
Proceedings of the 2013 Winter Simulation Conference 

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds 

 

 

 

EXPLORING HOW HIERARCHICAL MODELING AND SIMULATION CAN IMPROVE 

ORGANIZATIONAL RESOURCING DECISIONS 

 

 

Ericson R. Davis 

Jeremy M. Eckhause 

David K. Peterson 

Michael R. Pouy 

Stephanie M. Sigalas-Markham 

Vitali Volovoi 

 

LMI 

2000 Corporate Ridge 

McLean, VA 22102, USA 

 

 

ABSTRACT 

The resourcing environment facing businesses and governmental agencies is a complex hierarchy of inter-

related decisions that span wide-ranging time horizons, where the outputs of one decision become the in-

puts for the next. For example, strategic resourcing decisions define multiyear, aggregate-level resource 

availability, which bounds the feasible region of tactical resource decisions. These tactical decisions (typ-

ically looking out over a year) disaggregate strategic resourcing decisions into a working level of re-

sources necessary for conducting operations. Tactical decisions are themselves translated into more gran-

ular operational resource allocations. The challenge is to maintain the internal consistency of these 

resourcing decisions. This research describes how hierarchically integrated modeling and simulation 

(M&S) techniques can assist organizations with their resourcing decisions and ensure consistency across 

the relevant time horizons. We demonstrate how M&S enables a visualizing of unmanned aircraft system 

(UAS) employment so that support solutions can be tailored and operational effectiveness of organiza-

tional resourcing strategies can be maximized.  

1 INTRODUCTION 

The resourcing environment facing businesses and governmental agencies is a complex hierarchy of inter-

related decisions that span wide-ranging time horizons. For example, strategic (long-term) resourcing 

plans influence decisions with a time horizon of 5 years or more, tactical (intermediate) resourcing plans 

span from 1 to 5 years, and operational (short-term) resource plans drive decisions within a year (Jones et al. 

2000). In this resourcing environment, the outputs of one decision become the inputs for the next. Thus, 

strategic resourcing decisions define multiyear, aggregate-level resource availability, which, in turn, 

bounds the feasible region of tactical resource decisions. These tactical decisions (typically looking out 

over at least a year) disaggregate strategic resourcing decisions into a working level of resources neces-

sary for conducting operations. Ultimately, tactical decisions are themselves translated into month-by-

month, week-by-week, and day-by-day operational resource allocations. 

The challenge is how to maintain the internal consistency of these ever finer resourcing decisions. Of 

course, this is a significant task for large organizations, and they dedicate a substantial amount of energy 

to these resource management efforts. Consider the U.S. Army, which “implemented a broad array of 

complementary efforts to promote resource-informed decision making. Much work remains to inculcate 
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this cost culture throughout the rest of the force, and this effort will take several years to become in-

grained across the institution.” (Department of the Army 2013)  

This paper illustrates how a hierarchically integrated set of M&S techniques can assist organizations 

with their resourcing decisions and help ensure consistency across the relevant time horizons. 

2 BACKGROUND 

Modern engineering systems have become highly complex and interrelated macrosystems—sometimes 

referred to as systems-of-systems—that depend on the complementary performance of their components 

to achieve a larger common objective. Although macrosystems enhance overall capability and function-

ality, they also increase the risk of subsystem failures that may cascade across the system. The conse-

quence of such propagating failures can be widespread. The question for macrosystem designers, opera-

tors, and supportability managers becomes, how to restore a degraded or failed system to a fully 

operational state, especially when resources and budgets are constrained? The typical answer has been to 

either stock sufficient spare parts or procure enough redundant systems (e.g., airframes, vehicles, or ves-

sels) to ensure mission capability.  

 Unfortunately, no single solution completely fulfills the need to balance supportability resource re-

quirements against operational risk to achieve the requisite blend of system reliability and availability at 

an affordable cost. This is where hierarchically integrated sets of M&S techniques can prove useful.  

