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ABSTRACT

A dual toll pricing is a conceptual policy in which policy maker imposes toll on both hazardous materials
(hazmat) vehicles as well as regular vehicles for using populated road segments to mitigate a risk of haz-
mat transportation. It intends to separate the hazmat traffic flow from the regular traffic flow via control-
ling the dual toll. In order to design the dual toll pricing policy on a highly realistic road network envi-
ronment and detailed human behaviors, an extended BDI framework is employed to mimic human
decision behaviors in great detail. The proposed approach is implemented in AnyLogic® agent based sim-
ulation software with using a traffic data of Albany, NY. Also, search algorithms in OptQuest® are used
to determine the optimum dual toll pricing policy which results in the minimum risk and travel cost based
on the simulation results. The result reveals the effectiveness of the proposed approach in devising a reli-
able policy under the realistic road network conditions.

1 INTRODUCTION

A hazardous material (hazmat) is defined as any substance or material that could adversely affect the safe-
ty of the public, handlers or carriers during transportation (Department of Transportation (DOT) 2013).
Over the years, the hazmat transportation accidents have resulted in serious consequences in terms of
deaths and major injuries. For instance, in the US, about 6,895 pounds of the anhydrous ammonia was
released on the highway and near wooded area in 2009, from which one person was killed and seven peo-
ple were injured because of ammonia poisoning. Besides, the anhydrous ammonia cloud caused tempo-
rary discoloration of vegetation in the area (PHMSA 2013). In addition to the human injuries, the hazmat
transportation accidents have been responsible for monetary damages as well. For example, in 2012, in
the US, there were 13,675 accidents caused by hazmat transportation with a total of $59 million in dam-
ages. Among them, about 85.72% of the total hazmat accidents occurred on highway with a total of § 49
million in damages (PHMSA 2013). Therefore, for the public safety and economic consideration, the
hazmat transportation on highway has received a keen attention of government such as the U.S. DOT.
Currently, government agencies in North America and Europe are trying to mitigate risk associated
with the hazmat transportation on a road network by separating the hazmat traffic flow from normal traf-
fic flow, especially high-density traffic flows. An example of this is the ban on trucks carrying non-
radioactive hazmat on certain road segments (e.g. Texas Department of Transportation 2009 has a list of
prohibited roads for Texas). In the literature, these types of policies are categorized into network-design
(ND) policy. Significant research works have been done in this field to minimize hazmat transportation
risk (e.g., Kara and Verter 2004). The ND policy is very effective to restrict hazmat traffic from highly
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dense regular traffic flow. However, the main limitation of the ND policy is not to consider the carri-
ers’ priorities such as a travel cost and wastes the usability of certain road segments. Moreover, only re-
stricting certain road segments sometimes cannot rationally adjust the hazmat flows to areas with less risk
(Wang et al. 2011).

Accordingly, an alternative policy tool, toll-setting policy (TS) which is a more flexible restriction
policy for hazmat shipments than the ND policy, was proposed by Marcotte et al. (2009) to deter hazmat
carriers from using certain road segments via toll pricing. Unlike the ND policy, the TS policy allows a
government agency to consider the drivers’ and carriers’ priorities such as drivers’ preference to avoid the
road which has a high risk, and carrier companies try to achieve more profit by choosing the least cost
path that reduces an operational cost (Pécheux et al. 2004), simultaneously. Recently, Wang et al. (2011)
suggested a dual toll pricing framework to control both regular and hazmat traffic flows for the public
safety since hazmat carriers are not only a part of the hazmat traffic flows, but also belong to, and cannot
be separated from the regular traffic flows. By separating the hazmat traffic from the heavy-congestion
regular traffic flows, the dual toll policy tries to mitigate severe accident risks and to avoid peak-time traf-
fic congestions. However, the existing research works have some unrealistic assumptions, for example,
individual driver’s behavior (e.g. route planning behavior) is the same as others and the driver has perfect
information of the current status of the network. Thus, in order to design and evaluate a more reliable du-
al toll pricing policy, this paper adopts the extended Belief-Desire-Intention (BDI) framework which is
one of the well-known models to mimic a human decision behavior (Lee, Son, and Jin 2010). Since the
extended BDI framework is able to illustrate a human reasoning process based on perceived information
in a greater detail, it has been successfully implemented in various fields such as crowd management sys-
tem (Lee, Son, and Jin 2010; Shendarkar et al. 2008) and manufacturing system (Zao and Son 2008). In
this paper, this framework will demonstrate an individual driver’s route choice behavior with imperfect
information, which is implemented in the agent based simulation model.

