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ABSTRACT 

The economic environmental load dispatch problem in power networks aims at producing electricity at 
the lowest financial and environmental costs. In this paper, we propose a novel real-time dynamic data 
driven adaptive multi-scale simulation framework (RT-DDDAMS) for efficient real-time dispatching of 
electricity. The framework includes 1) a discovery procedure where the network is split into sub-networks 
and prospective fidelities are identified, 2) an RT-DDDAMS platform involving algorithms for state es-
timation, fidelity selection, and multi-objective optimization alongside with a system simulation; and 3) 
databases for storing sub-network topologies, fidelities, and selective measurements. The best compro-
mise load dispatch obtained from this framework is then sent to the considered power network for de-
ployment. The proposed framework is illustrated and validated via a modified IEEE-30 bus test system. 
The experiments reveal that the proposed framework significantly reduces the computational resource us-
ages needed for the reliable power dispatch without compromising the quality of the solutions. 

 

1 INTRODUCTION 

The goal of the economic and environmental load dispatch (EELD) is to produce electricity at the lowest 
cost and emissions to reliably serve customers, while recognizing the operational limits of generation 
plants and transmission lines (Energy Policy Act 2005; Zhang et al. 2005). The dispatching of loads is 
performed to control and allocate the total energy generation amongst the available resources (including 
both conventional and renewable sources) within a power network. 
 Environmental and economic load dispatching for power networks is a challenging task due to several 
reasons. First, power networks are highly dynamic and complex in their nature due to the variability in 
their status induced by different sources of energy generation and their associated generation capacities, 
environmental emissions, frequency of changes in load profiles, market policies and regulations, and rev-
enues generated, amongst many others (Sáenz et al. 2013).  Second, power networks may operate at vari-
ous scales and scopes, causing the range for the solution space to be considerably large. Third, the inclu-
sion of renewable energy into power systems, which is expected to increase significantly in the near 
future, has resulted in additional constraints on EELD such as more unpredictable ramp rates and the need 
for additional reserves to accommodate the intermittent nature of the output. Furthermore, this dynamicity 
and complexity inherent to these problems enforce significant burden on the available computational re-
source utilization while the developed solution procedures are being deployed, even if they are performed 
at specified intervals or offline.  This burden further frustrates the monolithic implementation of the 
methodologies presented in the literature (Abido 2009; Colson and Nehrir 2009) in a realistic setting and 
necessitates a distributed framework for effective decision making within these systems.    
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 Addressing the challenges mentioned above, in this study, we investigate a novel real-time dynamic 
data driven adaptive multi-scale simulation framework (RT-DDDAMS) for the efficient and reliable real-
time dispatching of electricity under uncertainty. The proposed framework includes 1) a discovery proce-
dure, in which the topology of the power network is explored and split into sub-networks to guide the RT-
DDDAMS with a predetermined set of simulation fidelities, 2) three databases storing data regarding sub-
network topologies, fidelities, and selective measurement involving electrical and environmental sensor 
data, 3) an algorithm for online state estimation of the demand nodes in the considered electrical grid and 
a data driven simulation platform for mimicking the system response behavior, 4) an algorithm for fidelity 
selection in simulation considering the trade-off between the computational requirements of simulations, 
and accuracy of anticipated dispatch results in terms of environmental and economic costs, and 5) a multi-
objective optimization algorithm for generating a dispatch configuration which minimizes the total mone-
tary and environmental cost of the system, without posing security risks to the energy network.  
 The rest of the paper is organized as follows. In Section 2, we provide the background and literature 
review on dynamic data driven application systems (DDDAS) paradigm. In Section 3, we describe our 
proposed RT-DDDAMS framework for economic and environmental load dispatching in electricity net-
works. In Section 4, we evaluate the performance of the proposed framework using experimental cases 
based on a modified version of the IEEE-30 bus system. Finally in Section 5, we provide conclusions and 
discuss the future venues for this work. 