2.1 Integrative M&S Research  

The hierarchical framework must incorporate decisions and objectives at the strategic, tactical, and opera-

tional levels. In theory, a single model that considers these different objectives could be used if such deci-

sions are fully integrated such that the ultimate effectiveness of the operational model is incorporated into 

the strategic objectives. For example, Prins et al. (2007) incorporate the strategic decisions (locations) 

with the operational (routing) in a fully optimized way by employing a cooperative metaheuristic to solve 

the location-routing problem with capacitated routes and depots, but their demands and other parameters 

are deterministic.  

 Unfortunately, the performance of the operational model is rarely known with certainty, given a set of 

strategic decisions. Operational models must respond to immediate events that are likely not known a 

priori. The operational model, even if deterministic over a short-time horizon, will change over time; 

therefore, the strategic-level decisions must incorporate that uncertainty. 

Not surprisingly, there is extensive literature on optimizing strategic-level resource allocation decisions 

(often called facility location problems) that are responsive to the uncertainties in the reality of day-to-day 

operations in an integrated way. The “ambulance problem” is a classic example in which the facility deci-

sions must respond to uncertain demand (Smoveland et al. 1973). Recent extensions of this problem include 

Oran et al. (2012), which considered priorities using methods that ensure higher priority locations are con-

sidered before the lower priority locations—for both facility and routing decisions. Oran et al. combined a 

mixed-integer program (MIP) for the facility location problem with a metaheuristic for the vehicle routing 

problem, which provides better performance than a maximal coverage location problem (MCLP). A stand-

ard heuristic approach is the tabu search (Glover 1990), in which heuristics are employed to escape the trap 

of local optimality.  

Snyder (2006) provides a detailed review of different approaches currently in the literature. He out-

lines methods that address both stochastic optimization (maximize expected benefit) and robust optimiza-

tion (minimize expected regret, or worst case scenario). While the literature is extensive on techniques, 

Snyder notes that relatively few methods have been applied to real-world problems, which can be at-

tributed in part to the cumbersome data requirements. Of course, this general claim does not mean realis-

tic problems do not exist with the framework, including problems with applications and responses to nat-

ural or manmade emergencies. For Example, Murali et al. (2012) formulate a special case of the MCLP 

with chance-constraints to address the demand uncertainty to provide a response to a hypothetical anthrax 

attack in Los Angeles County. 
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In terms of tactical decisions, there has been extensive research with respect to analytical optimiza-

tions for reparable item inventories; Diaz and Fu (1995) and Guide and Srivastava (1997) provide two 

very detailed overviews of this area. Since World War II, reparable inventory modeling has progressed 

through at least five distinct phases: defining resupply pipelines, extending to multi-item optimization, in-

troducing multi-echelon considerations, linking investment to readiness, and explicitly considering end-

item complexity. (O’Malley and Peterson 2010) While all of these phases affect the hierarchical resourc-

ing decision, this paper specifically focuses on the inventory performance aspects.  

Since the 1960s, as inventory modeling research matured, the optimization goals for measuring repa-

rable inventory system performance evolved from item-level fill rates and backorders, through system-

level expected backorders, and ultimately to system-level operational availability. O’Malley et al. (2012) 

provide a more detailed review of reparable inventory performance measures, but today’s state of the art 

optimizes reparable item inventory levels toward achieving an end-item availability goal. Of course, ana-

lytical optimizations do make assumptions about demand rates and distributions, lead times, end-item us-

age rates, and the like. Testing the robustness of these assumptions, and translating availability into opera-

tionally meaningful measures, is where simulation techniques come into play. 

Paralleling the evolution of reparable inventory modeling was a complementary effort in inventory 

system simulation. Banks and Malave (1984), in their survey of inventory system simulations, developed 

a six-category classification schema to describe how simulation can complement inventory modeling. 

