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ABSTRACT

Effectiveness of emergency medical services (EMS) depends on a wide range of decisions in its planning and
operation phase such as ambulance locations and dispatching protocols. Much research has been conducted
on EMS design and operational decision making in order to improve the quality of EMS systems. It is
often the case that these research works focus on a decision problem on a specific aspect and tend to
overlook possible interactions from other elements of an EMS system. This paper introduces a simulation
model as a generic EMS system design evaluator, where a wide range of design and operational factors are
comprehensively incorporated. Experiments using the developed model show that there exist interactions
among many design and operational factors in an EMS system, which demonstrates the importance of
considering all decisions when developing solutions for a specific decision problem in EMS design and
operation.

1 INTRODUCTION

An emergency medical services (EMS) system is responsible for saving lives of emergency patients by
providing first-aid on site and transporting a patient to a hospital for definitive care. Timely delivery of
EMS is a critical factor for patient outcomes (Pons and Markovchick 2004). There is a large volume of
research work that aims to improving the quality of EMS by minimizing its response time and service time
(Su and Shih 2003, Peleg and Pliskin 2004). Response time is the time from the moment of arrival of a
patient call until EMS providers arrive at a patient site. Service time is the time between a patient call
arrival and the handover of the patient to a hospital (Andersson and Varbrand 2007).

A typical process of EMS operation is as follows: upon an arrival of a patient call, an ambulance is
dispatched to respond to the call. A dispatched ambulance travels to arrive at the patient site and provides
necessary first aid treatment on site. Then, it takes the patient to a destination hospital, usually the nearest
emergency department, where the patient is admitted to receive appropriate medical care. Once the patient
is safely admitted to an emergency department, the ambulance returns to its base station.

Several decisions are made in this EMS operation process. When a patient call arrives at an EMS
call center, a dispatch decision is made to determine which of the available ambulances should be sent
out to serve the call. After a dispatching decision is made, redeployment of the remaining ambulances is
considered to obtain an optimal service coverage. In case of a mass casualty incident where many patients
need EMS at the same time, priority for EMS provision needs to be determined. A destination hospital
needs to be determined as well to ensure the patient receives necessary level of care in a timely fashion.
Once an ambulance completes its assigned service task, a possible redeployment decision is considered
again. Developing optimal solutions to these problems is an important task to improve the performance of
an EMS system.
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A common research method in EMS system design and operations involves simulation experiments.
There are numerous EMS research articles that first develops alternative solutions to a decision problem and
then subsequently tests the proposed solutions using a simulation model. Alternative solutions are typically
developed by mathematical analyses or by intuitions and experiences of EMS experts. Simulation models
are constructed to depict an EMS system, and the validity of proposed solutions are tested by simulation
experiments.

In many cases, a simulation model used in such studies tends to focus on a specific phase or components
within an EMS system that are directly relevant to the problem. In such simulation models, other elements
in an EMS system are often treated by simplifying assumptions or are excluded from the model scope. For
example, a simulation model for ambulance location problem may use a simple dispatching rule to send
the nearest available ambulance to a patient location (Goldberg et al. 1990). It is also common to assume
that upon completion of a patient transport, an ambulance always returns to its base station. Congestion at
emergency departments may not be modeled, and a model always allows an ambulance to bring a patient
to the nearest emergency department.

While such simulation models certainly simplify the model building and let analysts focus on the specific
aspect of the EMS system, it may lead to some problems: it may fail to capture important interactions
among EMS system elements (Sung and Lee 2012). These interactions can be significant enough to alter
conclusions and recommendations from those simulation analyses. We extend the framework for an EMS
system design evaluator proposed by Sung and Lee (2012) to build a simulation model that encompasses
various components and decision factors in EMS system operations.

