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ABSTRACT 

Simulation models are commonly used to study traffic systems. Accurate traffic predictions need proper 

characterization of the traffic flow and knowledge of related parameters representing the state of the traf-

fic flow in the models. To correctly estimate the traffic flow in real time, we need to reconstruct the event 

by answering such critical questions as the source of the congestions. The availability of sensor data from 

the real traffic provides information that can be assimilated into a traffic simulation model for improving 

predicted results. In this paper, we use the sequential Monte Carlo methods to assimilate real time sensor 

data into the simulation model MovSim, an open-source vehicular-traffic simulator, to reconstruct events 

such as the slow vehicles that cause the traffic jam. Related experimental results are presented and ana-

lyzed . 

1 INTRODUCTION 

One of the most prevalent transportation problems that exist is traffic congestion in urban areas. It causes 

traffic delays, increased accidents, and higher emissions; furthermore it leads to economic losses.  The es-

timated costs of traffic congestions for some big cities reflect the economic burden on U.S. In 2007, the 

wasted time and fuel were worth about 9.3 billion dollars in greater Los Angeles region, and the New 

York metropolitan wasted approximately 13 billion dollars in 2006 (Lewis 2008). Therefore, it is essen-

tial to understand the traffic flow and develop road networks with efficient traffic movements that will re-

duce traffic congestion and decrease its economic costs. In the past decades, researchers have developed 

various theories and models to study the behaviors of the traffic flow. Most of the models fall into two 

main categories, including microscopic modeling and macroscopic modeling according to the level of de-

tails. The microscopic approach models the traffic flow by analyzing driver-driver interactions and driver-

road interactions. By contrast, the macroscopic approach formulates the relationships among traffic flow 

parameters, such as the density and the average speed of the traffic stream from a global aspect. Some of 
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these model include car-following models (e.g., Viedemann model), cellular automaton models (e.g., 

Nagel–Schreckenberg model), and LWR model. Comparisons of related traffic flow models were dis-

cussed by Hoogendoorn and Bovy (2001). 

 Although the abovementioned modeling approaches may provide useful information for decision 

makers of traffic management to some degree, accurate predictions need proper characterization of the 

traffic flow (e.g., the location of congestion) and knowledge of related parameters representing the state 

of the traffic flow in the models. To correctly estimate the traffic flow, we have to reconstruct the event 

by knowing the critical situations below. Where does the congestion happen? What leads to the conges-

tion? How severe is the congestion? Inaccurate estimation of the information above can lead to delay to 

reduce the traffic jams. The availability of sensor data from the real traffic provides the measurement to 

match the output to improve predicted results. For example, a slow vehicle in the road can lead to the 

congestion. By collecting the real time data (such as, velocity, acceleration, and position of vehicles) and 

assimilating them into the simulation model, the information of this event of congestion can be obtained 

(the location of this vehicle). This provides valuable information for decision makers to manage the traf-

fic.  

       The rapidly developed sensing technologies are providing highly convenient availability of real time 

data from the system under study like never before. The data from the real system is continually assimi-

lated into the simulation model to improve the simulation results. The assimilated data is a kind of meas-

urement used to evaluate the simulation’s output, and then adjust the state of the simulation model. This 

makes it possible to reconstruct events like locating the vehicle to cause traffic congestions. In this work, 

we assume that a slow vehicle in the road network results in the traffic jam. The collected real time data is 

assimilated into the simulation model. By analyzing the difference between the real time data and the out-

put from the simulation model, we locate the vehicle causing traffic congestions. The used simulation 

model for traffic flow is MovSim, a microscopic lane-based traffic simulator. It implements various car-

following models like time-continuous models, iterated maps and cellular automata. Due to the complex, 

nonlinear, and chaotic behavior of the traffic flow system, the sequential Monte Carol (SMC) methods are 

used for data assimilation. 