One of their categories was “verification of analytic solutions,” which is a natural complement to tactical-

level inventory optimizations. In fact, over the years, simulations have frequently been used to operation-

ally evaluate recommended inventory solutions. For example, Smith et al. (2006) described how they de-

veloped a discrete event simulation (the Joint Strike Fighter Support Enterprise Model) to provide “logis-

tics analysts with the ability to define an operational and support environment and ascertain measures of 

[the inventory system’s] performance effectiveness.” These performance measures included statistics 

such as aircraft availability and flying hours.  

In a similar vein, Siddiqi and de Weck (2007) developed a two-stage approach. The first stage was an 

availability-based, analytical sparing model for “estimating requirements of reconfigurable spare parts.” 

In the second stage, the validity of this solution was tested using a discrete event simulation to estimate 

the availability of a space exploration hardware system when resupply was unavailable. Another example 

of integrating analytical and simulation methods is from Klingebiel and Li (2011), who used an integer 

programming approach to develop optimal sparing policies for a multiechelon inventory system. They 

then used a simulation to “test the robustness of the ‘optimal’ inventory policies generated from the ana-

lytical model…” Finally, some integrated multiechelon analytical sparing models have been linked to re-

liability and maintainability models, then implemented as routine practice. For example, the Navy’s 

Availability Centered Inventory Model and TIGER simulation ties sparing allowances and wholesale 

stock level decision models to the availability of shipboard systems. (OPNAV 2000)  

Clearly, the integration of analytical inventory optimizations with discrete event simulations is a long-

established best practice within the logistics community. Our work differs from most of this literature in 

two ways. First, to the best of our knowledge, the integration of network design (facilities), inventory op-

timization at the tactical level, and system performance at the operational level (which requires the inte-

gration of three layers of models) has not been done for real-world problems related to UAS resourcing. 

Indeed, Snyder’s (2006) review of the state of the art identifies a need to capture the costs of tactical and 

operational models of the supply chain under uncertainty. In this paper, we provide an example that 

demonstrates the benefits of this integration.  

Second, the integration of models whose performance cannot be described with simple parameters or 

expected values makes most of the elegant models described in Snyder (2006) inapplicable. This issue 

does not mean that existing methods are not available; tabu searches and other metaheuristics can still be 

incorporated to provide reasonable solutions when the lower-level simulation model’s performance is dif-

ficult to describe parametrically.  

For this work, we optimize based on the expected reward according to the historic demand. This type 

of objective is admittedly an approximation of the expected performance of a simulation-based operation-
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al model. The full integration of these models ultimately would be improved by exploring the tabu 

searches and other heuristics previously noted. 

2.2 An Application Scenario and the Hierarchically Integrated M&S Framework 

In 2012, a law was implemented instructing the Federal Aviation Administration (FAA) to rewrite regula-

tions and develop a strategy for expanding the use of UASs in the United States. The FAA Modernization 

and Reform Act of 2012 directed the FAA to fully integrate unmanned systems into the national airspace 

by 2015. This tasking was a direct outcome from the exponential growth in federal (both Department of 

Defense and non-DoD) UAS domestic operations. While the DoD’s domestic use of UASs (e.g., training, 

research and development, and capabilities development) is well-understood, UAS usage by federal agen-

cies is less well known and even more diverse. For example, federal agencies are using UASs for every-

thing from law enforcement to forest management, and from climatological investigations to geological 

surveys. 

The rapid expansion of UAS usage by federal agencies has been facilitated, at least in part, by the 

military services’ resizing of their UAS fleets to fit within the anticipated post-Iraq and Afghanistan force 

structure. Many small- and mid-sized UASs (and their support equipment) are being made available to 

federal agencies. Of course, these “free” UASs can be both a blessing and a curse. While federal agencies 

have become very skilled at repurposing former military UAS systems for non-defense missions, these 

same agencies now need to develop (and fund) a UAS support infrastructure to sustain their UAS mis-

sions and select an appropriate operations and support (O&S) strategy. (It appears that agencies are pursu-

ing a variety of UAS O&S strategies, ranging from government-owned, government-operated to contrac-

tor-owned, contractor-operated and everything in between.) 

