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ABSTRACT 

The phenomenon  of operating system (OS) Jitter has been investigated and considered a critical factor in 

high-performance computing. In this paper we model and simulate the effects of different sources of OS 

Jitter in the Linux operating system. We adopt the design of experiments approach to conduct experi-

ments statistically planned. Our simulation models corroborate the results obtained experimentally.  We 

conclude that the OS Jitter has a higher impact when the number of the computational phases is high, for 

any number of computing nodes from 1 to 500. We also observed that in Linux, the highest OS Jitter im-

pacts are caused by managing the shared processor cache and network interrupts, where the second shows 

the highest sensitivity with respect to the cluster size.  

1 INTRODUCTION 

Clusters of computers are extensively used for running high-performance computing (HPC) applications 

(Cheon, Kim, and Im 2003). In a typical HPC cluster, each computing node executes its own operating 

system (OS). Thus, in addition to the user’s application running on the node, there are also OS routines 

executing on the same node. This means that OS routines such as synchronization of dirty buffer-cache 

entries, interrupt handlers, kernel timers, and administrative processes, all of them compete with the user 

application for the node computing resources. It leads to a scenario where during the user application 

runtime it periodically suffers from interferences caused by the OS internal routines. These interferences 

have been extensively investigated (Garg and De 2006; De, Kothari, and Mann 2007; Gioiosa et al. 2004; 

Agarwal, Garg, and Vishnoi 2005; Tsafrir et al. 2005; T.R. Jones and Fier 2003) and reported as OS Jitter 

effects.  

 Importantly, HPC cluster-based applications are designed to run in a parallel processing paradigm, 

where instructions are programmed to execute in many computational phases (Garg and De 2006). Right 

after all distributed processes finish a given computational phase, they synchronize and start the subse-

quent phase (Gioiosa et al. 2004; Agarwal, Garg, and Vishnoi 2005; Tsafrir et al. 2005). A new phase on-

ly starts after all processes conclude the current phase, so synchronizing the computing time of all pro-

cesses is critical. The last process that finishes a given phase determines the length of the current phase. 

Reducing the runtime variability in each node is a major requirement, because the occurrence of unex-

pected delays in a given node will spread along other nodes involved in the same computational phase, 

taking a longer time to complete the whole task. Many factors cause the application runtime variability in 

a cluster environment, specially network and disk I/O latencies, and the OS Jitter (Petrini, Kerbyson, and 

Pakin 2003). 

In this paper, we model and simulate the effects of different sources of OS Jitter in the Linux operat-

ing system. We choose the Linux OS  because it is used in more than 90% of the HPC clusters listed on 

the Top500 supercomputer website (Top 500 Supercomputer Sites 2013). We apply controlled experi-

ments in order to collect the experimental data sets used to characterize the effects of each modeled 

source of OS Jitter. The data sets are analyzed using different parametric and non-parametric statistical 
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techniques. Since we execute different experiments, we also implement specific instrumentations to com-

pare the control group against the planned experimental groups, considering the evaluated factors individ-

ually and in a combined way. The rest of this paper is organized as follows. Section 2 describes related 

works. Section 3 presents the methodology used in this study. Section 4 shows our experimental plan. 

Section 5 discusses the experimental results. Section 6 presents the simulation modeling and results. Sec-

tion 7 present our final remarks. 

2 RELATED WORKS 

In De, Kothari, and Mann (2007), the authors present an experimental study of OS Jitter in the Linux op-

erating system. They reported that 63% of every observed delay are caused by the timer interrupt, and the 

remaining 37% came from different OS services and other hardware interrupts. Similarly, In Tsafrir et al. 

(2005) the authors also concluded that the main source of OS Jitter was the timer interrupt. In Agarwal, 

Garg, and Vishnoi (2005), a research work that models the effect of OS Jitter over the scalability of paral-

lel applications is presented, which shows that in presence of OS Jitter with exponential distribution, the 

system under study showed the expected scalability. Gioiosa et al. (2004) discusses the impact of the OS 

Jitter on parallel applications, where the authors implemented a micro benchmark that executes n compu-

tational phases calibrated to execute in a certain amount of time. Results for a micro benchmark of 

1000µs indicated delays between 0.5µs and 1.4µs. They verified that these delays were related to the pro-

grammable interrupt timer, local timer interrupts, and network card interrupts. In Jones and Fier (2003), 

the impact of the OS Jitter on the scalability and performance of parallel applications in large clusters is 

investigated. The most important interferences observed were caused by system processes and OS kernel 

routines. In Fröhlich, Gracioli, and Santos (2011), two strategies for programming the timer interrupt in 

APIC-based systems are evaluated, which are one-shot and periodic. They implemented an event-driven 

model for timer interrupts using one-shot timers, where the timer programming is based on the time inter-

val for the next event. Their experiments showed that in terms of accuracy and interferences, the periodic 

timer interrupt is comparable to one-shot, and in some cases is even better. 