2 PREVIOUS WORKS ON DDDAMS PARADIGM 

The dynamic data driven application systems (DDDAS) paradigm has been extensively studied in the lit-
erature during the past decade.  The motivation behind this paradigm resides in two major incidents that 
took place in January and May of 2000: 1) a missed prediction of the track and magnitude of a major 
storm by meteorologists, which blanketed major cities from South Carolina to New England, and 2) a 
failure to simulate what the behavior of the fire near the Los Alamos National Laboratory and to take the 
appropriate actions to limit its propagation, respectively (NSF 2000). The DDDAS entails the ability to 
dynamically incorporate data into an executing application simulation, and in reverse, the ability of appli-
cations to dynamically steer the measurement process (Darema 2005). It has been successfully investigat-
ed in a variety of application areas, such as contaminant tracking (Douglas et al. 2006), natural disaster 
forecasting (Patrikalakis et al. 2004), social and behavioral cognition (Kim and Heller 2006), biological 
system prediction (NSF Workshop Report 2006), supply chains (Celik et al. 2010), amongst many others. 
 Findings of the previous research (Darema 2005; Abido 2009) draw attention to the challenges of au-
tomatically adapting simulations when experimental data indicates that a simulation must change. Adap-
tation to the identified change typically starts with an initial procedure to obtain an overall insight regard-
ing the phenomenon of interest. This insight is then utilized to determine the origins of abnormalities 
within the considered system and sample observations from areas of critical interest. Based on the infor-
mation acquired at the sampling stage, the presented application models are structurally or operationally 
updated to reflect this knowledge in an automated and timely manner. 
 Generalizing software to anticipate all the possible ways a phenomenon could change is difficult, and 
attempting to do so usually comes at the expense of performance, and furthermore, makes simulation 
code unmanageably complex (Parnas 1979). However, this limitation for software adaptation can be re-
solved by taking advantage of the flexibilities and constraints of a simulation simultaneously. On one 
hand, automatic adaptation is impossible without flexibility, since there is no way to know which alterna-
tives should be considered. On the other hand, there are too many alternatives to consider in a timely fash-
ion if the constraints are not considered, thereby leading to the infeasibility of the process. Therefore, 
Carnahan and Reynolds (2006) propose a semi-automated adaptation approach that exploits the flexibility 
and constraints of model abstraction opportunities to automate simulation adaptation. While their study 
does not contain manual or automatic interference of the code or application of optimization methods 
which can make the software extremely complex to control, it is still in need of human intervention to de-
termine the most likely places of the code that require a change. In our proposed research, changes in lev-
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el of detail of data acquisition and the choice of certain parameters over others allow the automatic multi-
fidelity adaptation in the simulation model. While the use of real-time simulation as a task generator is 
common ground for these works as well as for our current study, the adaptive fidelity selection and rank-
ing scheme that guides the RT-DDDMAS is novel in our work. The proposed fidelity selection mecha-
nism allows for significant reduction in the computational resource utilization while keeping the model 
accurate by wisely selecting the most appropriate fidelity for the system simulations.   

3 PROPOSED RT-DDDAMS FRAMEWORK 

In order to address the challenges mentioned in Section 1, in this study, we propose a real-time dynamic 
data driven adaptive multi-simulation (RT-DDDAMS) framework. The proposed framework is over-
viewed in Figure 1. The overall scheme envisioned is a robust multi-scale federation of simulation models 
that enables efficient and optimal power dispatch in power networks. 
  

  
Figure 1: Overview of the proposed RT-DDDAMS framework with embedded databases and algorithms 

 
 The proposed RT-DDDAMS framework includes an offline discovery procedure and a real-time 
DDDAMS decision making procedure. The offline discovery procedure incorporates algorithms for grid 
topology and clustering, multi-objective optimization, fidelity ranking; and databases for sub-networks 
and fidelities. The grid topology and clustering algorithm examines the structure of the power network 
and determines the different possible sub-networks that may be built to compose the full power network. 
 Based on the results from the topology and clustering algorithm, the different sub-networks and their 
combinations are used to generate power dispatch solutions under various predetermined load scenarios.  
Performances of these power dispatches are evaluated based on the best-compromise solution generated 
for each of the sub-network combinations in terms of their costs and emissions. Then, for each of the dif-
ferent load scenarios, the combinations are ranked using fuzzy logic. 
 The RT-DDDAMS framework embodies a measurements database that is fed using electrical and en-
vironmental sensors. Given the sensory data and available computational resources, a state estimation al-
gorithm, and a fidelity selection algorithm are invoked to determine the state of the system and fidelity 
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that the simulation should be performed at. Based on the estimated system status and the selected fideli-
ties, a multi-objective optimization algorithm is employed to generate a non-dominated solution set in 
terms of costs and emissions. Then, a best compromise solution is selected and sent to the actual power 
network for realization. The details of the components embedded in the proposed framework are present-
ed in the following sub-sections. 

3.1 Multi-Objective Optimization Algorithm 

The proposed RT-DDDAMS framework is employed to provide the considered power network with the 
best possible solution, which is the environmental and economic load dispatch (EELD) in this case. Be-
cause of the multi-objective nature of the EELD problem, a multi-objective optimization algorithm is in-
corporated into the proposed framework. In this section, the details of the algorithm are presented.  