 Given the current need within the federal UAS community to better quantify and document UAS pro-

gram costs and resourcing, we believe a hierarchical M&S framework can help federal agencies integrate 

the myriad business resourcing decisions they face as the systems are deployed within their federally au-

thorized charters. These difficult, multifaceted resourcing decisions warrant a sophisticated M&S ap-

proach to organizational decision making.  

 In this paper, we propose a hierarchical analytical framework to assist with structuring the organiza-

tion’s M&S efforts with respect to resourcing decisions. This hierarchical M&S framework is expressly 

designed to support multi-faceted decisions (see Figure 1). The iterative framework uses optimization 

and simulation techniques to model operational and logistical networks.  

 

Multi-Faceted Decisions Can Benefit from a 

Hierarchical Modeling Framework
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Figure 1: The Hierarchically Integrated M&S Framework. 

3 METHODOLOGY 

We consider a MQ-1 Predator UAS unit deployed to observe and report wildfire activity within a selected 

geographic region. The MQ-1s are operated from select bases servicing specified orbital areas located as 
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to maximize the MQ-1s’ surveillance coverage over areas of high fire risk along a wildland-urban inter-

face. The MQ-1 bases will be resourced to be self-sufficient for 30 days of deployed operations, but they 

can also be supported from higher echelon logistics facilities (e.g., depots and manufacturers) if required 

(or desired). 

3.1 Strategic-Level Decisions 

Two strategic-level resourcing decisions need to be made in this scenario: how many UASs are needed, 

and where should they be located? With finite resources and a limited number of available UASs, it is de-

sirable to position them to achieve the greatest impact with regard to wildfire monitoring. Given the sto-

chastic nature of fire outbreaks and the uncertainty associated with the time to discover the outbreak, a de-

terministic optimization is, at best, an approximation of the probabilistic outcomes. Indeed, the system 

performance at the operational level is the ultimate measure of effectiveness. Nevertheless, for strategic- 

level planning, an objective function based on a static reward structure, such as a heat map, could create a 

reasonably desirable set of outcomes. 

 The value of monitoring one area for wildfires is not the same as the value of monitoring other, equal-

ly sized areas. For example, a fire could spread quickly in a dense boreal forest, whereas in a steppe land, 

a wildfire is either unlikely or easily managed; therefore, expending resources to monitor the forest would 

be considered of greater “value.” Moreover, regions with higher population densities are intrinsically 

more valuable because of the higher probability of loss of life or property.  

3.1.1 Reward Heat Map 

We divide a region of interest into discrete grid squares of approximately 4 square miles. For the grid space at 

coordinate (i,j), we quantify the value rij associated with monitoring that space in the following way: 

. 

F(i,j) is the percentage of forest coverage of grid space at (i,j). D(i,j,σ)  is the Gaussian smoothed popula-

tion density (smoothing parameter σ), and α ∈ [0,1]. Population density and forest coverage information 

were developed from vegetation (CSFS 2012) and population (Wikimedia Commons 2012) images. 

3.1.2 Integer Program Model 

In our strategic level planning, we position each UAS at a site chosen from a fixed list of predetermined 

sites, typically existing airports. Since there is little value in visiting a single grid space multiple times in 

rapid succession, the marginal benefit achieved by adding aircraft to a given site will decrease with each 

additional aircraft. Each candidate location has a set of grid spaces that a UAS, leaving from that location, 

can visit and return from in a single sortie. We define A for each grid square, airport location, and a given 

number of UASs, as Aijk , or the percentage of grid square (i,j) that is covered if there are  UASs sta-

tioned at location k. Aijk  is based on the performance characteristics (range, speed, etc.) of the UASs. 