The rest of the paper is organized as follows. Section 2 introduces the related work in various do-

mains. Section 3 formulates the problem of the event reconstruction. Section 4 presents the experiments 

and their results. Finally, Section 5 draws conclusions and points out the future work. 

2 RELATED WORK 

In the last fifty years, many scholars have developed a large number of traffic flow models. The devel-

oped microscopic models include the Wiedemann model (Wiedemann 1974), Gipps’ model (Gipps 1976), 

Nagel-Schreckenberg model (Nagel and Schreckenberg 1992), and LWR model (Lighthill and Whitham 

1955, Richards 1956). The Wiedemann model is a car-following model, which assumes that traffic flow is 

the process of one vehicle following another. It uses thresholds to decide change of the drivers’ behaviors, 

and incorporates lane-changing and overtaking. The Wiedemann model has been used in extensively used 

microscopic multi-modal traffic flow simulation software VISSIM (Fellendorf and Vortisch 2010). 

Gipps’ model is another car-following model, which defines a number of parameters to model different 

features of drivers’ behaviors. Since it involves multiple parameters, it is very challenging to choose ap-

propriate values of those parameters for particular road networks. However, the computation costs will be 

highly increased if repeating the simulations. The road network simulation software PARAMICS (Smith, 

Duncan, and Druitt 1995) is based on Gipps’ model. Comparing to the Wiedemann model and Gipps’ 

model, Nagel-Schreckenberg model is a different microscopic traffic model, in which the cellular automa-

ta are used to model the road. In this model, a road is composed of connected cells. Each cell is either 

empty or contains a vehicle with the velocity. With time advances, the states of the cells evolve. This dis-

crete space and time evolution forms a cellular automaton. It is the basis of the transportation analysis 

simulation system TRANSIMS (Ley 2009). MovSim is a microscopic road traffic simulator, which im-
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plements different car-following models, and even time-continuous models, iterated maps, cellular au-

tomata, and lane changes. Its ultimate goal is to develop a generic tool for all implemented models and 

simulate all basic traffic situations and discrete decision making. It is very convenient for researchers and 

educators’ extension since it is open-source. We also consider MovSim as the simulator in this work. The 

related information about MovSim can be found at http://www.movsim.org. Different from the above mi-

croscopic models, macroscopic models attempt to study the average behavior of the traffic flow system 

instead of individual vehicles. LWR model is one kind of these models, which considers a scalar time-

varying, non-linear, hyperbolic partial differential equation. One important assumption is that the velocity 

depends on the traffic density (Miller 2011). 

 Event reconstruction has been widely used in various application domains, including hazardous at-

mospheric releases, radionuclide networks, power systems, and digital investigations. Kosovic et al. 

(2007) developed an event reconstruction methodology to estimate the probabilistic source terms from 

field measurement data for accidental and clandestine releases. Brown and Kozlowski (2006) presented 

the technology and necessity of its application of event reconstruction for the power systems in modern 

data centers. Koohkan et al. (2012) discussed the potential usage of event reconstruction in international 

monitoring system radionuclide networks. The digital event reconstruction was examined, and a process 

model used for digital crimes was proposed by Carrier and Spafford (2004). The model was designed to 

apply to physical crime scenes and support unique aspects of a digital crime scene. Traditionally, regres-

sion, inversion, and optimization are widely used although they have limitations for complex event recon-

structions. Especially it is difficult for them to solve the large-scale non-linear systems. Therefore, many 

researchers seek other approaches for the solutions, such as sampling methodologies. The initial method 

of Markov Chain Monte Carlo stochastic methodology and the improved methods of SMC methods were 

adopted for the dynamic data driven event reconstruction for atmospheric releases by Kosovic et al. 