 Most of the above-mentioned works focused on analyzing the OS Jitter experimentally. In this work 

we execute experiments to characterize the Jitter phenomenon and then model and simulate it. We con-

sider three different HPC scenarios under the influence of main OS Jitter sources. We simulate all evalu-

ated scenarios varying the cluster size, number of computational phases, and the workload profile per 

node.   

3 METHODOLOGY 

For the experimental study, we adopt the design of experiments (DOE) method (Montgomery 2000). We 

apply it to measure the impact of different sources of OS Jitter on the execution time of a typical HPC ap-

plication. The HPC application used is a CPU-bound program that performs a matrix multiplication algo-

rithm. Our control group is composed of all treatment executions where the sources of OS Jitter are pre-

sent, as they originally manifest in a typical HPC environment. The experimental groups are the 

treatments that we control the presence and levels of investigated sources of OS Jitter. Each treatment test 

executes according the following protocol: i) setup the test bed according to the treatment specification; 

ii) collect the start time (T1); iii) execute the matrix multiplication algorithm; iv) collect the end time (T2); 

v) replicate steps two to four 53 times; vi) write all computation times, (T2 - T1)i=1..53, into a log file. We 

replicate the treatments in order to have a sample size large enough to ensure a proper estimation of ex-

perimental errors. The runtime of step three is approximately 10 minutes in average. To guarantee the in-

dependency of each treatment execution, we restart the OS kernel right before starting the execution of a 

new treatment, making sure that each treatment test starts in a renewed OS environment. An important is-

sue on measuring computation time is the dataset variability. For each treatment, we discard the first three 

replications considering that their results are more likely to suffer influences from file system and proces-

sor caches. Our final dataset per treatment is composed of 50 run times. Another procedure adopted is 

turning off the automatic CPU frequency regulation. This feature allows the Linux kernel to change dy-
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namically the processor frequency, affecting the run time length of the application processes. To analyze 

the experimental data, first we identify which treatments are statistically different. We do not use para-

metric approaches, such as analysis of variance (ANOVA) and multiple comparisons, because the dataset 

obtained does not fit to the necessary assumptions, especially regarding to independent and identically 

distributed observations. Thus, we use the non-parametric Kruskal-Wallis test (Kvam and Vidakovic 

2007), which allows us to use ranks of observations providing statistics equivalent to those obtained with 

ANOVA and other parametric tests. We compare all treatments and the differences between their re-

sponse variables are statistically significant if p-value is less than 0.05. For the setup of treatment combi-

nations we adopt the signal matrix method (Jain 1991) that is arranged according to the Yates’ order 

(Montgomery 2000). Solving the signal matrix we have a ranking of individual and combined factors that 

are sorted by their influence degree on the application runtime. Supported by this ranking we can identify 

the OS Jitter sources with more impact on the test application. For the simulation modeling, we use the 

experimental data of specific treatments to obtain the density functions used to simulate the delay proba-

bility in a computing node for a given computational phase (see Section 6). 

4 EXPERIMENTAL STUDY  

4.1 Test-bed and Instrumentation  

In order to conduct the experiments we use a test bed based on a computer composed of two quad-core 

sockets (Intel Xeon E5620 2.40GHz), 24 GB memory, and 1 TB SATA disk. The computer microarchi-

tecture has a three-level cache per CPU socket, being the last level (L3) of 12MB and shared by all cores 

of the same socket. Each core has two individual levels of cache, L1 (32KB) and L2 (256KB). Figure 1 

illustrates the processors topology of our test bed machine. 