With A defined thusly, we can generate an integer program (IP) that maximizes the coverage given a fixed 

number of aircraft and available locations (i.e., airports) as follows: 
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, 

where gij is the fraction of coverage for grid square (i,j), zk  is a binary decision variable (1 if there are  

UASs at location k, 0 otherwise), ck  is the cost of positioning  UASs at location k, and B is the total 

budget.  

 In this IP formulation, we assume the reward rij is weighted by the region of interest based on population 

and wildfire risk. Of course, in reality, the fires and their potential damage are stochastic events, and the 

UAS’ ultimate effectiveness is determined by the operational models within this hierarchy. Nevertheless, 

this strategic-level decision, as determined by the IP, will affect the performance at the operational level. 

3.2 Tactical-Level Decisions 

The tactical resourcing decision to be considered in this scenario is the level of inventory investment 

needed to support the planned UAS operations to achieve a desired level of system availability? (We only 

consider sparing the MQ-1 aircraft to the operating locations selected in strategic level decision.) 

 Modern aerospace systems are increasingly complex and interrelated. These macrosystems rely 

heavily on the complementary performance of their constituent systems to achieve a larger common ob-

jective. A fully operational MQ-1 unit consists of multiple aircraft, ground control systems (GCSs), and 

ground data terminals (GDTs) (Figure 2). The MQ-1 depends on the complementary performance of both 

its airborne and ground-based components to fulfill its missions.  

 

Preflight

Post Flight
Repair

Mission Area

 

Figure 2: A Notional MQ-1 UAS Wildfire Deployment Scenario. 

A readiness-based sparing (RBS) inventory optimization method is used to compute the spares in-

vestment requirements for the MQ-1 deployment given the strategic-level basing decisions. RBS tech-

niques view an MQ-1 as a composite of its major components (sensors, electronics, propulsion, structural 

components, etc.).  

We employ LMI’s Aircraft Sustainability Model® (ASM®) sparing model (Aircraft Sustainability 

Model and ASM are registered trademarks of the Logistics Management Institute), a well-known RBS 

application, to compute the MQ-1 reparable spares requirements. The ASM model’s replenishment pipe-

lines use operating scenario characteristics in conjunction with typical component-level data (demand 

rates, maintenance and transportation times, and costs). ASM then employs marginal analysis to rank pos-

sible additions to the spares inventory in terms of their availability benefit per dollar, thereby guarantee-

ing an efficient and effective spares mix. Accumulated costs and aircraft availabilities are tracked as the 

spares list is developed to create a curve that relates inventory investment (the x axis) to system availabil-

ity (the y axis). Logistics planners use these traditional availability-to-cost curves to formulate budgets, 

allocate resources, and identify spares purchases. 

3.3 Operational-Level Decisions 

Once the strategic- and tactical-level resourcing decisions are made, we evaluate the robustness of these 

decisions in the face of day-to-day operational variability. Simulation-based methods are well suited to 

this task, as they can readily capture the complexity, interdependencies, and variability inherent in a mac-
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rosystem’s O&S. To illustrate this portion of the hierarchical M&S framework, we employ a reliability 

and maintainability (R&M) simulation and an agent-based model (ABM). 

3.3.1 R&M Modeling 

While RBS methods can assess the availability of individual subsystems, they cannot fully assess the 

probability of a macrosystem achieving its objective. For example, “readiness” describes a system’s 

availability to perform its mission, but readiness is only one of several factors that ultimately lead to mis-

sion success. To truly assess a macrosystem’s mission performance, we combine RBS analysis with mod-

ern simulation tools. We use the Stochastic Petri Nets with Aging Tokens (SPN@) R&M software to 

model the UAS system-of-systems. (Volovoi 2006) 

SPN@ is used to model the MQ-1 wildfire surveillance mission cycle and serves as the framework 

for adding macrosystem complexities to the model. For example, a local GCS and GDT are both required 

for the MQ-1 aircraft to fly. Once the aircraft is launched and en route, these local ground systems hand 

off control to a non-local GCS. If either, or both, of the local ground system components are inoperative, 

then the mission may be compromised or prematurely curtailed—thereby diminishing the percentage of 

time wildfire surveillance coverage can be maintained. 