3.1.1 Formulation of the EELD Problem 

The EELD problem has two distinct objectives, namely, minimizing the generation costs and minimizing 
the pollutant emissions of a power network’s load dispatch while acknowledging the system’s limitations. 
The problem is formulated in equations (1) through (7), where the decision variables are the real (ܲீ ) and 
reactive (ܳீ) power produced at each generation bus. Equations (1) and (2) present the cost and emissions 
objectives, where, ܽ௜, ܾ௜ and ܿ௜ are cost coefficients, ீܰ  is the number of generating units, ܲீ

೔
 and ܳீ೔ are 

the real power and reactive power generated, and ߙ௜, ߚ௜, ߛ௜, ߳௜ and ߤ௜ are the emissions coefficients.  
ሺܲீܨ	݁ݖ݅݉݅݊݅ܯ  ሻ ൌ ∑ ܽ௜ ൅ ܾ௜ܲீ ೔

൅ ܿ௜ܲீ ೔
ଶேಸ

௜ୀଵ    (1) 

ሺܲீܧ	݁ݖ݅݉݅݊݅ܯ  ሻ ൌ ∑ ሾ10ିଵ൫ߙ௜ ൅ ௜ܲீߚ ೔
൅ ௜ܲீߛ ೔

ଶ ൯ ൅ ߳௜݁
ఓ೔௉ಸ೔ሿேಸ

௜ୀଵ    (2) 
 The constraints of the problem are presented in equations (3)-(7). Equation (3) represents the genera-
tion capacity constraint which ensures that all energy generating plants operate within their capacity. 
Equations (4)-(7) represent the power balance constraints which ensure that the load provided to the sys-
tem meets the demand while taking energy transmission losses into account. 
 ܲீ

೔
௠௜௡ ൑ ܲீ

೔
൑ ܲீ

೔
௠௔௫			 ∀௜  (3) 

 ∑ ܲீ
೔
െ ஽ܲ ൌ ௟ܲ௢௦௦

ேಸ
௜ୀଵ    (4) 

 ܲீ
೔
െ ஽ܲ೔ െ ௜ܸ ∑ ௝ܸሾܩ௜௝ܿݏ݋൫ߜ௜ െ ௝൯ߜ ൅ ௜ߜሺ	݊݅ݏ௜௝ܤ െ ௝ሻሿߜ

ேಳ
௝ୀଵ ൌ 0		 ∀݅ (5) 

 ܳீ೔ െ ܳ஽೔ െ ௜ܸ ∑ ௝ܸሾܩ௜௝݊݅ݏ൫ߜ௜ െ ௝൯ߜ ൅ ௜ߜሺݏ݋௜௝ܿܤ െ ௝ሻሿߜ
ேಳ
௝ୀଵ ൌ 0 ∀݅  (6) 

 ௟ܲ௢௦௦ ൌ ݅ ∑ ݃௞ሾ ௜ܸ
ଶ ൅ ௝ܸ

ଶ െ cos൫ߜ௜ െ ௝൯ሿߜ
ேಸ
௜ୀଵ    (7) 

 Here, ܲீ
೔
௠௜௡ and ܲீ

೔
௠௔௫ are the minimum and maximum operating output of unit ݅, respectively, ஻ܰ is 

the number of buses, ஽ܲ೔ and ܳ஽೔ represent the real and reactive loads at bus ݅, ௜ܸ is the voltage magnitude 
at bus ݅, G௜௝ is the transfer conductance between buses ݅ and ݆, ߜ௜ is the voltage angle at bus ݅, ܤ௜௝ are the 
transfer conductance and susceptance between bus ݅ and bus ݆, ݃௞ is the conductance of the ݇th line. 

Given the formulation of the EELD problem, in the next subsection, we present the formulation of the 
multi-objective optimization algorithm embedded into our proposed framework. 

3.1.2 Multi-Objective Optimization using Particle Filtering Algorithm 

Celik et al. (2012) propose a multi-objective optimization algorithm by extending a particle filtering 
based optimization framework into multi-objective optimization problems. The EELD optimization prob-
lem described in Section 3.1.1, may be alternatively represented by (8) and (9), where ݔ,	݉, and ݔ∗ are 
the decision vector, number of decision variables, and Pareto optimal solution set, respectively. Further-
more, ଵ݂ሺݔሻ and ଶ݂ሺݔሻ represent equations (1) and (2), respectively. 
∗ݔ  ൌ ݊݅݉݃ݎܽ ݂ሺݔሻ ൌ ൫݊݅݉݃ݎܽ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ൯      (8) 
ݔ  ൌ ሺݔଵ, ,ଶݔ … , ௠ሻݔ ∈ ܴ௠  (9) 
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The state space model defined for the particle filtering based multi-objective optimization is provided 
in (10) and (11), and the importance density function is defined in (12). In these equations, ݔ௞ ൌ
൫ݔ௞,ଵ, ,௞,ଶݔ … , ௞ݕ ,݇ ௞,௠൯ is the state of the system at timeݔ ൌ ൫ݕ௞,ଵ, ,௞,ଶݕ … , -௞,௡൯ is the measurement takݕ
en at time ݇, ݒ௞ ൌ ൫ݒ௞,ଵ, ,௞,ଶݒ … ,  .௞,௡൯ is the measurement noise distributed with a pdf ߮ሺ⋅ሻݒ
௞ାଵݔ  ൌ  ௞,   (10)ݔ
௞ݕ	  ൌ ݂ሺݔ௞ሻ 	െ	ݒ௞,   (11) 