 We refer to each core as PU #0 to PU #7, where PU stands for processor unit. The test program runs 

only on PU #1, where we control the enabling and disabling of OS Jitter sources. The remaining cores are 

used according to each treatment specification. We encode each evaluated factor using upper case letters 

(e.g., A, B, …). Each factor assumes two levels represented by symbols (+) and (-). The level (-) means 

that the OS Jitter source represented by that factor is disabled, and (+) means enabled. Since we adopt a 

factorial design, if there are k factors, each at two levels, a full factorial design with replication results in 

2k treatments, where each treatment test is replicated r times, given a total of 2k×r runs. The rest of this 

section presents the details for each experiment. 

 

Figure 1: Processor topology of the test-bed machine 

4.2 Design of Experiment #1 

Table 1 shows the experimental plan for experiment #1. It evaluates five factors, where factor A repre-

sents the OS runlevel (Van Vugt 2006) that defines how the OS services are loaded during the system 

startup. At level (-) the runlevel is 5 (highest number of service loaded), and the level (+) sets a minimal 

number of services loaded. The Jitter effect of this factor is related to the number of OS services running 

concurrently with the user application and thus competing for the node’s computing resources. Factor B 

represents the kernel timers, which are used to allow the execution of kernel or user level routines at a 

given future time. As discussed in Section 2, previous works have considered timers as a source of OS Jit-
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ter. At level (-) we disable the execution of timers on the same processor (PU #1) that executes the test 

application, avoiding possible noises caused by their execution. The level (+) means that kernel or user-

level timers can run on the same processor executing the test application. In our experiments, we always 

move timers from PU #1 to PU #0, where PU #0 is the processor we defined to run all timers from PU #1 

when this factor is at level (-). This approach allows us to observe the direct interference of timers on the 

test application. Factor C represents the hardware interrupt request (IRQ). At level (-) this factor indicates 

that the processor PU #1 cannot receive interrupt requests (except from the timer interrupt); we redirect 

all IRQs to PU #0. At level (+) it indicates that all IRQs are handled only by the PU #1. We managed to 

control this factor by using the functionality of “SMP IRQ affinity” available in the Linux kernel. Factor 

D represents the processor affinity of the system processes. This factor at level (-) means that processor 

affinity is disabled, and thus all OS services can be executed in any processor; so they can be scheduled to 

run on the processor (PU #1) where is running the test application. At level (+) we set all system services 

to run only on PU #0. This allows us to observe the direct interference of system processes, in a given 

runlevel, on the test application. Factor E represents the timer interrupt. This factor at level (-) indicates 

that we disable this interrupt on processor PU #1, where the test application is running. We disable the 

timer interrupt right before performing the matrix multiplication routine and next we enable it. 

Table 1: Factors and levels of first experiment. 

 Level (-) Level (+) 

F
ac

to
rs

 A Runlevel 5 1 

B Kernel Timers Off On 

C IRQ Off On 

D Processor Affinity Off On 

E Timer Interrupt Off On 

 

4.3 Design of Experiment #2 

It consists of six factors. The first five factors are the same described in Exp. #1, so we introduce the fac-

tor F that represents a CPU-bound workload running in background. This background load is also a pro-

cess running a matrix multiplication program. The factor F at level (-) means that the application perform-

ing the background workload is running in a processor (PU #5) that is not sharing L3 cache with the 

processor PU #1, where the test application is running. This factor at level (+) means the opposite; i.e., no 

L3 cache sharing between PU #2 and P #1. This allows us to observe the interference of other processes 

sharing processor cache memory with the test application. For this purpose we carefully control the work-

ing set size of each process to make sure that both working sets are large enough to fill out the entire L3 

cache (12 MB), which means that when evaluating the scenario with shared cache (level +), both process-

es compete for the entire L3 cache memory. We consider the influence of cache as a source of OS Jitter 

because the OS manage the memory cache in various ways (e.g., cache aware scheduling). The signal ma-

trix for Exp. #2 follows the same rationale than for Exp. #1, however the additional sixth factor results in 

64 (26) treatments. We suppress this table due to the page limits of this paper. 

