
Proceedings of the 2013 Winter Simulation Conference

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

INTELLIGENT DISPATCHING IN DYNAMIC STOCHASTIC JOB SHOPS

Tao Zhang

Oliver Rose

Universität der Bundeswehr München

Department of Computer Science

D-85577 Neubiberg, GERMANY

ABSTRACT

Dispatching rules are common method to schedule jobs in practice. However, they consider only limited

factors which influence the priority of jobs. This limited consideration narrows the rules’ scope of appli-

cation. We develop a new hierarchical dispatching approach based on two types of factors: local factors

and global factors, where each machine has its own dispatching rule setup. According to the global fac-

tors, the dispatchers divide the state of the manufacturing system into several patterns, and parameterize a

neural network for each pattern to map the relationships between the local factors and the priorities of

jobs. When making decisions, the dispatchers determine which pattern the current state belongs to. Then

the appropriate neural network computes priorities according to the jobs’ local factors. The job with the

highest priority will be selected. Finally, the proposed approach is introduced on a manufacturing line and

the performance is compared to classical dispatching rules.

1 INTRODUCTION

In dynamic stochastic job shops, jobs are released and arrive at the shop over time. The release date, pro-

cessing time of jobs and machine breakdowns are stochastic and not known in advance. It is difficult and

sometimes impossible to compute optimal schedules. In this case, scheduling is typically carried out by

means of dispatching decisions: once a machine becomes free, we decide what it should do next. Detailed

dispatching decisions in a job shop are usually determined by dispatching rules. A dispatching rule can

find a reasonably good solution in a relatively short time and is very simple to implement. In this paper,

we assume that no machine is kept idle while a job is waiting for processing.

 At present, the study of dispatching rules focuses on two main fields: developing composite dispatch-

ing rules and selecting rules dynamically. The first field aims to develop new dispatching rules which are

applicable to more complex manufacturing lines. The rule never changes when being used. Holthaus and

Rajendran (1997) develop five new dispatching rules of this type for scheduling a job shop. Some of

these rules make use of the process time and work-content in the queue of the next operation of a job, by

following a simple additive approach, in addition to the arrival time and dynamic slack of a job. The pro-

posed rules are not only simple in structure, but also quite efficient in minimizing several measures of

performance. Chen and Matis (2013) present a dispatching rule called the Weight Biased Modified

RRrule that minimizes the mean tardiness of weighted jobs in an m-machine job shop. It is a significant

extension of the RRrule in that it has linear complexity and considers weighted jobs. The shortcoming of

these dispatching rules is that they are usually effective in some specific situations but not in others.

 Therefore, the second field focuses on finding better rules for a given situation. The rule changes over

time according to the state of the manufacturing line. Scholz-Reiter et al. (2010) use Gaussian processes

as a machine learning technique for the selection of dispatching rules in dynamic scenarios. Lian et al.

(1998) propose a fuzzy inference-based selection of dispatching rules, adapting the scheduling decision to

2622978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Zhang and Rose

the dynamic changes in the manufacturing environment. The selection of dispatching rules takes the state

of the manufacturing line into consideration. Each rule can be used in the right state. However, the selec-

tion just determines which information concerning jobs, such as processing time, waiting time and so on,

plays the most important role in assigning jobs (computing priorities) in a given state. Only the primary

information about jobs is involved in the decision-making. But sometimes effects of the secondary infor-

mation about jobs should not be ignored. Theoretically, the more information that is considered, the better

decision that is made and the wider scope the approach will have.

In addition, both the developed new rules and dynamically selected rules are used for all machines in

the shop, i.e., all machines use the same rule at the same time. The position of machines in the layout of

production processes also influences the performance of rules. It is possible that a rule performs well on

one machine, but badly on other machines. Thus, the better way is to involve the position information

while a decision is made or to build individual rules for each machine.

In this paper, using artificial intelligence techniques, we create an individual dispatcher for each ma-

chine. The dispatchers consider a large amount of information including global factors and local factors in

the decision-making process. The paper is structured as follows. Section 2 presents the general idea of the

intelligent dispatcher which contains two data-driven models: the pattern recognition model and the neu-

ral network model. Section 3 describes how to collect the data on global factors, local factors and the pri-

ority by using simulation. The data will then be used to build the two data-driven models. In Section 4,

the pattern recognition model is developed by using spectral clustering. The spectral clustering classifies

the state of manufacturing line into several patterns according to the global factors. In Section 5, a feed-

forward neural network is built for each pattern and trained by the Levenberg-Marquardt algorithm based

on the local data and the priority data. The networks map the relationships between the local factors and

the priority of jobs. Section 6 provides an application of the proposed approach.

2 INTELLIGENT DISPATCHING

2.1 Dispatching Problem

There are two tasks for dispatching: job assignment or sequencing and machine allocation. If there is

more than one job waiting for processing before a machine when the machine becomes free, we need to

decide which job should be processed first. This is the first task. If there is more than one machine that

can process a job when the job starts its operation, we need to select one machine to process the job. This

is the second task. In this paper, we consider job assignment only. The job assignment problem is actually

to determine the priority of jobs waiting before the machine. The determination of a job’s priority is relat-

ed to the objectives of the scheduling. A job may have different priorities to meet different objectives.