EMS system design evaluator presented in this paper is constructed based on the Activity Cycle Diagram
(ACD) formalism. In the ACD formalism, a target system is modeled by interlinked activity cycles that
entities and resources carry out. An individual activity cycle is constructed for each entity and resource,
and these individual cycles are linked to represent the dynamics of an entire target system. Modeling based
on the ACD formalism is convenient and intuitive especially when a system consists of clearly defined
activity cycles by entities and resources. An EMS system is conveniently represented by a collection of
activity cycles for patients and ambulances. In addition, decision factors in an EMS process correspond to
a specific activity, thereby allowing to clearly define a decision module within a simulation model .

Using EMS system design evaluator, we conducted experiments to show potential interactions between
the decisions made for different elements of an EMS system operation. Experimental results show that
singling out a specific aspect of an EMS operation leads to a potentially misleading conclusion, which
demonstrates the need to consider various elements and decision factors concurrently.

2 EMS SYSTEM DESIGN EVALUATOR

This section describes an overall architecture of EMS system design evaluator, and presents our ACD-based
simulation model for an EMS system.

The goal of the proposed EMS system design evaluator is to allow EMS system analysts to consider
various components and decision factors so that their solutions are assessed in the context of the entire
system. Figure 1 shows a conceptual architecture of the EMS system design evaluator.

EMS system design evaluator consists of a main simulation model, data interface, and decision modules.
A main simulation model is the ACD simulation model that simulates the operation of an EMS system.
Data interface contains static and dynamic system data (i.e. system state variables). Static data includes
initial configuration data and patient arrival data. They are specified by model users to configure the main
simulation model. Dynamic data refers to a set of system state variables, that varies as a function of
simulation clock. System state variables are updated either at the end of an activity execution or at a
simulation update event. System data is accessed by decision modules as the main simulation model runs.

Data interface also contains operational decisions. Operational decision data is computed in response
to a system state. Decision modules are decision logic functions external to the main simulation model,
and they take necessary data from data interface to compute operational decisions. Decisions made from
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Figure 1: Conceptual architecture of EMS System Design Evaluator

decision modules are fed back to data interface, and the main simulation model refers to those decisions
in subsequence execution.

Based on Sung and Lee (2012), four decision modules are included in the model: ambulance dispatching,
redeployment, triage, and hospital selection. The main simulation model references operational decisions
computed in the decision modules. For each decision module, only its outputs required from the main
simulation model are defined, and EMS system analysts can build their own algorithm to develop a decision
module. This architecture gives EMS system analysts a control over the specific decision/design problems
they are interested in, while being able to use the rest of the EMS system simulation model including other
decision components.

The rest of this section describes ACD modeling of an EMS system. We first briefly introduce the
ACD formalism followed by a description of our reference EMS system. Then we present in detail the
process of constructing the ACD-based EMS system model.

2.1 Activity Cycle Diagram

Activity Cycle Diagram (ACD) is a modeling formalism that represents a target system as a set of interacting
activity cycles of entities and resources in the system (Paul 1993, Kang and Choi 2010). Tocher (1960) is
credited for the development of ACD when he worked on a congestion problem of the steel plant. ACD
is a convenient modeling approach especially when activities for entities and resources are clearly defined
in a target system.

An activity cycle is formed by a sequence of alternating states, activity and queue, connected by an
arc (Figure 2). An entity (or resource) proceeds along an activity cycle by moving from an activity state
to a queue state, to the next activity state, etc. An activity state, denoted by a rectangle, literally refers to a
state where an activity is carried out. A queue state, denoted by a circle, is a passive state that represents
an entity or resource’s waiting for a next activity. A basic condition for starting an activity is that all
incoming queue states associated to the activity are non-empty. Each activity is associated with activity
duration, which is the time it takes to complete an activity. Completion of an activity changes the system
states, e.g., values of queue states, attributes of entity or resources, and dynamic variables. When a move
from one state to the next requires specific conditions to be satisfied, an arc is annotated with a symbol ∼
to indicate the transition is conditional.