The rest of the paper is organized as follows. Section 2 briefly describes the background of the ex-
tended BDI framework and driver’s route choice behavior under the framework. In Section 3, the optimi-
zation formulation for the dual toll pricing is presented. Section 4 discusses the experimental results on a
case study of road network in Albany district of New York State. Finally, we conclude our research
works in Section 5 with suggested future works.

2 A DRIVER’S ROUTE CHOICE BEHAVIOR UNDER THE EXTENDED BDI
FRAMEWORK

2.1 Extended BDI Framework

As mentioned in Section 1, in order to mimic realistic drivers’ route choice behaviors, we adopt the ex-
tended BDI framework which is a unified framework involving both the decision-making and decision-
planning functions to represent more psychological natures of the human (Lee, Son, and Jin 2010). The
framework consists of four main components: Belief module, Emotion module, Desire module, and Deci-
sion making module (see Figure 1). Belief module represents a perceptual process which generates be-
liefs from the environment. From Beliefs, the human generates desires (e.g. goals or hoping for an out-
come) through the desire generator in the Desire module. If a human wishes to achieve a certain desire,
then it becomes an intention (Rao and Georgeff 1998). Once an intention is selected from desires, the re-
al-time planner generates a multi-stage plan, and the Decision Executor executes the plan in multi-stage.
Moreover, the Emotional module contains the Confidence Index (CI) and the Instinct Index (II). The CI
is updated based on the deviation between what is predicted during the planning stage and the reality dur-
ing the execution stage, and affects the execution behavior of the human. If there is a situation under a
high II (e.g. decisions to be made with time pressure), the human would make a decision based on his/her
long-term memory (part of belief) instead of going through the entire decision planning and execution
process that is mentioned in the previous sentences.
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Figure 1: Components of the Extended BDI Framework (Zhao and Son 2008; Lee, Son, and Jin 2010)

2.2 BDI Route Choice Model

In this paper, we consider three types of drivers: 1) a risk averse of regular drivers who has higher prefer-
ence on road risk than travel cost; 2) a risk taker of regular drivers who has higher preference on travel
cost than road risk; and 3) a hazmat driver who only cares about travel cost related to own profit. The ex-
tended BDI framework is adopted to mimic the drivers’ route choice behavior regarding their own prefer-
ences and beliefs about road conditions (e.g. traffic flow of regular vehicles and hazmat truck frequency).
Especially, the drivers’ the route planning behavior based on their perceived information is designed un-
der the extended BDI framework. Figure 2 shows the sequence diagram of a driver’s route planning.
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Figure 2: Sequence diagram of the driver’s route planning (Lee, Son, and Jin 2010)
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First, Bayesian belief network (BBN) in Perceptual Processor is used to generate beliefs considering
an individual perception process. In fact, since the BBN is a probabilistic inference model based on an
individual driver’s experience and preference, each driver can have different Beliefs on a road situation.
In this paper, we assume that all the drivers of the regular vehicle consider two main attributes (e.g. travel
cost and road risk) which are related to several environmental variables such as distance from destination,
free flow travel time, traffic flow, hazmat truck frequency, and toll price. Figure 3 shows the BBN struc-
ture of a regular driver agent.

Hazmat truck Free flow Traffic flow Distance from Toll price
frequency travel time destination p
Light 0.83 || Short 0.39 || Light 0.46 | | Short 023 || Low 0.55
Heavy 0.17 || Long 0.61 || Heavy 0.54 || Long 0.77 | | High 0.45

Risk Travel cost

Low 0.56 Low 0.37
High 0.44 High 0.63

Figure 3: Bayesian Belief Network (BBN) of a regular driver agent

Second, once beliefs about attributes (i.e. risk and travel cost) are generated by BBN inference, Ex-
tended Decision Field Theory (EDFT) calculates the choice probability of linked arcs at the intersection.
Originally, EDFT depicts a dynamic evolution of presence among options during the deliberation time us-
ing a linear system formulation (Busemeyer and Diederich 2002; Lee, Son, and Jin 2008):