4.4 Design of Experiment #3 

It introduces a network workload in addition to the factors evaluated in Exp. #1. This background work-

load allows us to observe the interference of network interrupts on the test application. For all evaluated 

treatments, the network workload runs on PU#2. The network workload is based on an application receiv-

ing 500-byte UDP datagrams in a continuous way. In this experiment, some treatments tested in experi-

ments #1 and #2 were not evaluated, which are related to the IRQ factor in level (+) and timer interrupt 

factor in level (-). This is necessary because disabling the timer interrupt on PU#1 makes the kernel rou-

tines, responsible for the datagram packet processing, work improperly, which causes the loss of network 
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packets. It occurs because these routines use kernel timers that require the timer interrupt enabled. The 

same applies to the IRQ with respect to the network card interrupt handling. 

5 EXPERIMENTAL RESULTS 

Based on graphical and numerical analyses we identified and removed experimental errors considered 

outliers. This removal procedure replaces the outlier to another value that is calculated averaging the re-

maining (non-outlier) values of the same treatment dataset. For all experiments, the number of outliers 

was very small: Exp. #1 (2.68%), Exp. #2 (2.15%), Exp. #3 (2.33%). Based on the outlier-free datasets, 

the rest of this section presents the most important findings of our experimental study. 

5.1 Result Analysis of Experiment #1 

Figure 2 presents the average run time of each treatment. We can observe that the variability of the run 

times between the 1st and 16th treatments is quite lower than that observed between the 17th and 32nd 

treatments. After the 16th treatment, there is a raise in the average run time, which is caused by enabling 

factor E (timer interrupt). This is an evidence of the influence of factor E on the runtime variability. Next, 

we calculate the percentage that each factor, individually and combined, contributes to the variation of the 

test application run time. Table 2 shows the percentage of contribution of the three most influential fac-

tors. We found that 91.23% of the test application run time variation is caused by factor E (timer inter-

rupt). As can been seen, the other factors did not show important contributions when compared with the 

timer interrupt. Note that 6.70% are not explainable by any factor or their interactions. This may be due to 

experimental errors or factors that were not considered in our experimental plan.  

 

 
Figure 2: Average runtimes for Exp. #1 

Table 2: Factors’ influence on the runtime variation for Exp #1 

Factor / Interactions Percentage of Contribution 

E 91.2349 

AE 0.6046 

BDE 0.2707 

5.2 Result Analysis of Experiment #2 

The analysis conducted for Exp. #2 follows the same procedures than for Exp. #1. Figure 3 presents the 

average run time of each treatment in Exp. #2. We split the treatments in four groups (G1 to G4). Firstly, 

we observe that the variability of the run times increases according to the group. G1 and G2 reproduce the 

treatments evaluated in Exp. #1, so the results are practically the same presented in Section 5.1. The fac-

tor F (shared L3 cache) is disabled in all treatments of G1 and G2, and enabled in all treatments of G3 and 

G4, where in G3 the factor E (timer interrupt) is disabled and in G4 it is enabled. This means that in all 

treatments of G3 the test application did not suffer influence of timer interrupts, but from sharing the L3 

cache. In G4 both influences, timer interrupts and sharing processor cache, are present. Based on the 

graphical analysis, we conclude that the individual contribution of factors E and F on the application run 

time are very similar. The numerical analysis corroborates the graphical analysis, showing that the aver-
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age run time in G2 (10.0179 minutes) and G3 (10.0235) are very close. Next, we calculate the percentage 

each factor and its interactions contribute to the variation of the application run time. Table 3 shows the 

values for the top three causes (responsible for approx. 60%) of variability on the application run time. 

Note that 32.84% of the total variability could not be explained by our factorial design. This may be due 

to experimental errors introduced with the activation of factor F. The Kruskal-Wallis test shows that for 

pairs of treatments in the same group there are no significant differences, except in pairs 33-34, 33-36, 

and 33-37, from G3. Comparing treatments in G2 to treatments in G3 we obtain only 4% of the compari-

sons considered as statistically significant. The comparisons among treatments from G1-G2, G1-G3, G1-

G4, G2-G4, and G3-G4 show statistically significant differences. 

 

 

Figure 3: Average runtimes for Exp. #2  

 Table 3: Factors’ influence on the runtime variation for Exp. #2 

Factor / Interaction Percentage of Contribution 

F 33.90% 

E 24.76% 

DF 0.90% 

 Table 4: Comparison of intergroup treatments for Exp. #2 

  G1 G2 G3 G4 

G1 0.0% 98.0% 97.3% 100.0% 

G2   0.0% 4.3% 75.4% 

G3     7.5% 66.8% 

G4       0.0% 

5.3 Result Analysis of Experiment #3 

Figure 4 presents the average run time of each treatment in the third experiment. The group G2 represents 

the treatments not evaluated, as mentioned in Section 4.4. In G1 the factors C (IRQ) and E (timer inter-

rupt) are disabled in all treatments. Factor E is enabled and the factor C is disabled in all treatments of G3. 