Figure 3 illustrates the SPN@ simulation. This model describes the MQ-1 mission, from the pool of 

available aircraft, through a preflight check and take-off. After transiting to the mission area, the wildfire 

surveillance begins. At some point, the MQ-1 must call for a relief aircraft to continue the surveillance af-

ter the original aircraft departs the mission area and returns to base for a post-flight check and any requi-

site corrective maintenance. Supporting this mission are the line-of-sight (LOS) ground-based subsystems 

(the GCS and GDT), which must be fully operational for MQ-1s to take off and land. 

 

Figure 3: Example of SPN@ Wildfire Mission Model. 

The use of Stochastic Petri Nets (SPN) enhances the fidelity of modeling the MQ-1 mission cycle by 

enabling explicit consideration of key logistical realities (e.g., a corrective maintenance cycle, spares 

availability, and logistical delays). SPN provides a “local” representation of the macrosystem by model-

ing its constituent systems and the rules governing their interdependencies. The localized nature of a SPN 

representation dramatically improves the scalability of macrosystem models by mitigating the combinato-

rial “curse of dimensionality.” In addition, SPN’s employment of Monte Carlo simulation  allows us to 

relax Markovian assumptions and account for dynamic effects. 

 For the MQ-1 UAS model, using aging tokens in SPN@ enhances modeling power by capturing time-

varying performance nuances, which offers a unique way to model the aging processes without sacrificing 

the dynamic features of SPN modeling. For example, the green tokens in Figure 3 represent fully servicea-
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ble MQ-1s that are either performing their mission or are mission ready; the red tokens represent MQ-1s that 

are grounded as a result of component failures and logistical delays. Thus, the SPN@ model enables us to 

account for the effects of in-flight failures as well as delays associated with maintenance activities.  

In addition, unlike standard discrete-event simulation tools, SPN@ graphically models system failure de-

pendencies and their propagation. Moving tokens visually represent the system dynamics associated with 

those failures.  

3.3.2 ABM Simulation 

While the SPN@ MQ-1 simulation measures the percentage of the time the MQ-1s can maintain their 

round-the-clock wildfire surveillance coverage, it cannot estimate the effectiveness of MQ-1s in the time-

ly detection of the wildfires. To make this measurement, we turn to an agent-based model. Our ABM uses 

a fairly simple fire spread model with fixed barrier patrol (Champagne et al. 2003) search patterns for the 

UASs. (See Vincent and Rubin [2004] and Choset [2001] for descriptions of alternative UAV search pat-

terns). Throughout the simulation, each grid space (i,j) is capable of spontaneously catching fire (e.g., 

from a lightning strike) with probability p(i,j,t), where p is a function of time t. In this way we can model 

semi-random lightning strikes throughout the region as a storm (or series of storms) sweeps from west to 

east.  

 Once a grid space has ignited, its immediate neighbors are exposed to the risk of catching fire. A grid 

space (i,j) with a burning neighbor will begin to burn with a probability given by n(i,j,v), where v is the 

wind vector). Once a grid space ignites, it will burn for an exponentially distributed duration until it is ex-

tinguished. Once extinguished, it cannot reignite. While this is occurring, the UASs are orbiting the re-

gion looking for any burning grid spaces. When a UAS passes within a sensor swath width of a burning 

space, we assume that the fire in that grid space is reported immediately.  

The output of the ABM is a list of which grid spaces were reported as burning during the trial. Using 

this list, we calculate the final “score” using the total of all the burned squares. Of course, a single trial 

isn’t sufficient so we compile statistics across 1000 trials to gauge operational success.  