௞ሻݔ௞ሺݍ  ൌ
஦ሺ௙ሺ௫ೖሻି௬ೖሻ௤ೖషభሺ௫ೖሻ

׬ ஦ሺ௙ሺ௫ೖሻି௬ೖሻ௤ೖషభሺ௫ೖሻௗ௫ೖ
  (12) 

 The algorithm is based on a particle filtering procedure that includes two-sampling stages. In the first 
stage, samples are taken from within the non-dominated solution set generated by the algorithm. In the 
second stage, a sampling distribution is generated using the solutions with the best performance in each of 
the separate objectives, and then samples are drawn from this distribution. The number of samples, an 
empty non-dominated set, and the number of iterations, are defined as the algorithm’s input. Once initiali-
zation is completed, the data for buses, lines, and cost are used for random sampling. The admittance ma-
trix is then updated to reflect the distributed generation levels from the random dispatch, and the resulting 
loads and the equivalent resistance are calculated. In the next step, the resultant power generation as well 
as the energy transmission losses is evaluated, and the dispatch at the swing bus is adjusted to ensure the 
power balance constraints are met. Then the non-dominated solution set is calculated and the resampling 
stage is triggered. The new samples obtained from the resampling at each distribution level are then used 
to update the admittance matrix sequentially. Once the predefined number of iterations is reached, the fi-
nal non-dominated solution set is calculated and the corresponding objective values are exported. 

3.2 Discovery Procedure 

In the discovery procedure, the topology of the power network is explored, so that different potential sub-
networks are identified, to guide the RT-DDDAMS with a predetermined set of simulation fidelities. This 
is achieved with a decomposition technique, through which the entire network under consideration is de-
composed into ݊ non-overlapping observable sub-networks (Rakpenthai et al. 2005). Furthermore, each 
of these sub-networks must include at least one source of energy generation. Once the network is decom-
posed, the information of all the sub-networks and their combinations is stored into the sub-networks da-
tabase. The number of items stored in the database is 2௡ െ 1, where ݊ is the number of sub-networks. 
 Once the combinations are defined, demand levels are selected in order to generate different scenarios 
with which different fidelities will be evaluated. In this step ݉ levels of load variation are selected. Each 
of the sub-networks is mapped to a load with a variation corresponding to each of the ݉ levels, so that the 
permutation of the levels within the sub-networks generates the number of different scenarios. At this 
point it is important to highlight that a 0% level is always included within the ݉ levels of load variation, 
and the simulation is not performed when the demand in all the sub-networks is at this level; thus the total 
number of scenarios is ሺ݉௡ െ 1ሻ. Based on the number of sub-network combinations and levels, the total 
number of simulations performed by the discovery procedure is ሺ2௡ െ 1ሻሺ݉௡ െ 1ሻ. 
 It should be noted that the selection of the demand levels have a significant role in the accuracy of the 
proposed framework. On one hand, if few but very different levels of load variation are selected, the pre-
determined fidelities may not provide a good approximation for the demand variations of the real-time 
simulation. On the other hand, if many but close levels are selected, the accuracy of the fidelity selection 
obtained for the power dispatch may be optimal. However, because of the permutation involved in the 
generation of scenarios, the discovery procedure becomes unrealistic in the latter. 
 A set of non-dominated solutions is generated for each of the ሺ2௡ െ 1ሻሺ݉௡ െ 1ሻ simulations based 
on cost and emissions. They are then ranked for each of the ሺ2௡ െ 1ሻ sub-networks for each of the 
ሺ݉௡ െ 1ሻ scenarios, based on best compromise solution, using fuzzy logic. Finally, the rankings are 
saved into the fidelities database.  
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3.3 State Estimation Algorithm 

The real-time state estimation algorithm for computing the electricity demand is triggered by measure-
ments obtained from the sensors in the real system via the interaction with the sub-networks and fidelities 
databases. Efficient state estimation is crucial in this study since it significantly affects the control of the 
power flow, fidelity selection, security of the system, and performance of the load dispatch. To this end, 
in our proposed RT-DDDAMS paradigm, accurate estimates of real-time electricity demands are obtained 
via a smart sampling algorithm whose seeds were planted in their earlier work (i.e., Thanos and Celik, 
2013). The demand is estimated at the distribution level from smart sampling perspective using two sub-
procedures whose operations are explained below.  

3.3.1 Sub-procedure I 

The goal of the first sub-procedure is to estimate the real and reactive power injections of the considered 
electricity network using environmental measurements (i.e., temperature readings), to incorporate the en-
vironmentally-driven impacts. To be specific, during cold days, temperature increments lead to a decrease 
in the electricity demand, due to reduced heating demands, while on hot days, these temperature incre-
ments increase the electricity consumption due to higher cooling demands. To this end, the state-space 
model for electricity demand estimation in the first sub-procedure is given in equations (13) and (14). 
௞ାଵܦ  ൌ ௞ܦߙ ൅ ܷ   (13) 
௞ܦ  ൌ ߚ ௞ܶ ൅ ܸ  (14) 
where ܦ௞ାଵ and ܦ௞ are the posterior state (i.e., demand), current state ௞ܶ is the current temperature, ߙ and 
 are parameters related to state evolution and observation functions that are statistically calculated from ߚ
historical data, and ܷ and ܸ represent the process noises and measurement errors, respectively.  