Each entity and resource in a target system has its activity cycle, which represents a temporal sequence
of processes it goes through. An activity cycle is a closed cycle of activity and queue states in an alternating
sequence. There always exists an activity that belongs to both an entity activity cycle and a resource activity
cycle. These activities link entities and resources in a target system to make it a collection of interacting
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Figure 2: ACD model for a single queue system

cycles. Figure 2 shows an ACD model of a simple single queue system, where jobs (entity) arrive and
receive a process from a machine (resource). For more details on ACD, refer to Kang and Choi (2010).

2.2 Reference Model: EMS System

A typical process of EMS system operation begins with an arrival of a patient call. When a patient call
arrives at a call center, it searches for an available ambulance to dispatch to the scene. If all ambulances
are busy, the patient is kept waiting. A dispatched ambulance travels to the patient site, locates the patient,
provides necessary first aid, and boards the patient. It takes the patient to a destination hospital, and
completes the patient handover process. Upon completing the patient handover, it returns to a base station.
The ambulance may return to a base station different from where it has departed from. It may not return
to a base at all, and directly head to another patient site if it is immediately tasked with a next service
assignment.

In addition to the basic patient transport process described above, ambulance redeployment is another
important operational feature in an EMS system. Ambulance redeployment refers to a practice of re-
distributing available ambulances (i.e., ambulances on stand-by) from their current stations to different
locations with a goal of maximizing the expected service coverage. It is triggered when the number of
available ambulances either increases or decreases. For example, optimal locations of four ambulances are
generally different from those when five ambulances are available. Thus, when one of the five ambulances
is dispatched, it may be beneficial to redeploy the remaining four ambulances to achieve the optimal
coverage by the four ambulances. Likewise, when the dispatched ambulance completes its task, increasing
the total number of available ambulances back to five, the five ambulances may be redeployed to the optimal
locations of a five-ambulance case.

2.3 ACD Model for EMS System

We model our target system - EMS system - based on the ACD formalism. In an EMS system, there is
one entity type, which is patient. For resources, we have ambulance and hospital (Emergency
Department). Two additional resource types - call generator and mass casualty generator
- are defined to model entity generation in the ACD modeling framework. An activity cycle for each of
these five elements is first constructed, and then integrated to model the entire EMS system.

An activity cycle for call generator, mass casualty generator, and hospital simply
consists of one activity and one queue as shown in Figure 3. Figure 3(a) shows a call generator
cycle where a patient arrives with an interarrival time of τarrive. mass casualty generator cycle in
Figure 3 is the same as call generator cycle except that multiple patients are generated in one arrival.
hospital cycle shows that a hospital with multiple beds (indicated by dots in the queue) treats a patient
for the duration of τtreatment . Argument m indicates that there are m hospitals in the model.

patient entity has the following activity cycle shown in Figure 4. A patient arrives with an inter-arrival
time of τarrive (Arrive activity). Each patient is assigned its attribute: time of call, severity, location, and
expected length of stay (LOS). A patient waits for an available ambulance in queue B1(k). Argument k
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Figure 4: Activity cycle for patient entity

indicates the degree of patient’s severity (1=low-severity, 2=high-severity). Then, an ambulance is assigned
to the patient by Assign(k) activity. The patient waits for the ambulance to arrive in B2 queue. If
this patient is a low-severity patient, the originally assigned ambulance may cancel the assignment and be
redirected to a newly arriving high-severity patient. In such a case, a new ambulance gets assigned to the
patient. This is indicated by a dotted arc P2. When an ambulance arrives at the scene, the patient receives
first-aid treatment for the expected duration of τ f irstaid . A destination hospital is determined for the patient
(Select H), after which the patient is transported to a destination hospital by Travel H activity. At
a hospital, the patient is handed over to hospital staff (Hand-over activity), and when completed, the
patient joins B6 queue and the ambulance is released. Finally, the patient receives necessary treatment for
the duration of τtreatment (Treat activity). m in a square box is a parameter that defines a hospital index to
avoid duplicated presentation of Treat activities for m units of hospitals. Patients leaving a hospital are
discarded (i.e., leaves the EMS system), which is represented by moving to an entity pool queue, Patient
∞ queue.