(2007). Trung (2009) used Kalman filter for the implementation of event reconstruction and energy cali-

bration using cosmic muons for the T2K pizero detector. Due to its convergence to the true posterior den-

sity in non-Gaussian, non-linear dynamic systems, SMC methods are employed in numerous dynamic 

systems. Gu and Hu (2008), Gu, Yan, and Hu (2009), and Yan et al. (2009) explored the dynamic data 

driven application system for wildfire spread simulation using a discrete event simulation model DEVS-

FIRE. Gu (2010) and Xue, Gu, and Hu (2012) presented the overall framework of dynamic data driven 

application system including associated models and algorithms of data assimilation using the discrete 

event wildfire spread simulation model of DEVS-FIRE. The underlying technique for their work is SMC 

methods. In traffic flow systems, SMC methods are a promising technique to assimilate the real time data 

into the models to improve the estimations. Mihaylova, Boel, and Hegyi (2006) used SMC methods to es-

timate the traffic on a freeway. They also validated and evaluated the SMC performance using the real 

traffic data. In addition, the unscented Kalman filter was implemented and its results were compared to 

those of SMC methods. In our work to be presented in this paper, we attempt to explore event reconstruc-

tion for the traffic flow simulation by assimilating real time data into a sophisticated model. Because of 

their advantages mentioned above, we implement the event reconstruction of the traffic flow system using 

SMC methods.   

3 DYNAMIC DATA DRIVEN EVENT RECONSTRUCTION FOR TRAFFIC SIMULATION 

3.1 Structure of Dynamic Data Driven Event Reconstruction for Traffic Simulation 

As discussed above, we attempt to assimilate the real time data into traffic flow simulation models to re-

construct events like a slower vehicle in the road to cause the traffic jam. Figure 1 shows the proposed 

structure of dynamic data driven event reconstruction for the traffic flow simulation. From the figure, we 

know that several components are needed for the system, including the traffic flow simulation (e.g., the 

MovSim simulation model), the road networks and vehicle data, the traffic data, and data assimilation 

methods. The traffic sensors are used to collect real time data from the traffic flow system, such as the 
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vehicles’ speeds, locations, accelerations, and densities. The above data is assimilated into the traffic flow 

simulation models, such as MovSim, during the simulation of the traffic flow models, using different data 

assimilation methods (e.g., SMC methods). Therefore, the essential parts of the whole system are the 

simulation models and data assimilation methods. As mentioned above, although conceptually any traffic 

flow simulation models and data assimilation methods can be used, the MovSim and sequential Monte 

Carlo methods are the simulation platform and the approach to explain the structure of dynamic data driv-

en event reconstruction for the traffic flow simulation in this paper. It is noted that although we deal with 

the general problem of event reconstruction, in this specific paper we consider the event of traffic conges-

tion caused by slowly moving vehicles. To reconstruct the event, we need to model this event explicitly 

(that is, we introduce a slow vehicle in our simulation model), and then use the SMC methods to recon-

struct the location and the moving speed of the slow vehicle. Under this context, the details of related 

components for the event reconstruction for the traffic flow simulation are provided below. 

 

 

 
 

3.2 MovSim Simulation Software 

MovSim is a microscopic lane-based traffic simulation platform, initiated and contributed by Arne 

Kesting, Martin Budden, Ralph Germ, and Martin Treiber respectively. MovSim implements different 

car-following models including time-continuous models, iterated maps, and cellular automata. The time-

continuous models include Intelligent Driver Model (IDM) (Treiber, Hennecke, and Helbing 2000), Im-

proved IDM (Kesting, Treiber, and Helbing 2010), Optimal Velocity Model (OVM) (Bando et al. 1995), 

and Full Velocity Difference Model (FVDM) (Jiang, Wu, and Zhu 2001). The iterated maps contain 

Gipps’ model (Gipps 1976) and Krauss model (Krauss 1998). The cellular automata models consist of 