3.3.2 Sub-procedure II 

For the purpose of modifying the minor variation of the estimates and increasing the estimation accuracy, 
in the second sub-procedure, the available measurements of the electrical parameters (i.e., voltage magni-
tudes, power injections, power flow, etc.) are employed. Then, the refined state-space model for this sub-
procedure is given in equations (15) and (16) as follows: 
௞ାଵܦ  ൌ ௞ܦߛ ൅ ܷ  (15) 
௞ܦ  ൌ ௞,௝ݖ௞ሻܦሺߤ ൅ ܸ,						∀݆ ∈ ሼ1,2, … ,  ሽ   (16)ܬ

Here ߛ is a parameter computed in a way analogous to that of ߙ and ߚ in the first sub-procedure, ߤሺ∙ሻ 
is a function relating the measurements to the power injection states, and ܬ is the number of different 
measurements within any corresponding time interval ݐ. 

The states of the network are set as the real and reactive power injections of the buses. Data collection 
frequency (time interval estimation) is determined on the basis of load variation and response times of the 
available energy resources. The limits of these frequencies are governed by the fastest possible response 
time of energy resources, and the maximum duration in which the load variation is kept unchanged. High-
er frequencies of data collection lead to a higher estimation accuracy and lower frequencies result in 
lighter computational burdens. Consequently, data collection frequency should be decided considering 
this trade-off. Once this frequency is determined, the algorithm generates four state variables correspond-
ing to real and reactive power injections for either “weekday” or “weekend day” for each bus. Figure 2 
presents the operation of the state estimation algorithm. 

3.4 Fidelity Selection Algorithm 

The effective culling and fidelity selection algorithm is designed to determine which sub-networks should 
be included in the RT-DDDAM simulation and which sub-networks’ dispatch should remain unchanged. 
This way, a near optimal dispatch may be attained while ensuring an acceptable computational burden. 
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 Whenever the dispatch of the system is to be updated, either because of periodic revision, or because 
a large change in the state of the system has been predicted, the fidelity selection algorithm is deployed. If 
the demand predicted by the state estimation algorithm suggests that the system continues to operate un-
der normal conditions, dispatch results from the simulations running at earlier fidelities can be accepted. 
However, if a significant variation is detected in any of the loads, the fidelity algorithm is employed to se-
lect a new simulation fidelity. Here, for each of the different sub-networks, the algorithm determines load 
variations within the sub-networks using previous dispatch and current estimated loads. Based on these 
variations, the algorithm matches each of the sub-network variations to the closest corresponding demand 
level from the fidelities database. Once all of the sub-networks have been matched, the ranking for the 
corresponding fidelity is used to determine which sub-networks should be included in the simulation. 

 

 

Figure 2: Flowchart of the embedded stated estimation algorithm 

Two conditions are utilized to evaluate the ranking from the fidelities database. The first condition 
excludes combinations where 1) multiple sub-networks are included and 2) more than 90% of all of the 
networks’ generation capacity is included. This condition is included to avoid the use of full system simu-
lations which will incur a large computational burden because of the extensive search space for the opti-
mization. The second condition excludes combinations where the total generation capacity of the sub-
networks included is inferior to 10% of the networks’ generation capacity. This condition avoids the use 
of simulations in which diverse solutions meeting the power balance conditions cannot be obtained due to 
the narrow search space. The solutions that have been avoided by the second condition, not only would 
have a large computational burden, but also would provide a very limited non-dominated solution set. 

4 EXPERIMENTS AND RESULTS 

4.1 Modified IEEE-30 Bus Systems 

In order to demonstrate the validity of the proposed RT-DDDAMS framework in real-time load dispatch-
ing problems, a set of experiments are carried out based on a modified IEEE-30 bus system. The original 
IEEE-30 bus system consists of 30 buses and 41 lines; these buses consist of 6 generation buses, 19 load 
buses, and 5 buses that neither generate nor request electricity. As mentioned in section 3.2, the network 
is divided into 3 sub-networks according to Rakpenthai et al. (2005). To this end, 5 sources of distributed 
generation are added, arbitrarily located at buses 7, 21, 22, 23 and 27 in the modified IEEE-30 bus sys-
tem, as shown in Figure 3. The data regarding the characteristics of this system is obtained from the Pow-
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er Systems Test Case Archive of the Department of Electrical Engineering at the University of Washing-
ton (2012), and the cost data and generation capacities are obtained from Phonrattanasak (2010). 