Travel H activity has two durations, τupdate H and τarrival H . This is necessary to track the current
location of a patient (and the ambulance carrying the patient). τupdate H is the time difference between
the current simulation time and the next simulation update time. τarrival H is the time difference between
the current simulation time and the expected arrival time at a destination hospital. If τupdate H < τarrival H ,
τarrival H is decreased by τupdate H ; patient location is updated after τupdate H by using an average road
travel speed at the moment; and the patient moves to B4 queue and back to Travel H activity. If
τupdate H ≥ τarrival H , a patient leaves Travel H activity after τarrival H to move to B5 queue.

Activity cycle for ambulance is slightly more complicated by two factors. First, a possible ambulance
redeployment is included. Representing redeployment implies that dispatching one ambulance possibly
triggers activities of other ambulances. Second, we assume that a busy ambulance is made available as
soon as it hands over its patient to a hospital, as opposed to when it has returned to its base station. We also
assume that an ambulance on its route to a redeployment destination is available to take on an incoming
patient call. This requires to represent an interrupt type of mechanism in an activity cycle.

Figure 5 shows an activity cycle of ambulance resource. An available ambulance in Amb queue
is assigned to a patient by Assign(k) activity. This ambulance travels to the patient site (Travel P
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Figure 5: Activity cycle for ambulance resource

activity). Travel P activity is similar to Travel H activity in the patient activity cycle. It has two
time durations, τupdate P and τarrival P, which are defined and used the same way as τupdate H and τarrival H .
Location of the ambulance continuously updated by Travel P activity. If this ambulance on its way
to the originally assigned patient happens to be the nearest ambulance for a newly arriving high-severity
patient, then Assign(2) activity sends a signal to Travel P activity (dashed arc) and it is reassigned
to the high-severity patient (arc P2). Once Travel P activity is completed, the ambulance provides
necessary first-aid treatment on scene, which is First-aid activity. In case of a mass casualty incident,
where a large number of patients need EMS simultaneously, Triage activity is carried out to determine
a highest priority patient to provide care to. After provision of a first-aid treatment, a destination hospital
is determined (Select H, and the ambulance brings the patient to a destination hospital (Travel H).
Upon arriving at a hospital, it hands the patient over to hospital staff (Hand-over).

When one ambulance is assigned (i.e., dispatched) to a service task by Assign(k) activity, the
number of available ambulances in Amb queue is decreased by one, and B10 queue is increased by one.
Non-empty B10 and Amb queue satisfies a triggering condition for Redeployment activity.

Redeployment activity can take place when the number of available ambulances changes, and there
are two such cases: 1) an ambulance is dispatched to serve an incoming call (Assign(k)), and 2) an
ambulance is made available by handing over its patient to a hospital (Hand-over). This is indicated by an
incoming arc from B10 queue, which has two incoming arcs from Assign(k) and Hand-over. Also,
redeployment is feasible only when at least one ambulance is available. This is enforced by an incoming
arc from Amb queue. Once a redeployment decision is made to move n ambulances from their current
locations to new sites, they travel to the new sites (Move). Move activity works similarly to Travel H to
track ambulance’s current location. Note that how many and which ambulances to move to which locations
is a decision made by an execution of Redeployment activity. Also note that Redeployment activity
may return a null-decision, i.e. stay at current location or return to its home base station.

Recall that our model allows an ambulance to be available as long as it does not currently carry a
patient. To reflect this feature, an arc is drawn from Hand-over activity to Amb queue. Also, to make an
ambulance available while moving, a dashed arc from Assign(k) to Move is used. When the ambulance
is called for a service during its move, Assign(k) activity sends a signal to Move activity along the
dashed arc and the ambulance is assigned to the patient (arc P1).

The five cycles presented in Figure 3, 4, 5 are now linked along their common activities to form an
entire cycle of the EMS system. Figure 6 shows a complete ACD cycle.