Nagel-Schreckenberg model (Nagel and Schreckenberg 1992), improved Nagel-Schereckenberg model, 

and Kerner-Klenov-Wolf model (KKW) (Kerner, Klenov, and Wolf 2002). It not only models and simu-

lates the basic traffic flow simulations, but also incorporates the discrete decisions, such as lane changes, 

traffic lights reacting, and yielding. The discrete decision models include lane change with MOBIL 
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Figure 1: Structure of dynamic data driven event reconstruction for traffic simulation. 
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(Kesting, Treiber, and Helbing 2007) and approaching traffic lights. The software can be run from com-

mand line or with a graphical user interface. It is an open-source project written in Java. Figure 2 shows a 

screenshot of a defined example using MovSim. In the figure, a straight two-lane road and a loop two-

lane road are defined, and they are connected by two connecting roads. The roads are shown in gray. The 

cars (shown in black) with their configurations are employed in the road network. When the simulation is 

run, the cars will behave according to the used models, such as the car-following model. The related out-

put parameters can be captured for analysis. Since it is an open-source software package, MovSim can be 

used for further development and researchers’ use. In addition, the different implemented models provide 

convenience and flexibility for scholars to meet their requirements in the research. In this work, the real 

time data is assimilated into the traffic simulation model, therefore, the MovSim simulator will be called 

in different simulation time steps.  

 

 

 
 

 

3.3 SMC Methods 

In SMC methods, particles and associated weights are used to approximate the dynamic systems. SMC 

methods are based on samples that use Bayesian inference and stochastic sampling techniques to recur-

sively estimate the state of dynamic systems from given observations. A dynamic system is defined as a 

discrete dynamic state-space model, which contains the system transition model in Equation (1) and the 

measurement model in Equation (2) (Jazwinski 1970) as shown below.  

                                                          .),(1 ttt tsfs                                                                                   (1) 

                                                         .),( ttt tsgm                                                                                     (2) 

        t: time step; 

Figure 2: Interface of MovSim. 
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        st and mt: the state variable and the measurement variable respectively; 

         f: the evolution of the state variable; 

        g: the mapping from the state variable to the measurement variable; 

        t :and t : independent random variables representing the state noise and the measurement noise. 

The estimate of the state ts  is based on the set of all measurements }.,...,2,1,{:1 timm it   In Bayesian 

filtering, both the state and the measurement variables are stochastic, and the posterior density )|( :1 tt msp  

is recursively obtained. Given the posterior probability density )|( 1:11  tt msp  at time step t-1, the prior 

probability density )( 1:1 tt msp  of the state at time step t can be computed since the needed system transi-

tion density is constructed from the system transition model as shown in Equation (1). If the measurement 

at time step t is available, the posterior probability density function can be calculated according to Bayes 

theorem from the measurement model in Equation (2). SMC methods approximate the posterior probabil-

ity density function )|( :1 tt msp  by a set of particles (samples) and their corresponding weights.  

One of the most popular algorithms for SMC method is called sequential importance sampling with 

resampling (SISR), which is the adopted method in this paper. In summary, a basic SMC algorithm that 

implements the SISR procedure goes through multiple iterations. In each iteration, the algorithm receives 

a sample (particle) set 1tS  and an observation tm . 1tS
 
represents the previous belief of the system state 

where pt nS  || 1  and pn  is the number of samples. In the importance sampling step, each sample 

1
)(
1   t

i
t Ss  is used to predict the next state. This is done by sampling from the proposal density

),|( )(
1

)(
t

i
t

i
t mssq  . The importance weight of each particle is then updated and normalized. In the resampling 

step, pn  offspring samples are drawn with a probability proportional to the normalized sample weights. 

These samples represent the posterior belief of the system state and are used for the next iteration. With 

SMC methods, it has been shown that a large number of particles are able to converge to the true posterior 

density even in non-Gaussian, non-linear dynamic systems (Crisan 2001). For systems with strongly non-

linear behaviors, SMC methods are more effective than the widely used Kalman filter and its various ex-

tensions. More details about the algorithm were presented by Gordon, Salmond, and Smith (1993). 

