in a variety of data centers that serve traffic from
the Internet, as well as some canonical business processes. One of the problem instances considered is based
on a tree-like network structure of three tiers of servers that together support large data centers. Our overall
methodology is applied to this problem by using the product-form approximation to this stochastic network
as the first phase of the first stage, then generalizing to the simulation-evaluation-dependent functional
form for the objective function as outlined in Section 3 in the second phase of the first stage, and finally
employing stochastic approximation as the method from the second phase of the algorithm.

Recall that the key step in our fixed-point approximation method is the estimation of the average queue
lengths of the servers under the capacity values for the current iterate. A simulation-based implementation
of queue-length estimation in the fixed-point iteration under the original stochastic network settings yields
a consistent estimation. Our results are generated from this simulation-based implementation. Our second-
phase method is evaluated based on comparing and contrasting against both the second stage of our solution
framework and an approach based solely on the stochastic approximation (SA) algorithm, each of which
identifies solutions that are locally optimal. Furthermore, the second phase search for the local optimal
solution close to the limit point is obtained by starting the SA algorithm from the limit point identified by
the fixed-point iteration algorithm.

The two-phase first-stage procedure was run for each of six network and parameter settings over multiple
combinations of coefficients of variations (CoVs) for the interarrival and service distributions. Figure 5
plots the observed “optimality gap” of the limit point identified by the first stage of the two-stage framework
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that uses the fixed-point iteration (9) by comparing it against the locally optimal solution identified by the
second-stage procedure that uses SA started off from that limit point. It is evident that the SA algorithm
is able to improve only by 5% at worst for the cases where the problem is convex, and the additional
improvement is in most cases only about 1.0-1.5%. The performance of the algorithm degrades a bit for the
non-convex case, with the worst case improvement rising to about 10% and the average case performance
being in the 3-5% range. In contrast, the objective function value of the optimal capacity allocation obtained
from the Jackson product-form approximation, that is, setting all CoVs to 1, was observed to have a relative
optimality gap of between 75% and 350%, clearly indicating the poor quality of this simplistic assumption.

Convex optimization problem settings have unique globally optimal solutions, and thus the fixed point
identified in the first phase of our approach is unique when (OPT) is convex. Under the parameter values
considered, whenever the server weights satisfy wπ(i) ≥ wi the Brownian tree network version of the
optimization problem (OPT) is known to be convex (Dieker, Ghosh, and Squillante 2012). For the same
network configuration when the weights wi yield a difference-of-convex functions for the objective function
of (OPT), the problem may have multiple local optima and our fixed-point iteration algorithm itself may
have multiple limit points.

The second phase of the first stage method proposed in this paper finds approximations to the local
optimal solutions that are on average within 5% of optimality gap. In addition, the method is parameter-
less and insensitive to the stopping criterion chosen for the simulations. This provides major savings
in computational time as compared to the second stage method being employed for the whole search.
Regardless, all stochastic approximation algorithms take one or more orders of magnitude to converge
compared to the method proposed in this article. In addition, the key savings are also relatable to the lack
of any parameters in the fixed-point scheme that the user must tweak for faster convergence.

REFERENCES

Asmussen, S., and P. W. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis. Springer.
Boyd, S., and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
Chen, H., and D. D. Yao. 2001. Fundamentals of Queueing Networks: Performance, Asymptotics, and

Optimization. Springer-Verlag.
Conn, A. R., N. I. M. Gould, and P. L. Toint. 2000. Trust-region methods. Philadelphia,PA: SIAM.
Dai, J. G., and J. M. Harrison. 1992. “Reflected Brownian motion in an orthant: numerical methods for

steady state analysis”. Advances in Applied Probability 2:6–86.
Dieker, A. B., S. Ghosh, and M. S. Squillante. 2008. “Capacity Optimization in Feedforward Brownian

Networks”. Performance Evaluation Review 36 (2).
Dieker, A. B., S. Ghosh, and M. S. Squillante. 2012. “Optimal Resource Capacity Management for Stochastic

Networks”. Preprint.
Harrison, J. M., and R. J. Williams. 1987. “Brownian models of open queueing networks with homogeneous

customer populations”. Stochastics 22:77–115.
Harrison, J. M., and R. J. Williams. 1992. “Brownian Models of Feedforward Queueing Networks: Quasire-

versibility and Product Form Solutions”. Annals of Applied Probability 2 (2): 263–293.
Heching, A. R., and M. S. Squillante. 2013. “Optimal Capacity Management and Planning in Services

Delivery Centers”. Preprint.
Menasce, D. A., and V. A. Almeida. 2000. Scaling for E-Business: Technologies, Models, Performance,

and Capacity Planning. Prentice Hall.
Nelson, B. L., and S. G. Henderson. 2007. Handbooks in OR and MS: Simulation. Elsevier Science.
Squillante, M. S. 2011. “Stochastic Analysis and Optimization of Multiserver Systems”. In Run-time Models

for Self-managing Systems and Applications, edited by D. Ardagna and L. Zhang, Chapter 1, 1–24.
Springer.

1867



Ghosh, Heching and Squillante

AUTHOR BIOGRAPHIES

SOUMYADIP GHOSH is a Research Staff Member in the Business Analytics and Mathematical Sciences
Department at the IBM T.J. Watson Research Center. His current research interests lie in simulation based
optimization techniques for stochastic optimization problems, with a focus on applications in Energy and
Power systems and supply chain management. His email is ghoshs@us.ibm.com and his web page is at
https://researcher.ibm.com/researcher/view.php?person=us-ghoshs.

ALIZA HECHING is a Research Staff Member in the Mathematical Sciences Department at the IBM T.J.
Watson Research Center. Her research interests include modeling, analysis, and optimization with a current
focus on optimal workforce management and the analysis and design of service systems. Her email address is
ahechi@us.ibm.com and her web page is http://researcher.watson.ibm.com/researcher/view.php?person=us-
ahechi.

MARK S. SQUILLANTE is a Research Staff Member and Manager in the Mathematical Sciences
Department at the IBM T.J. Watson Research Center. His research interests broadly concern mathematical
foundations of the analysis, modeling and optimization of complex stochastic systems. He is a Fellow of
ACM and IEEE, a member of AMS, Bernoulli Society, IMS, INFORMS and SIAM, and serves on the
Editorial Boards of Operations Research, Performance Evaluation and Stochastic Models. His email address
is mss@us.ibm.com and his web page is http://researcher.ibm.com/researcher/view.php?person=us-mss.

1868