4 DISCUSSION 

Through the use of integrated M&S techniques, federal agencies can quantify the resources required to 

sustain their UAS strategies. This fits well with a hierarchical decision framework, as we demonstrate 

with notional UAS deployment decisions that have distinct strategic, tactical and operational aspects.  

 The MQ-1 case study illustrates the possible hierarchical integration of a combination of analytical 

optimizations with simulations, and the scenario demonstrates the utility of this approach. The hierar-

chical decision framework evaluates the mission coverage that can be achieved as we consider investment 

trade-offs in spares, additional aircraft, and deployed support capabilities.  

At the strategic level, the number and deployment locations of the MQ-1s are significantly influenced 

by the desired performance goals (in this case, to maximize surveillance coverage of high-risk wildland-

urban interface areas). Several factors constrain the number and location of the deployed MQ-1s, includ-

ing qualified candidate airports and the total cost of airport basing, maintenance, and flying operations.  

By combining forest coverage and population density data, we allow different reward values for re-

gions in the potential orbital areas; thus, some regions will be visited more often than others. Applying the 

IP solution results in a recommended deployment of MQ-1s to northern, central, and southern orbital lo-

cations. Figure 4 shows the location of each airport and the approximate coverage areas (assuming a 10-

hour sortie). We note that the coverage is greatest (where the orbits overlap) in the most population dense 

wildland-urban interface areas.  
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Figure 4: Proposed MQ-1 Orbital Locations. 

At the tactical level, spares range and depth decisions are influenced by the UAS fleet size and loca-

tion. In our scenario, we model the MQ-1 deployment of eight aircraft allocated as shown in Figure 4. 

The goal is to generate the equivalent of 10 hours per aircraft per day with an 80 percent operational 

availability across the deployed aircraft. Each aircraft is modeled as a composite of its corresponding sub-

systems (e.g., fuel, engine, structural, electronics, etc.), all of which have unique costs, repair times, and 

failure rates. To provide a more conservative sparing requirement, we start with some typical inventory 

assumptions for DoD systems, such as no resupply for the first 30 days of the deployment and no parts 

cannibalization between aircraft. The ASM sparing model, which is used to perform the RBS analytical 

optimization, recommends an inventory investment of $17.6 million. At the given operational tempo, this 

level of inventory would support an 82 percent operational availability, and would immediately satisfy 

87.7 percent of anticipated spares requests. Any spares requests not filled immediately would experience 

a 3.3-day logistics delay (once resupply is allowed).  

At the operational level, it is essential to understand the logistics network’s robustness for day-to-day 

operational variability, so we transition from analytical models to discrete event simulations. Simulations 

enable us to better portray the vagaries of daily flight operations and capture their effect on wildfire sur-

veillance. We model the eight aircraft, which are operated out of three airfields and begin their surveil-

lance orbits immediately upon takeoff. We further assume that, at any given time, the desire is to have 

one-half of the aircraft assigned to the northern (1 out of 2), central (2 out of 4), and southern (1 out of 2) 

orbits in the air surveilling, while the remaining aircraft are at home station being maintained and readied 

for their next mission. 

Within the SPN@ operational simulation, the LOS ground-based subsystems are modeled as having a 

95 percent uptime and a 5-hour mean time to repair, while the aircraft have a 77 hour mean time between 

failure and a 14.6 hour mean time to repair. (For both the aircraft and ground-based subsystems, we as-

sume the time to failure is exponentially distributed.) From the SPN@ simulation, given the preceding in-

ventory investment decisions, the percentage of time that MQ-1s are orbiting the northern, central and 

southern regions are 91.9, 91.7, and 91.9 percent respectively. Assuming 100 percent orbital coverage is 

too optimistic, and the impact of operational and logistical variability must be taken into account when 

planning the MQ-1 orbital search patterns. 