3.4 Formulating Event Reconstruction for Traffic Flow Simulation 

Based on the context of reconstructing an event of a slow vehicle, we describe the system model below. 

Assume there is a slow vehicle whose position and velocity are p_slowvechile(t-1) and v_slowvehicle(t-1) 

at time step t-1 in a road network, which is composed of n road segments. The densities of the road seg-

ments at time step t-1 are d1(t-1), d2(t-1),…, dn(t-1) respectively. Given the system status at time step t-1, 

RW(t-1)={d1(t-1), d2(t-1),…, dn(t-1), p_slowvechile(t-1), v_slowvehicle(t-1)}, the MovSim simulator is 

run for one time step, and we can obtain the system status at time step t, RW(t)={d1(t), d2(t),…, dn(t), 

p_slowvechile(t), v_slowvehicle(t)}. The system transition is denoted in Equation (3).    

                                                 RW(t)=MovSim(RW(t-1)).                                                                           (3) 

To evaluate the status of vehicles, the measurement model is needed to convert from the given status 

to comparable data with the real time data. The sensors can capture the real time data, such as densities of 

the vehicle on the road segments. In this problem, we assume k sensors are deployed in the predefined lo-

cations of the road network, and their readings at time step t are S’(t)= (s1’(t), s2’(t),…, sn’(t)). These da-

ta are used to compare with the data from the measurement model, S(t)= (s1(t), s2(t),…, sn(t)). The meas-

urement model maps the system status RW(t) to the data S(t) comparable with the sensor data from 

distributed sensors S’(t). Therefore, we define the measurement model in Equation (4). In this particular 

context, it is easy to calculate the vehicle densities in the predefined k locations if we know the vehicle 

positions on road segments. This is implemented by the measurement model MM.  
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                                               S(t)=MM(RW(t)).                                                                                           (4)  

Combining the system model, measure model, and the related noises, the discrete dynamic state-space 

model is defined in Equation (5) and Equation (6). In the equations, RW(t) and RW(t+1) are the statuses 

of the vehicles at time t and t+1 respectively; MovSim is the system model; S(t) is the measurement data 

computed from the system status; MM is the measure function mapping from the system status to the 

measurement data;  γ(t) and ω(t) are the system model status noises and the measurement noises respec-

tively.  

                                     RW(t+1)=MovSim(RW(t))+γ(t).                                                                        (5) 

                                     St=MM(RW(t))+ω(t).                                                                                        (6) 

Based on the discrete dynamic state-space model for the traffic flow simulation, the related algo-

rithms of SMC methods can be applied, recursively assimilating the real time data into the system model 

of MovSim to improve the state estimations. 

        Weight computation is a very important step in SMC methods since it provides the measure to keep 

the optimal particles for the future steps. In this paper, we assume n sensors are uniformly distributed on 

the road network, which can detect the densities of the vehicles within L meters at their left side and right 

side respectively. For any sensor i at time step t (t>m), the history information from time step t-m+1 to t-1 

and the current information at time step t are considered. The differences between the real time data and 

the measurement data are computed, and their average absolute values are used for measuring the im-

portance of this sensor as shown in Equation (7), where as(i, t)is the weight of sensor i at time step t, d’(i, 

t) is the real density from the sensor i at time step t, and d(i, t) is the calculated density of sensor i from 

the measurement model at time step t. Therefore, the weight of a particle w(t) at time step t is defined in 

Equation (8). In the equation, if  as(i, t)=0, we directly set 1/ as(i, t) as 1, where 0≤i≤n. 

                   as(i, t)=(|d’(i, t)- d(i, t)|+ |d’(i, t-1)- d(i, t-1)|+…+ | d’(i, t-m+1)- d(i, t-m+1)|)/m.                    (7) 

                           w(t)=Max (1/ as(1, t), 1/ as(2, t),…, 1/as(i, t),…, 1/as(n, t)).                                            (8) 

4 EXPERIMENTS AND RESULTS 

The identical-twin experiment is widely used in dynamic data driven event reconstruction and data assim-

ilation research. It is also adopted in this paper to evaluate the dynamic data driven event reconstruction 

for traffic flow simulation. It aims to study the dynamic data driven event reconstruction in ideal situa-

tions and evaluate the proximity of the prediction to the true states in a controlled manner. A simulation is 

run, its related data is recorded, and the results are believed as “true” and regarded as the real time data. 