P+h)=SxP(t)+CxM(({t+h)xW(t+h)
Where, P (t)T = (Pl(t),P2 ®,.... B, (t)) denotes the preference state in which P(¢) represents the

strength of preference for option 7 at time <7 and T} is the time when final decision is made. N; is the
total number of options. The preference state is updated at every time step 4. The stability matrix S pro-
vides the effect of the preference at the previous state (the memory effect) and the effect of the interac-
tions among the options. The value matrix M (N;xB vector, B is the number of attributes) represents the
subjective evaluations (perceptions) of a decision-maker for each option on each attribute. The value ma-
trix M(¢) given by the Bayesian belief network (BBN). Besides, B is 2 in our case (i.e. risk and travel
cost). The weight vector W(r) (Bx1 vector) allocates the weights of attention corresponding to each col-
umn (attribute) of M. The matrix C (NV;XN; vector) is the contrast matrix comparing the weighted evalua-
tions of each option, MxW(¢) (Lee, Son, and Jin 2008). Table 1 reveals the weight vector W(¢) with dif-
ferent types of regular drivers.
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Table 1: The weight vector W(¢) of regular drivers

Driver Type Risk Averse Risk Taker

w (1) { W, (1) } {unzform(o.s,m)} {uniform(O.?),O.S)}

I/Vtravelcost (t) 1- I/Vrisk (t) 1- VK’isk (t)

However, a driver of Hazmat vehicle only considers travel cost as an attribute since the intention to
drive is to increase the benefit or reducing the cost. Thus, the four environmental variables such as dis-
tance from destination, free flow travel time, traffic flow and toll price are considered. This implies that
the weight vector Wiayeicost(f) = 1. As a result, by using the value matrix M(f) and the weight vector W(¢),
EDFT calculates preference values considering the number of links on the intersection (i.e. the number of
options) and gives the choice probability by normalizing the preference values.

Last, Probabilistic Depth First Search (PDFT) method, which is a probabilistic searching algorithm in
graph which starts at the root and explores as far as possible along each branch before backtracking (Lee,
Son, and Jin 2010), generates a route plan for a driver agents based on the choice probability information
given by EDFT. Therefore, the driver agent can get a route plan based on each driver’s perceived infor-
mation on the road network. In addition, the proposed route planning model is implemented in
AnyLogic® agent based simulation software.

3 DESIGN AND DEVELOPMENT OF A DUAL TOLL PRICING POLICY

In this paper, search algorithms available in OptQuest® are used to find the optimal/near optimal toll pric-
ing values that result in the minimum risk and travel cost based on the collected information from agent
based simulation. The OptQuest” incorporates a combination of three meta-heuristics (Glover, Kelly, and
Laguna 1999): scatter search (SS), tabu search (TS), and neural networks (NN). Figure 4 shows a pseudo
code of the proposed process to find the optimum dual toll pricing policy using the extended BDI frame-
work. In the optimization process, once the OptQuest” sets the dual toll pricing policy, the agent based
simulation, which includes extended BDI framework to address the route planning behavior for hazmat
and regular driver, is executed. Since the toll price has an impact on the driver’s route choice behavior, it
affects the hazmat and regular traffic. More specifically, tolls encourage drivers to choose a less populat-
ed road according to the carrier’s own selection due to economic consideration. The agent based simula-
tion collects the data such as hazmat traffic flow and regular traffic flow, and average travel time of a
hazmat and regular vehicle for a certain link. This data is collected when the simulation is in the steady
state (i.e. convergence of traffic flows of the road network). As a result, the proposed approach has a
feedback loop that means the agent based simulation model and optimization algorithm keeps running un-
til it finds the optimal/near optimal toll price with minimum risk and travel time. Once the process reach-
es to specified iterations or no significant improvement in solutions is occurred, the optimization process
is terminated.
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1: INITIALIZE total number of regular vehicles # and hazmat vehicles v and a range of the
toll pricing policy for regular vehicles o and hazmat vehicles S

2: REPEAT

3:  SET a toll price policy (1)

4:  RUN an agent based simulation model with the extended BDI framework

5:  IF the simulation is in steady state THEN

6:  COMPUTE the value of objective function f{I;)

7. IFAL) <Al..) THEN

8 SAVE f{I;) and output of the simulation model (e.g. traffic flow of each link) (O,)
9: UNTIL the objective function does not have significant improvement (|f{/,)-f(/,.1)|< &)
10: RETURN f£{/,) and O,

Figure 4: Pseudo code of the dual toll pricing policy optimization based on the extended BDI framework

3.1 Optimization Formulation

In this section, we present a mathematical formulation for dual toll pricing problem. Let G = (N, 4) be a
network, where N and 4 denote the set of nodes and links, respectively. Consider we have OD pair sets
for both regular and hazmat transportation, denoted by K and Q respectively. Corresponding to each OD
pair k€ K or g € Q, there is a demand vector 5" or @* respectively. For each demand vector & and g,
there exist arc flow vector x* and y%. The sum of all regular OD pair flows is the regular aggregate flow v
and sum of all hazmat OD pair flows is the hazmat aggregate flow u.