Finally, in G4 all treatments have both factors (C and E) enabled. We observe that the joint contribution 

of factors C and E on the application run time is high. However, when the hardware interrupt request and 

timer interrupt factors are enabled simultaneously on PU#1, shown in G4, the average run time increases 

significantly (45%). In this case, the average run time of G4 in Exp. #3 is higher than in G4 of Exp. #2; 

i.e., the network interrupts may have a greater impact than the worst case of sharing cache. Next, we cal-

culate the percentage each factor and its interactions contribute to the variation of the application run 

time. Table 5 shows the values for the top three causes (responsible for approx. 99%) of variability on the 

application run time. We observe that factor C and the iteration CE have very close contributions (approx. 

46%). In this experiment 0.003% of the total variability could not be explained by our factorial design, 

probably due to experimental errors. Next, we perform the Kruskal-Wallis test and verified that there are 

statistically significant differences between the treatments of this experiment. We compare all pairs of 

treatments and the results are shown in Table 6. All comparisons between groups (G1-G3, G1-G4, G3-

G4) are considered statistically significant. 
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Figure 4: Average run time for Exp. #3 

Table 5: Factors’ influence on the runtime variation for Exp. #3 

Factor / Interaction Percentage of Contribution 

E 46.89% 

CE 46.51% 

C 6.57% 

 Table 6: Comparison of intergroup treatments for Exp. #3 

  G1 G3 G4 

G1 0.0% 93.7% 100.0% 

G3   0.0% 91.6% 

G4     0.0% 

6 SIMULATION RESULTS 

6.1 Simulation #1 

Based on the datasets obtained in the experiments, we modeled and simulated the effects of the OS Jitter 

on a HPC application executed as multiple computational phases, and running in a cluster of compute 

nodes. We used treatments T10 and T23, from Exp. #1, to represent the scenarios with no OS Jitter effect 

(T10) and fully affected by OS Jitter (T23), respectively. Based on the differences between the T23 and 

T10 run times, we generated a new dataset to obtain the probability density function (pdf) of the run time 

delay caused by OS Jitter. Based on a Kolmogorov-Smirnov test, with 95% of confidence level, we found 

that this sample follows a Normal distribution, N(μ=1.91, σ=0.36). Next, we used the estimated pdf to 

simulate the delay occurrences on each computational phase per process running on multiple computing 

nodes. We vary the number of computational phases per process (1 to 200) and the number of nodes (1 to 

500). The simulation results show that when we increase the amount of compute nodes, to any amount of 

phases, the application execution time grows logarithmically (see Figure 5). For few nodes (e.g., < 20) the 

growth of the curve is quite sharp; for more nodes the increase in the application time tends to moderate. 

This happens because with few processes (nodes) taking part at each phase, there is a smaller probability 

that in a given phase some of these processes suffer from OS Jitter influences whose delay is close to the 

highest possible delay values. If the amount of nodes rises, then this scenario increases the probability of 

delays caused by OS Jitter, per phase, to be close to the highest observed delay. Differently, when raising 

the number of phases the application run time rose linearly. Figure 6 illustrates this behavior. Increasing 

the number of phases the probability of delays caused by OS Jitter inside of each node also increases. 

Since the nodes are working in parallel, the summation of these increased probabilities explains this linear 

behavior. Figure 7 summarizes this result presenting a sensitivity analysis of the runtime delay with re-

spect to the number of nodes and number of phases. 
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Figure 5: Effect of OS Jitter per # of phases and # of nodes 

  

Figure 6: Effect of OS Jitter for 500 nodes and multiple phases 

 