This “real” time data is assimilated into the dynamic data driven event reconstruction system to predict 

the system states. Consequently, we check whether the predicted states are close to the “true” states.  

We assume there is a slower vehicle on a ring road network (e.g., 1/3 of the other vehicles' speed in 

the traffic flow), which causes the possible traffic congestion. We run a simulation, and record the data of 

positions at each time step. This data is treated as “real” data, which will be assimilated into the dynamic 

data driven event reconstruction system. We name this data as the real traffic. Although we don’t know 

the information of the slower vehicle, the real time data is assimilated into the traffic model for event re-

construction to reconstruct the traffic flow. The goal of the experiment is to show that the reconstructed 

traffic is proximate to the real traffic. 

  We use a ring road with length of 1,000 m, and there are 44 vehicles travelling on it as shown in 

Figure 3. There are two types of vehicles on the road. One type is the normal vehicles (displayed in black), 

whose maximum velocity is 35 km/h. Another type is the slower vehicle (displayed in red), whose maxi-

mum velocity is 10 km/h. The road is divided into 20 road segments with the same length. In Figure 3, the 

slower vehicle is longer than the normal vehicles. Three density sensors A, B, and C are uniformly de-

ployed on the road, which can detect the vehicle densities within some distance (e.g., 50 m) left and right 
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respectively. From the figure, we know that because of the slower vehicle, the traffic congestion occurs in 

the road segment displayed in red. By assimilating the real time data, we reconstruct the event of the 

slower vehicle on the ring road. In the simulation, the number of particles is set to be 30. We run the sim-

ulation for 180 time steps (2 seconds each time step). Figure 4 and Figure 5 display the simulation results 

at time step 120 and time step 180 respectively. In both of the figures, the horizontal axis and vertical axis 

represent the road segments and number of vehicle per 50 meters respectively. The real traffic is obtained 

by assuming we know the information of the slower vehicle denoted as TFS. From Figure 4, we can see 

that the number of vehicles in segment 4 is relatively high, and probably leading to the congestion. In 

Figure 5, there are more vehicles in segment 13, 14, 15, and 18, which are the possible congestion parts of 

the road. In both figures, the vehicles densities of the reconstructed traffic flow (DDDTFS) are proximate 

to those of the real traffic (TFS). Particularly, the results at time step 180 are better than those at time step 

120. From the results of both Figure 4 and Figure 5, we can conclude the reconstructed traffic is very 

close to the real traffic. Therefore, according to the reconstructed traffic without knowing the slower ve-

hicle, we can estimate its information by assimilated the real time data.  

 

 
 

 

 
Figure 3: Ring road network with vehicles. 
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5 CONCLUSIONS AND FUTURE WORK 

In the paper, the dynamic data driven event reconstruction for traffic flow simulation is presented. Based 

on the traffic flow simulator MovSim, the structure of dynamic data driven event reconstruction system is 

described. Finally, the experimental results show that the event (a slower vehicle) can be reconstructed by 

assimilating the real time data into the traffic flow simulation model. Future work will be focused on the 

following aspects: (i)  Explore other dynamic data driven event reconstruction applications in traffic flow 
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Figure 4: Density of vehicles at time step 120. 

Figure 5: Density of vehicles at time step 180. 
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simulations, such as parameters estimation; (ii) Develop more advanced data assimilation methods to im-

prove the simulation results; (iii) Conduct quantitative analysis about the effects of different parameters of 

SMC methods on the quality simulation results.   
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