The feasible flow for the network is defined as follows:

Vz{v:\/:Zxk,Axk =bk,xk20VkeK}

keK

Uz{u:uzqu,qu:dq,yq ZOquQ}
=Y

According to Wardrop’s first principle (Florian and Hearn 1995), the driver wants to minimize his or
her individual cost by choosing the least cost link as he or she sees from a map of the existing traffic flow.
This is known as a user equilibrium which can be stated as a variational inequality problem. For example,

let’s assume that a driver only consider travel time as his/her travel cost. A traffic flow v €V of regular
vehicles is the network user equilibrium if and only if Vv satisfies the following variational inequality:

s@+u) (v=v)=0 YvelV
where s(+) is travel time function which is given by the simulation model. Similarly, for a given v €V, a
traffic flow # € U of hazmat truck is the network user equilibrium if and only if # satisfies the follow-
ing variational inequality:

s@+u) (u—u)=0 YueU

The above equilibrium flows # and v are identical to the system optimum which is a solution of the
following linear program:
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u =arg mil}l[s(i +i)] u

v =argmin[s(v +i)]" v
velV

In the dual toll pricing model, we force drivers to change their behaviors by a toll imposed on the
highway to achieve the system optimum. After charging the toll a for the regular traffic flow and S for
the hazmat traffic flow, the tolled user optimum problem becomes:

(s +u) +a)(v—v)=0 Yvel
(s(v+u) +p)u—uw)=0 YuelU

In reality, the driver wants to minimize the travel time by choosing the shortest link from the existing
traffic flow map. In this paper, the average travel time for the vehicle on link a S, (v, +u,) is given by

simulation model, where v, is the traffic flow of the regular vehicles for link a and u,, is the traffic flow

of the hazmat vehicles for link a, respectively.
Moreover, for the risk of hazmat vehicles, we include a duration-population-frequency risk function
that is similar to risk function of Cekyay and Verter (2010):

Ra (Va’ua) = Sa (Va +ua)paua

where p, is the population exposure along the link a. We considering the risk caused only by hazmat
trucks accidents, but the amount of traffic on particular link @ would increase the probability of accidents
of hazmat trucks. Therefore, it is obvious to write R, as a function of both v, and u,.

Using the travel time and the risk function, the dual toll pricing problem can be formulated as fol-
lows:

unvlinﬂ J =w[RM,u)]" A+w,[s(v+u) " v+w[s(v+u)] u (1)
Subject to
(s(v+u)+a) (t—v)>0 VteV )
(sv+u)+B) (r—u)=0 VreU 3)
velV 4)
uelU (5)
a, >0 (6)

where wy, w,, and w; are the weights for risk, travel delay of regular vehicle, and travel delay of haz-
mat trucks, and 4 = (1)

acAd "

In the above formulation, the objective function Eq. (1) tries to minimize the hazmat risk, travel delay
of regular vehicle and hazmat vehicle. The constraint Eq. (2) ensures that v is tolled user optimum flow
with respect to toll a. The constraint Eq. (3) ensures that « is tolled user optimum flow with respect to toll
p. The constraint Eq. (4) and Eq. (5) ensures that v and u is feasible aggregate flow. Constraint Eq. (6)
makes sure that toll cost for regular and hazmat traffic flow always greater or equal to zero.

2526



Kim, Mungle, and Son

4 A CASE STUDY OF ALBANY ROAD NETWORK

In this paper, we consider route data of an Albany road network in the New York State in order to demon-
strate the efficiency of the proposed dual toll pricing approach. The agent based simulation model has
been developed in AnyLogic 6.8.0 software. More detailed information of the simulation model is ad-
dressed in Section 4.1. In addition, the results of our experiment will be discussed in Section 4.2.