3 EXPERIMENT

Experiments are conducted to investigate the effect of interactions between decisions for different parts of
an EMS system operation. We model the real EMS system of the city of Bucheon in Korea, and use the
EMS patient data of January 2010.
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Figure 6: ACD model for an EMS system

3.1 Input Data for EMS System Model

This section describes the input data used to configure the model for the city of Bucheon in Korea. We
collect actual road network data, locations of hospitals, locations of EMS base stations, and the number
and default deployment distribution of ambulances to configure the simulation model. EMS log data for
the month of January of 2010 is used to extract information on patient arrival and duration for each activity
in the model.

Figure 7 shows the road network with EMS stations and hospitals indicated. A road network for the
model is constructed with the city’s road segments for which hourly traffic information is available. The
road network is represented as a network of 46 nodes and 65 edges. Length of each edge is defined by
the actual distance between the nodes, and average hourly travel velocity for each edge is available. There
are 10 EMS base stations in the city, and each center hosts one ambulance. Thus, the default (i.e. as-is)
deployment of the city’s ambulances is one ambulance per station. Actual location of each EMS station
is approximated to the nearest node of the model’s road network. From the EMS log data, we chose 9
hospitals in the city that logged at least 10 patient visits during the month. These hospitals are classified
into three levels by their size and the level of care they provide.

There are 12 activities in our EMS system model, and all but Redeployment and Select H activities
have non-zero activity duration: τarrive,τmass arrive,τassign,τarrive P,τtriage,τ f irstaid ,τarrive H ,τhandover,τtreat , and
τarrive B. Note that for the current version of our model, mass casualty incident and triage are not considered.

We use the EMS log data to extract activity duration information. EMS log data contains time information
at six time stamp points: call arrival (tcall), ambulance departure at a station (tdepart station), patient contact
(tcontact patient), departure from the patient site (tdepart scene), arrival at a hospital (tarrival ED), and return to
the station (treturn). From the log’s time stamp information, some of the activity durations are directly
obtained as follows:

• τarrive = interarrival time of patient calls
• τassign = tdepart station − tcall ∼ lognormal(2.19, 1.03)
• τ f irstaid = tdepart scene − tcontact patient ∼ gamma(3.46, 2.57)
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Figure 7: Road network used in the simulation model and the locations of EMS stations and hospitals

Since we use actual road network data with traffic information, if an origin and destination for a trip is
given, we can estimate travel time component for τtravel P, τtravel H and τmove. We first estimate τtravel H by the
shortest distance divided by the average travel velocity, and it reasonably agree with (tarrive ED− tdepart scene)
from the EMS log data. Knowing that travel time estimation by distance/velocity gives a reasonable estimate
for a travel component, we estimate τhandover as

• τhandover = (treturn − tarrive ED)− (estimated travel time between the ED and return-station)

Lastly, we learned from interviews with EMS experts that tcontact patient − tdepart station consists of sheer
travel time and time to locate or reach a patient. Thus, we assume τtravel P = τsheer travel P +τlocate patient =
tcontact patient − tdepart station. With this assumption, we estimate τlocate patient . So, in the simulation model,
τtravel P is obtained by adding the sheer travel time (computed by shortest distance divided by average travel
velocity) and τlocate patient .

We validate our simulation model using the actual patient arrival data. Ambulances are dispatched to
each patient according the nearest-available policy, and patients are taken to a hospital as specified in the
EMS log data. Figure 8(a) compares service time from the simulation model and the EMS log, which
shows a good agreement. We also measure utilization of 10 ambulances from the simulation model and
from the EMS log, and it shows a good agreement as well. Thus, we conclude that our simulation model
represents the target EMS system with acceptable fidelity.

(a) (b)

Figure 8: Comparison between simulated results and EMS log data: (a) service time (b) ambulance
utilization
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3.2 Experimental Setting

We test interactions between decision policies for three decision modules: ambulance dispatching, hospital
selection, and redeployment. These decision modules are incorporated in the simulation model as Assign,
Select H, and Redeployment activity. We use two distinct decision policies for each decision module.
Table 1 summarizes the experimental setting.