4.2 Discovery Procedure Simulation 

The studied network is split into three sub-networks and three levels of load variation (0%, 5%, and 10%) 
are selected. Therefore, a total of 182 different simulations were carried out, for 26 scenarios with 7 com-
binations each. The performances of the simulations are shown in Table 1. The combinations within each 
scenario are ranked based on linear membership functions that give equal weight for both objectives. 

 

 

Figure 3: Modified IEEE-30 bus system with three sub-networks 

 Table 2 presents the scenarios that correspond to different fidelities and ranks, as well as the probabil-
ity that a certain scenario is given a certain rank. It shows that, on average, the best performing sub-
network simulation fidelities are the combinations that include only sub-network 2, only sub-network 3 
and sub-networks 2 and 3. These three fidelities are ranked in the top three combinations in 52 of the 78 
scenarios. Since the probability of their performances belonging to the top three among all the combina-
tions is close to 70%, they are recommended as the simulation fidelity when the demand variations are 
difficult or impossible to achieve, or in extreme cases where the demand variations do not adjust to any of 
the predetermined levels of variation, and the burden of a full system simulation may be avoided. Except 
for these cases, the fidelities database obtained through the discovery procedure, provided in Table 3, is 
used as a reference, to search for the most suitable fidelities under different demand variation levels. 

4.3 RT-DDDAMS Evaluation 

In order to evaluate real-time DDDAMS framework, the state estimation algorithm has been used to 
generate 10 different cases where the environmental sensory data has been randomly generated.  
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Table 1: Best compromise solutions from the discovery procedure 

Demand 
Change (%) 

Simulated Sub-Networks (All Potential Combinations of Sub-Networks) 
1 2 3 1,2 1,3 2,3 1,2,3 

1 2 3 Cost Emission Cost Emission Cost Emission Cost Emission Cost Emission Cost Emission Cost Emission
0 0 5 605.85 0.26730 595.46 0.26730 579.92 0.26733 569.66 0.26736 583.55 0.26732 520.51 0.26744 595.00 0.26732
0 0 10 636.60 0.26725 591.88 0.26731 592.77 0.26730 634.15 0.26726 635.74 0.26726 580.39 0.26733 592.11 0.26732
0 5 0 651.86 0.26724 591.88 0.26731 589.40 0.26731 655.03 0.26723 600.33 0.26729 611.52 0.26727 639.06 0.26726
0 5 5 590.25 0.26730 629.81 0.26724 611.98 0.26727 614.61 0.26728 636.05 0.26723 634.63 0.26723 628.68 0.26724
0 5 10 639.44 0.26723 613.43 0.26727 580.82 0.26733 606.94 0.26727 620.34 0.26725 612.79 0.26727 582.07 0.26733
0 10 0 642.24 0.26724 603.11 0.26728 577.22 0.26733 612.77 0.26728 659.97 0.26723 547.88 0.26739 645.95 0.26726
0 10 5 658.18 0.26723 587.33 0.26731 622.96 0.26725 643.15 0.26723 643.08 0.26724 600.65 0.26729 617.23 0.26726
0 10 10 646.02 0.26723 612.76 0.26727 638.92 0.26722 659.13 0.26722 645.05 0.26721 653.02 0.26719 636.89 0.26724
5 0 0 645.75 0.26722 591.74 0.26731 627.43 0.26724 611.00 0.26726 655.12 0.26722 595.98 0.26730 660.65 0.26722
5 0 5 664.34 0.26720 597.53 0.26729 626.06 0.26724 634.41 0.26724 627.83 0.26724 612.50 0.26727 708.32 0.26718
5 0 10 652.94 0.26720 653.31 0.26719 594.85 0.26730 651.80 0.26721 687.04 0.26718 630.06 0.26724 645.87 0.26722
5 5 0 633.35 0.26724 649.17 0.26720 644.07 0.26721 629.36 0.26724 648.12 0.26720 654.22 0.26719 632.48 0.26724
5 5 5 645.96 0.26721 653.29 0.26719 608.95 0.26727 638.05 0.26721 669.71 0.26717 649.75 0.26720 673.38 0.26719
5 5 10 696.17 0.26717 650.39 0.26720 665.07 0.26717 626.51 0.26725 705.22 0.26716 637.84 0.26722 657.77 0.26722
5 10 0 662.13 0.26719 651.95 0.26720 645.42 0.26721 661.30 0.26719 668.64 0.26719 581.38 0.26732 660.00 0.26718
5 10 5 669.08 0.26718 661.18 0.26718 613.88 0.26726 650.56 0.26719 687.44 0.26717 655.30 0.26719 647.11 0.26720
5 10 10 694.15 0.26715 619.38 0.26725 636.31 0.26722 694.24 0.26716 682.82 0.26716 667.59 0.26717 667.11 0.26718
10 0 0 677.58 0.26717 626.60 0.26724 648.91 0.26720 640.73 0.26721 655.98 0.26719 663.55 0.26718 692.85 0.26719
10 0 5 700.81 0.26715 621.58 0.26725 656.43 0.26719 677.72 0.26718 678.68 0.26717 661.83 0.26718 658.82 0.26718
10 0 10 684.70 0.26715 670.84 0.26716 655.30 0.26719 707.98 0.26715 702.59 0.26712 691.85 0.26713 699.08 0.26714
10 5 0 671.25 0.26717 658.29 0.26719 623.85 0.26725 681.92 0.26718 706.97 0.26715 673.55 0.26716 672.25 0.26717
10 5 5 685.28 0.26714 658.18 0.26719 657.63 0.26719 675.56 0.26717 659.25 0.26718 693.67 0.26712 695.22 0.26714
10 5 10 689.80 0.26714 679.11 0.26715 683.42 0.26714 661.54 0.26718 695.52 0.26714 692.18 0.26713 657.09 0.26718
10 10 0 679.63 0.26714 679.06 0.26715 635.80 0.26723 688.44 0.26714 699.12 0.26713 687.19 0.26714 690.79 0.26715
10 10 5 716.91 0.26710 676.77 0.26715 660.30 0.26718 694.21 0.26714 699.75 0.26711 665.84 0.26717 688.11 0.26713
10 10 10 732.53 0.26710 699.81 0.26711 687.80 0.26713 694.44 0.26712 717.98 0.26710 705.92 0.26710 667.06 0.26716