 Figure 7: Runtime sensitivity for simulation #1 

6.2 Simulation #2 

In simulation #1 we consider only one application per node. Now, in addition to the test application we 

also consider a background workload running in the same node and sharing the L3 processor cache. For 

modeling this scenario, we select T10 and T55 from Exp. #2. We use the same procedure adopted in Sec-

tion 6.1 to obtain the pdf. This new dataset also follows a Normal distribution according to a Kolmogo-

rov-Smirnov test with 95% of confidence level (see Figure 8). Based on the estimated pdf, we simulate 

the delay occurrences on each computational phase per process running on multiple computing nodes un-

der the influence of the background workload. We also vary the number of computational phases per pro-

cess (1 to 200) and the number of nodes (1 to 500). Similarly to simulation #1, for different number of 

computational phases we observe that for few processes the growth of the curve is quite strong (see Fig-

ure 9). For more than that, the increase in the application time tends to smooth. Due to the background 

workload is sharing L3 cache with the test application, we observe that now it is necessary more compute 

nodes for the delays caused by OS Jitter, per phase, to be close to the highest observed delay. Comparing 

the results of simulations #1 and #2, we may observe the longer delay in #2 caused by the additional Jitter 

effect related to the L3 cache sharing between the test application and the background workload, which 

corroborates the experimental results. This additional Jitter effect represents the influence of the OS man-

aging the successive cache misses during the test application execution. In order to evaluate the amount of 
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influence of this Jitter effect isolate, we compute the difference between the OS Jitter effects of simula-

tion #1 and simulation #2, for 100 and 200 phases with multiples computing nodes. We observe that ac-

cording the number of nodes, we obtain a logarithmic variation in the runtime from 13% to 31% (see Fig-

ure 10). It means that in a cluster, the effect of factor F (shared L3 cache) increases logarithmically 

according to the number of nodes. 
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Figure 8: Goodness of fit of Normal distribution (simulation #2) 

 

 

 Figure 9: Effect of OS Jitter with background workload sharing L3 cache 

 

 

Figure 10: Percentage of influence of  “shared cache” on runtime per number of nodes 
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6.3 Simulation #3 

For this simulation scenario we estimate the delay probability density function based on treatments T10 

and T23 of experiment #3. It considers the interference of network interrupts on the test application 

runtime. In terms of OS Jitter, T10 has all factors disabled and T23 all factors enabled including the net-

work interrupts (see subsection 4.4). We also obtained an adequate goodness of fit for the normal distribu-

tion (see Figure 11). Hence, we use the estimated pdf to simulate the delay occurrences on each computa-

tional phase of each application process running on multiple computing nodes. We again vary the number 

of computational phases per process (1 to 200) and the number of nodes (1 to 500). As in the previous 

simulations, for different number of computational phases we observe that for few processes the growth 

of the curve is quite strong (see Figure 12), and it tends to moderate as the number of nodes increase. 

Comparing this simulation with simulations #2 and #1, it clearly has the longest delay, which corrobo-

rates the experimental results presented in Section 5. Considering the three simulation results for 100 

phases and 500 nodes, we can clearly observe that the factor network interrupts is more sensitive to the 

number of nodes than any other Jitter effect evaluated (see Figure 13). This model behavior is desired, 

given that it represents well scenarios where the number of nodes grows and consequently increasing the 

number of processes communications, which consequently causes a higher number of network interrupts.   
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Figure 11: Goodness of fit of Normal distribution (simulation #3) 

 

 

Figure 12: Effect of OS Jitter with background network workload  
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 Figure 13: Comparison of simulations #1, #2, and #3 for 100 phases and multiple nodes 

7 FINAL REMARKS 

The recent advances in areas such as power saving and processor topology have changed the way the op-

erating systems work. These changes consequently affect how the OS routines interfere on the user appli-

cations. The combination of different hardware and OS platforms present a challenging scenario to evalu-

ate the impact of different sources of OS Jitter in a given computing scenario. Modeling and simulation 

allow us to deal with this complexity.  

 In this paper we present a practical approach to model and simulate the OS Jitter effects in a typical 

HPC cluster. To illustrate our approach we consider three different simulation scenarios. The simulation 

results corroborate the experimental data obtained through controlled experiments. The simulation models 

allowed us to understand the behavior of the evaluated source of OS Jitter under different cluster sizes 

and for different number of computational phases, which would be unfeasible by experiments.  

 We conclude that the OS Jitter has a higher impact when the number of computational phases is high, 

for any number of nodes from 1 to 500. In terms of sources of OS Jitter, we also observed that in Linux 

the highest OS Jitter impacts are caused by managing the shared processor cache and network interrupts, 

where the second shows the highest sensitivity with respect to the cluster size. 
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