For ambulance dispatching, one policy is a nearest-available policy. Upon an arrival of a patient call,
this policy searches for currently available ambulances and assigns the ambulance nearest to the patient.
The other policy is a likelihood-based policy, which was proposed by Repede and Bernardo (1994). When
a patient call arrives, it searches for the nearest available ambulance. Then it computes the expected time
for the ambulance to arrive at the scene. If the ambulance is expected to arrive within a given time standard,
this ambulance is sent to the patient. If not, then this policy dispatches an ambulance from a station that
has the least likelihood of a new arrival of a nearby patient. For the time standard, we use 8-minute for
high-severity patient and 14-minute for the rest. In both policies, an ambulance on route to a low-severity
patient can be re-assigned and re-directed to a new arrival of high-severity patient if the ambulance on the
move happens to be the nearest ambulance to the high-severity patient.

For hospital selection, we use a nearest-available policy and a preferential-selection policy. A nearest-
available policy searches for hospitals currently under a capacity limit, and simply chooses the nearest
hospital. Alternatively, we use a preferential-selection policy. A preferential policy reflects the fact, observed
from the EMS log data, that not all patients are transported to the nearest hospital from the scene. From
the EMS log, we obtain the number of EMS patients that each hospital in the city admitted, and use this
fraction as a probability to choose a particular hospital.

Redeployment module uses two policies. One is a null-policy where redeployment is not practiced at
all. Ambulances always return to their home station, and stay there. The other uses a policy proposed by
Gendreau, Laporte, and Semet (2006). For a region with N ambulances, the policy uses a compliance table
to shift locations of available ambulances. The compliance table shows a desired deployment configuration
for k-ambulance case, where k = 1, . . . ,N. It is computed by solving a maximal expected coverage relocation
problem (MECRP). Using Bucheon city data, we solve MECRP problem to construct a compliance table
to use in the redeployment module.

Since the effectiveness of these policies may differ depending on the volume of EMS demand, we
use five levels of demand volume for the experiment. Using the actual number of patients from the EMS
log data (Jan. 2010) as a nominal case, patient arrival data of 50%, 80%, 100%, 120%, and 150% of the
nominal case are generated. This is done by obtaining average patient arrival rate at each node from the
EMS log data, and multiplying a scaling factor to the nominal rate. Patient arrival is assumed to follow
Poisson process.

Table 1: Experimental Setting

Factor Description
Ambulance dispatching policy (1) Nearest-available (2) Likelihood-based
Hospital selection policy (1) Nearest-available (2) Preferential-selection
Redeployment policy (1) Null (2) MECRP
EMS demand volume α× nominal volume; α = 0.5,0.8,1.0,1.2,1.5

4 RESULT AND DISCUSSION

Total of 40 scenarios of different policy combinations and demand level are evaluated in the experiment.
Simulation for each scenario is replicated 10 times. Length of a simulation run is 30 days, with a warm
up period of one day. As key performance indicators, we examine two output variables: 1) a fraction of
patient calls that an ambulance’s response time is within the time standard, and 2) average response time
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for all patients calls. Response time is the time until an ambulance makes a contact with a patient, i.e.
tcontact patient - tcall . 4-way ANOVA test is conducted to examine possible interactions between ambulance
assignment(X1), hospital selection(X2), redeployment policy(X3), and demand volume(X4).

Table 2 shows the results from a 4-way ANOVA test for the fraction of within-standard responses
and average response time. In both cases, interaction effects are observed: ambulance dispatching policy
and redeployment policy (X1*X3), hospital selection policy and redeployment policy (X2*X3), hospital
selection policy and demand volume (X2*X4), and redeployment policy and demand volume (X3*X4).