Table 2: Discovery procedure combination ranking 

                        Rank    
Combination                

1 2 3 4 5 6 7 

1 1  -    3.8% 2  -    7.7% 2  -    7.7% 2  -    7.7% 5  -  19.2% 11  -  42.3% 3  -  11.5% 
2 5  -  19.2% 5  -  19.2% 8  -  30.8% 7  -  26.9% 1  -    3.8% 0   -   0.0% 0  -    0.0% 
3 4  -  15.4% 7  -  26.9% 5  -  19.2% 6  -  23.1% 4  -  15.4% 0   -   0.0% 0  -    0.0% 

1,2 5  -  19.2% 1  -    3.8% 0  -    0.0% 3  -  11.5% 6  -  23.1% 4   - 15.4% 7  -  26.9% 
1,3 5  -  19.2% 2  -    7.7% 1  -    3.8% 1  -    3.8% 4  -  15.4% 8   - 30.8% 5  -  19.2% 
2,3 3  -  11.5% 5  -  19.2% 10 -  38.5% 4  -  15.4% 3  -  11.5% 0   -   0.0% 1  -    3.8% 

1,2,3 3  -  11.5% 4  -  15.4% 0  -    0.0% 3  -  11.5% 3  -  11.5% 3   - 11.5% 10 -   38.5%

Table 3: Fidelities database  

Demand Change (%) Ranking Demand Change (%) Ranking 
1 2 3 1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 6 7 
0 0 5 2 1,3 1 3 1,2,3 1,2 2,3 5 5 10 3 2 2,3 1,2 1,2,3 1 1,3
0 0 10 3 2 2,3 1,2,3 1 1,3 1,2 5 10 0 1,2,3 2 3 1,2 2,3 1 1,3
0 5 0 1,3 2,3 3 2 1,2 1 1,2,3 5 10 5 1,2 1,2,3 2 2,3 3 1 1,3
0 5 5 2,3 1 2 1,2,3 3 1,3 1,2 5 10 10 2,3 3 2 1,2,3 1,3 1 1,2
0 5 10 1,2 1,3 2,3 2 3 1 1,2,3 10 0 0 1,3 1,2 3 2,3 2 1 1,2,3
0 10 0 2 3 2,3 1,2 1 1,3 1,2,3 10 0 5 1,2,3 3 2,3 2 1,3 1,2 1 
0 10 5 3 1,2,3 2,3 2 1,2 1,3 1 10 0 10 2 3 2,3 1 1,3 1,2,3 1,2
0 10 10 2,3 3 1,3 2 1 1,2,3 1,2 10 5 0 2 3 2,3 1 1,3 1,2,3 1,2
5 0 0 1,2 3 2 2,3 1 1,3 1,2,3 10 5 5 1,3 1 2,3 2 3 1,2 1,2,3
5 0 5 3 2,3 2 1,3 1,2 1 1,2,3 10 5 10 1,2,3 2 2,3 3 1,2 1 1,3
5 0 10 2 2,3 1 3 1,2,3 1,2 1,3 10 10 0 1 2,3 2 3 1,2 1,3 1,2,3
5 5 0 1,3 2 3 2,3 1,2 1 1,2,3 10 10 5 1,3 1,2,3 2 3 2,3 1 1,2
5 5 5 1,2 2,3 2 3 1 1,3 1,2,3 10 10 10 1,2 1,2,3 3 2 2,3 1,3 1 

 
 The fidelities selection database has been used by the RT-DDDAMS framework in the fidelity selec-
tion and culling algorithm. For each case, the RT-DDDAMS searches for the closest scenario by compar-
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ing the estimated demand changes with the three demand change levels. Once the corresponding scenario 
is identified, simulations are performed for the two top ranked sub-network combinations. This general 
rule bears two main exceptions that include the simulation of sub-network combinations with all of the 
sub-networks and the combination with only sub-network 3, as discussed in section 3.4. 
 In Table 4, the 7 combinations were run and ranked for each of the 10 cases, in order to further evalu-
ate the effectiveness of the proposed RT-DDDAMS framework. T choice of the two fidelities chosen by 
the RT-DDDAMS can be benchmarked against this ranking.  