4.1 Experimental Setting

We use route distance and daily traffic data of Albany in the New York State as shown in Figure 5. The
road network is comprised of 12 nodes (link intersections) and 18 links. Based on the proposed model,
the experiment is conducted with single hazmat type and two types of regular drivers namely risk-averse
and risk-taker. For each experiment, the total number of regular vehicle driver agents is taken as 1000
(each regular driver type has 500 agents) and the number of simulation replications is set to 10. In addi-
tion, we assume that each driver moves from the origin node to the destination node continuously (see
Figure 5). In other words, when the agent arrives at its destination, it starts again from the origin node
with its previous knowledge. The detailed information about parameter values and data is described in
Appendix A.

Figure 5: Snapshot of simulation model (in AnyLogic) and route map of Albany

4.2 Results and Discussions

The proposed agent based simulation model evaluates the impacts of toll pricing values on traffic flow in-
cluding hazmat and regular and the best one is obtained via using OptQuest® that minimizes risk and
travel time. The experiments are performed on the desktop: Intel Core2 Duo P8400 with 2.26GHz. Each
replication in the agent based simulation takes 1143 seconds (95% C.I. half width: 812) to get converged
traffic flow for each vehicle including hazmat and regular. Moreover, the total optimization time of
OptQuest® takes 15.88 hours (with 50 iterations and 10 replications).

In order to understand the impact of the dual toll pricing policy on hazmat risk and travel time (de-
lay), we compare the performance with the minimum travel cost of regular traffic (v*°) and the minimum
risk flow of hazmat traffic (#°°) given the regular traffic (v*°). For further validation of the proposed ap-
proach, we adopt the same metrics used by Wang et al. (2011).

R(u*,v*)—R(uS”,vm)

e Change of Risk: R (usg ,vso)
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e Change of Delay (regular vehicle: R):

e Change of Delay (hazmat vehicle: H):

e Tolls Collected (regular vehicle: R): a’Vv'
e Tolls Collected (hazmat vehicle: H): ,BTu*
Where,
D(vso) — S(vso +us0)T(v30)
D(V* ) =s(v +u)V'

(u*,v")=argminJ
u,v

Vv =argmin Z[Sa (v, +ua)va:|

acA

u” =argmin {W[RO™,10)]+wy[SO +)v" +wy[SO™ +u)]u|

With these measures, we compare the dual tolled traffic flows (u",v") with the traffic flows

(u™,v*) at regular traffic’s system optimum.

Table 2 shows the comparison results with various w; when w,=1 and ws;=1. In this case, 500 risk-
taker vehicles (50%) and 500 risk-averse vehicles (50%) of regular vehicles are considered. The number
of hazmat vehicles is taken as 100. Considering the amount of the collected tolls, the difference between
hazmat toll and regular toll should be large enough as w; increases. This is because the dual toll policy
motivates the hazmat traffic flow to separate from the regular traffic flow. Therefore, the travel time of
hazmat vehicle decreases since the hazmat vehicle selects a different route that has low frequency of regu-
lar traffic. In addition, the risk decreases as w; increases, while travel time of regular traffic is increased
because a regular vehicle has limited options of its route related to road risk.

Table 2: Sensitive analysis about w; given w,=1 and ws=1

(Wi, Waw3) (10°,1,1) (10",1,1) (1,1,1)
Change of risk (-16.2219, 15.8755) | (-16.4742, 15.6216) | (-16.5257, 15.5733)
Change of delay (R) | (-0.1989, -0.1751) | (-0.0945, -0.0721) (0.1161, 0.1391)
Change of delay (H) | (0.1807, 0.2031) (0.053, 0.0762) (0.0346, 0.0554)
Toll collected (R) (519.42,520.58) | (1058.84, 1061.16) | (1058.84, 1061.16)
Toll collected (H) (0.0, 0.0) (8.4922,9.5078) (8.4911, 9.5089)

Moreover, Table 3 and Table 4 show the different cases when w, and w; is changed, respectively.
Through these experiments, we intend to show that the travel time of each vehicle is directly related to its
toll policy. The road risk gets increased with w, and ws;. We found that the regular toll affects not only
the regular traffic but also the hazmat traffic. For example, if the regular toll is imposed on certain link,
the regular drivers will try to choose another less populated link from economic point of view, and hence
regular traffic will get reduced on that particular link. This decreases an accident probability for hazmat
vehicle. It means that the road risk can be reduced by the regular toll policy. Therefore, we need to be
more careful in designing the regular toll price policy which controls the traffic flow of each vehicle in-
cluding hazmat and regular.
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Table 3: Sensitive analysis about w, given w;=1 and w;=1 (500 Risk takers)