Table 2: ANOVA test results. X1 = ambulance dispatching policy, X2 = hospital selection policy, X3 =
redeployment policy, X4 = demand volume

Fraction of within-standard responses Average response time
Source Sum Sq. d.f. Mean Sq. F Prob>F Sum Sq. d.f. Mean Sq. F Prob>F

X1 0.00003 1 0.00003 3.57 0.0597 0.666 1 0.6658 28.55 0
X2 0.03063 1 0.03063 366.44 0 11.962 1 11.9624 512.93 0
X3 0.25488 1 0.25488 3048.99 0 23.083 1 23.083 987.76 0
X4 0.4828 4 0.1207 1443.86 0 155.484 4 38.8709 1666.72 0

X1*X2 000003 1 0.00003 0.37 0.544 0.003 1 0.0035 0.15 0.6993
X1*X3 0.00571 1 0.00571 68.32 0 0.451 1 0.4509 19.34 0
X1*X4 0.00083 4 0.00021 2.49 0.0429 0.078 4 0.0194 0.83 0.5061
X2*X3 0.00216 1 0.00216 25.89 0 0.824 1 0.8237 35.32 0
X2*X4 0.01159 4 0.0029 34.67 0 3.643 4 0.9107 39.05 0
X3*X4 0.01237 4 0.00309 36.98 0 3.518 4 0.8795 37.71 0
Error 0.03152 377 0.00008 8.792 377 0.0233
Total 0.83282 399 208.504 399

Interactions between decision policies have implications on optimal choice of a policy for each decision
module. Let us look at one of the interaction effects for more details. Figure 9 shows an interaction effect
between ambulance dispatching policy and redeployment policy. In the graph, patient volume is nominal
(α = 1.0), and the nearest-available policy is used for hospital selection. Under MECRP redeployment
policy, the nearest-available dispatching policy yields a better outcome than the likelihood-based policy
in both the fraction of in-time response and average response time. On the other hand, under the null
redeployment, we have opposite results. Thus, the choice of an optimal policy for ambulance dispatching
is dependent on the type of redeployment policy used.

(a)

Ambulance dispatching policy 

(b)

Figure 9: Interaction effect between redeployment policy and ambulance dispatching policy: (a) fraction
of in-time response (b) average response time
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This interaction effect is more pronounced in the following example where we make an assumption
regarding a redeployment procedure: an ambulance on the move to relocate to a new station is considered
unavailable until it arrives at the new station. As shown in Figure 10, which of the two dispatching policies
produces a better outcome depends on the type of redeployment policy. Furthermore, in this example,
which deployment policy shows a better outcome also depends on the type of dispatching policy: under
the nearest-available dispatching policy, a better choice is the MECRP policy. When the likelihood-based
policy is used, it is the null redeployment policy.

Ambulance dispatching policy 

Figure 10: Interaction effect between redeployment policy and ambulance dispatching policy with additional,
restrictive assumption

These examples demonstrate that the optimal choice of a policy for one decision component is affected
by choices made for other decision components. Interaction effects can potentially be significant enough to
lead to a completely opposite conclusion. Thus, evaluation of a specific component of EMS system design
should explicitly consider the entire EMS system elements and various decisions associated with them.

5 CONCLUSION

Operating an EMS system involves many operational and planning decisions, and the quality of those
decisions determine the level of service of an EMS system. When developing an optimal decision for each
element of EMS system operation, it is important to take into account interaction effects among various
decisions. Our experiments confirm that the existence of interaction effects among various decisions can
be significant enough to affect the choice of an optimal decision for a system element.

This paper presents a prototype of EMS system design evaluator. A simulation model for a generic EMS
operation is constructed based on the ACD formalism. Four decision modules - ambulance dispatching,
hospital selection, triage, and redeployment - have been identified, and they are incorporated in the ACD
model as individual activities. Decision modules are external to the simulation model, and model users
can implement their own decision logic. A decision module accesses EMS system configuration data and
system state variables, and returns its decisions to the simulation model through a set of output variables.
This architecture gives EMS system analysts a control over the specific decision/design problem they are
interested in, while being able to consider other decision elements. Our aim is to improve the simulation
model presented in this paper and make it publicly available for use by EMS system researchers in near
future.
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