Table 4: Fidelity ranking for the experimental cases 

Case Demand Change (%) Ranking 
1 2 3 1 2 3 4 5 6 7 

1 0.39 1.50 1.32 1,2,3 2 2,3 1,3 1,2 3 1 
2 0.99 0.54 3.77 2 2,3 3 1,2,3 1,3 1 1,2 
3 0.32 2.74 2.27 1,2,3 1,3 2,3 1,2 2 3 1 
4 3.90 1.69 0.39 1,3 1,2,3 1 2,3 2 3 1,2 
5 2.26 0.10 2.60 1,3 1,2 2 1 2,3 3 1,2,3 
6 2.55 4.56 6.70 1,3 2,3 2 1 3 1,2,3 1,2 
7 5.74 3.48 1.38 1,2,3 2,3 1,3 1,2 3 2 1 
8 7.40 0.45 2.28 1,3 2,3 1,2,3 1,2 2 3 1 
9 4.50 3.45 12.39 1,2,3 1 2 1,3 3 1,2 2,3 

10 10.36 6.24 4.26 2,3 1 2 3 1,2 1,2,3 1,3 

 
 Table 5 shows combinations selected by the RT-DDDAMS framework for each of the 10 cases, their 
rankings, and a comparison between the best sub-network combination obtained through experimental 
simulation and the suggested fidelity by the RT-DDDMAS for case 3. The table shows that the selected 
fidelities rank among the top two combinations in five of the cases and among the top three in eight of 
them. In the figure, blue dots represent experimental compromise solutions for case 3, red dot is the best 
solution found from the experimental simulations (i.e., combinations of sub-network 1, 2, and 3), and 
green dot is the result obtained via the suggested simulation 1 (i.e., combinations of 1 and 2). It is shown 
that the red and green dots are close to each other, meaning that there is no significant difference between 
the performances of these two combinations. Therefore, it can be concluded that the proposed RT-
DDDMAS is able to provide a good compromise solution without utilizing great computational resources.  

Table 5: Proposed sub-network simulation configuration from simulation culling 

5 CONCLUSIONS AND FUTURE WORK 

In this work, a real-time dynamic data driven adaptive multi-scale simulation framework has been pro-
posed for the economic and environmental load dispatching problem in power networks. The decision 
making capability of the framework resides in its algorithms developed for grid topology exploration and 
clustering, multi-objective optimization, state estimation, and fidelity selection. The framework also en-
compasses three databases for storing information related to sub-networks, fidelities, and measurements. 

Case Demand Change (%) Discovery 
Case 

Suggested Simulation 1 Suggested Simulation 2
  1 2 3 Sub-Networks Rank Sub-Networks Rank 
1 0.39 1.50 1.32 0,0,0* 1,3 4 2,3 3 
2 0.99 0.54 3.77 0,0,5 2 1 1,3 5 
3 0.32 2.74 2.27 0,5,0 1,3 2 2,3 3 
4 3.90 1.69 0.39 5,0,0 1,2 7 3 6 
5 2.26 0.10 2.60 0,0,5 2 4 1,3 1 
6 2.55 4.56 6.70 5,5,5 1,2 7 2,3 2 
7 5.74 3.48 1.38 5,5,0 1,3 3 2 6 
8 7.40 0.45 2.28 5,0,0 1,2 6 3 5 
9 4.50 3.45 12.39 5,5,10 3 5 2 3 

10 10.36 6.24 4.26 10,5,5 1,3 7 1 2 
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0.26726 0.26728 0.2673 0.26732
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The proposed RT-DDDAMS framework has been demonstrated on a modified version of the IEEE-30 
bus system. Presented results consistently reveal that the proposed framework is able to assess the system 
status and determine a simulation fidelity leading to a compromise solution which ranks among the global 
best possible solutions, while saving significantly from the computational resource utilization. 
 Future ventures of this research include both methodological and technological extensions to the pro-
posed framework. Methodological extensions can be performed in the development of the fidelity selec-
tion and culling algorithm, combining the current selection procedure with an advanced optimal compu-
ting budget allocation (OCBA) algorithm to improve the quality of the solutions, while ensuring that a 
realistic computational threshold is respected. Furthermore, the effect of the variation in demand levels 
within the discovery procedure may be investigated to determine an optimal and feasible range. Techno-
logically, the impact of integrating the RT-DDDAMS framework with high-speed sensor networks on the 
system’s overall performance may be studied.  
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