The ABM simulation allows us to extend this greater degree of operational realism to planning the 

MQ-1 wildfire surveillance search patterns. Specifically, to illustrate the importance of this consideration, 
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we modeled the northern, central, and southern orbital areas within an ABM where a fire is randomly ini-

tiated and results in a risk of spreading to adjacent cells if the fire is not discovered and extinguished 

quickly. Each replication of the simulation represents 34.7 days of the wildfire season.  

In the first run of the ABM model, we employ no MQ-1s to perform aerial wildfire surveillance and 

measure the amount of damage to high-value wildland-urban interface areas. Under this scenario, 4.8 per-

cent of the forested areas are destroyed on average. In the next run, the MQ-1s are deployed. In this sce-

nario, an average of 2.1 percent wildland and property are destroyed—a net reduction of 2.7 percent from 

the previous scenario.  

Figure 5 illustrates the effectiveness of employing MQ-1s to spot wildfires.  Specifically, it shows 

that the forested area that is burned is dramatically reduced due to the MQ-1s spotting and reporting wild-

fires earlier, before they have a chance to spread. 

 

Figure 5: The Impact of MQ-1 Surveillance (Described by CMFs). 

According to a 2010 report by the Western Forestry Leadership Coalition, five large wildfires be-

tween 2000–2003 burned more than 882,000 acres and resulted in $2.9 billion in damage (Dale 2010). 

The average cost per acre burned was more than $3,300, recognizing, of course, that the type of land and 

level of development varied significantly from area to area and fire to fire. Being able to estimate the typ-

ical cost of lost wildland and structures allows us to extrapolate the potential value of the MQ-1s’ early 

wildfire detection and the opportunity for suppression. Knowing this provides a valuable comparison 

against the operational and logistical costs of deploying the MQ-s, as determined through the hierarchical-

ly integrated resourcing decision process.  

5 SUMMARY 

The proposed hierarchically integrated M&S methodology offers macrosystem designers, operators, and 

supportability managers a pragmatic and effective approach to leverage the power of complementary ana-

lytical techniques for coping with the ever-more complex support requirements of modern macrosystems. 

5.1 The Value of Hierarchically Integrated M&S  

An integrated approach is essential to achieve “good,” if not optimal, performance in a macrosystem hier-

archical model. Even the best solution techniques will only achieve locally optimized solutions if the ul-

timate performance of the operational model is not addressed in the strategic-level decisions.  

 We implemented a hierarchically integrated resourcing model, albeit on a limited scale. Our strategic-

level IP solves the facility location problem with the goal of maximizing ultimate system performance at 

the operational level. However, while the implementation of a strategic-level optimization (which opti-

mizes according to an approximation of the ultimate performance) is an important first step, that solution 

must be examined for its overall effectiveness. 
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5.2 Future Research  

As noted above, there is considerable literature on the techniques to improve strategic-level decisions to 

optimize operational-level performance. Tabu searches and other metaheuristics can be implemented suc-

cessfully, especially if the lower-level simulation model can generate results quickly and iteratively. Even 

without a fast-time simulation, evaluating a set of strategic-level optimizations could improve the perfor-

mance and robustness of the solution, though formal bounds on optimality are unlikely. 

 We wish to pursue several ABM enhancements. The first is to fine tune the ABM’s calibration in 

terms of event speed. Another area for further research is in the measuring of the aerial surveillance’s ef-

fectiveness; it would be preferable to deploy the IP heat map into the ABM and record a measure of rela-

tive rewards. We also wish to enhance the ABM model with “intelligent” actors and make the ABM suf-

ficiently robust that it can serve as a platform for testing the relative effectiveness of alternative search 

patterns or algorithms while incorporating more complex topographical and environmental factors. Final-

ly, we will explore possible extensions to this problem set, such as using UASs to find active hiders (e.g., 

poachers), or applications for other systems-of-systems, such as NOAA’s tsunami warning system. 
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