(Wi, Wo,W3) (1,1,1) (1,10°,1) (1,10°,1)
Change of risk (-16.5257,15.5733) | (-16.2219, 15.8755) | (-16.2219, 15.8755)
Change of delay (R) (0.1161, 0.1391) (-0.1989, -0.1751) | (-0.1989, -0.1751)
Change of delay (H) (0.0346, 0.0554) (0.1807, 0.2031) (0.1807, 0.2031)
Toll collected (R) (1058.84, 1061.16) (519.42, 520.58) (519.42, 520.58)
Toll collected (H) (8.4911, 9.5089) (0.0, 0.0) (0.0, 0.0)

Table 4: Sensitive analysis about w; given w;=1 and w,=1 (500 Risk takers)

(W1, w2,W3) (1,1,1) (1,1,10%) (1,1,10°)
Change of risk (-16.5257, 15.5733) | (-16.4888, 15.6094) | (-16.4888, 15.6094)
Change of delay (R) (0.1161, 0.1391) (0.1187, 0.1415) (0.1187, 0.1415)
Change of delay (H) (0.0346, 0.0554) (-0.0394, -0.0178) (-0.0394, -0.0178)
Toll collected (R) (1058.84, 1061.16) | (2768.33,2771.67) | (2768.33,2771.67)
Toll collected (H) (8.4911, 9.5089) (0.0, 0.0) (0.0, 0.0)

5 CONCLUSIONS

In this paper, we proposed a simulation-based optimization approach for dual toll pricing policy under the
extended BDI framework to mitigate the hazmat transportation risk. Our main motivation was to design a
more realistic dual toll pricing policy which controls both regular and hazmat traffic to lessen the
transport risk. To this end, the extended BDI framework was adopted to mimic a driver’s route choice
behavior. We considered two types of driver, a risk-taker and a risk-averse for the regular traffic. The
extended BDI framework had been implemented in AnyLogic® agent based simulation software. The
proposed approach was then illustrated for dual toll pricing problem involving the real traffic data of Al-
bany, NY. Furthermore, we used search algorithms in OptQuest” to perform the optimization. To vali-
date our proposed approach, we compared our results from the agent based simulation with the existing
dual toll pricing optimization approach by using same metric. The results validation showed that the pro-
posed simulation based optimization approach enables us to develop a more reliable dual toll pricing poli-
cy with various drivers’ preferences and decisions.

For future works, there are several directions that can be explored. Especially, in this paper, we used
OptQuest” in AnyLogic® based on the weighted multi-objective formulation which includes a biasness of
decision maker related to the weights for each sub-objective. As an alternate approach, the problem can
be formulated as multi-objective and solved by Pareto-based multi-objective metaheuristics.
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A SIMULATION PARAMETERS AND DATA

Table A.1 and Table A.2 show the road network data of Albany in the New York State and the assumed
parameter values of the simulation model, respectively.
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Table A.1: Road network data

Start Nodes End Distance Free flow speed P%I; lrlll:itt;)n
Origin 1 2.78 miles 65 miles/hr. 647/mile”
1 2 8.15 miles 65 miles/hr. 647/mile”

1 3 7.02 miles 65 miles/hr. 647/mile”

2 4 6.1 miles 65 miles/hr. 1841/mile’
3 2 3.01 miles 65 miles/hr. 1841/mile’
3 5 8.86 miles 65 miles/hr. 1358/mile’
4 6 5.89 miles 65 miles/hr. 7286/mile”
4 7 5.72 miles 65 miles/hr. 2736/mile”
4 10 5.93 miles 65 miles/hr. 2736/mile’
5 4 5.33 miles 65 miles/hr. 1391/mile’

5 6 9.77 miles 65 miles/hr. 2389/mile’

6 9 8.14 miles 65 miles/hr. 238/mile’

6 10 2.02 miles 65 miles/hr. 2847/mile’

7 8 14.25 miles 65 miles/hr. 212/mile”

8 Destination 1.9 miles 65 miles/hr. 148/mile’
9 8 5.63 miles 65 miles/hr. 210/mile’
10 7 1.49 miles 65 miles/hr. 4746/mile’
10 9 6.76 miles 65 miles/hr. 1255/mile”

Table A.2: Assumed parameter values in simulation model

Parameter Value
Number of regular vehicles 1000
Number of regular vehicles 100

Number of iterations 50
Number of replications 10
Arrival rate of vehicles 100 vehicles/hr.

maximum acceleration rate

uniform (10,12) feet/sec”

maximum deceleration rate

uniform (-12, -8) feet/sec”
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