Once the objective is fixed, the priority completely depends on the information which influences the pri-

ority. We group the information related to the priority into two types: global factors and local factors. The

priority depends on these two types of factors and can be described as follows,

(,)local globalprio f G G .

The global factors concern the state of the manufacturing line, including all online jobs’ condition and

all machines’ condition. A machine’s condition can be described by its state and the time that the state

lasts. In addition to its state and the time that the state lasts, a job’s condition includes its position and

progress. The position describes which machine or transport line the job can be found on. The progress

indicates which step the job reaches. The local factor is the information of the job whose priority we

compute. The information contains the static information, such as the due date, processing time, step

number, and so on, and the dynamic information, such as the waiting time, current step, and so on. Hav-

ing a closer look at the variety of dispatching rules, we see that local dispatching rules just consider a few

local factors, and global dispatching rules consider a few global factors; dynamical selection of a dis-

patching rule considers more global factors, but only a few local factors.

2623

Zhang and Rose

 The global and local factors are too numerous to be considered directly for the determination of a

job’s priority. This information needs to be aggregated or reorganized before use. The reorganization has

to correspond to the scheduling objective too.

 In the following, we list the global and local factors after reorganization when the objective is to min-

imize cycle time. The global factors are

 Number of unavailable machines (breakdown and maintenance) in each machine group,

 Queue length before each machine group,

 Sum of jobs’ processing time in the queue before each machine group,

 Mean waiting time of jobs in the queue before each machine group,

 Work in process (WIP) level of each product,

 Sum of jobs’ progress ratio grouped by product type (finished step total stepratio n n).

 The amount of global factors can be calculated by 4 2M Pn n , where nm is the machine number and

np is the product number. The local factors include

 Processing time,

 Setup time,

 Waiting time,

 Remaining step number,

 Total number of steps,

 Sum of processing time at remaining steps,

 Raw processing time,

 The local factors determine the priority directly while the global factors influence the priority indi-

rectly. The global factors set the weights of local factors first. The weights of local factors denote the im-

portance of each local factor for decision-making. For example, with the same objective the processing

time dominates the priority in one state, but the remaining processing time plays the most important role

in another state. Sometimes it is possible that in one state the shorter the processing time leads to a higher

priority, but in another state the longer processing time, results in a higher priority. These phenomena

depend on the global factors. The relations between local and global factors are presented below.

1 2 3() { , , ,...}globalA f G a a a 

1 2 3

1 2 3() (, , ,...)local local local localprio f AG f a g a g a g  

where A is the weight vector. Different values of the global factors results in different A vectors. The dis-

patching problem is reformulated to determine the functions f  and f  .

2.2 Intelligent Dispatching

There is no mathematical approach available yet to obtain the functions f  and f  . We use a clustering

method to replace function f  . According to the values of the global factors, the state of the manufactur-

ing line is divided into several patterns. Consequently, the function f  is divided into the appropriate

subfunctions, too. Each pattern has one relevant subfunction to calculate the priorities. We use neural

networks as subfunctions. For each pattern, globalG varies slightly and A is nearly constant. So in the same

pattern, the global factors can be ignored. For pattern i,

() () ()i local i local i localprio f AG f G neuralnetwork G   .

2624

Zhang and Rose

 We develop one dispatcher for each machine. According to the global factors, the dispatchers divide

the state of the manufacturing system into several patterns, and we build a neural network for each pattern

to map the relationship between the local factors and the priorities of jobs. When making a decision, the

dispatchers collect the global factors and decide which pattern the state belongs to in the pattern pool. The

pattern and the network have a one-to-one relationship. Thus the appropriate network is selected from the

network pool and used to compute the jobs’ priorities according to values of their local factors. The job

with the highest priority will be assigned. The process flow is shown in Figure 1.

Pattern

Recognizer

Neural

NetworkGlobal Factors

Local Factors
Priority

Network

Pool

Pattern

Pool

Network

Selection

Data

Preprocess

global

local

Figure 1: A dispatcher for one machine

 The pattern pool is made up by each pattern’s centroid which is determined by clustering plenty of

data on global factors. Mean values of data which are classified into the same class compose the class’

(pattern’s) centroid. The pattern recognizer calculates the distances from current values of global factors

to each centroid. The state will fit the pattern whose centroid is closest to the current values of the global

factors. As mentioned above, for each pattern we create one network. All trained networks make up the

network pool. The networks are trained by certain amount of data on local factors and corresponding data

on the priorities. The dispatching problem is therefore converted into building the appropriate pattern pool

and network pool.

3 DATA ACQUISITION

The pattern pool and the network pool are built by two data-driven models, a clustering model and a neu-

ral network model. How to obtain the required data is the first question in our work.

3.1 Required Data

Three types of data need to be collected: global factors, local factors and the priorities corresponding to

each record of local factors (i.e., each job’s information). Because there must be more than one job and

only one priority is determined for each job when we make decision, one record of the global factor data

must correspond to more than one record of the local factor data. One record of the local data has only

one priority value. The global factor data is used for clustering. The local factor data and the priority data

are used for supervised training of neural networks. All of data is grouped by machines. Clustering and

training of neural networks, will be carried out in each group respectively.

3.2 Collect Data from the Simulation Model

The global factor data and local factor data are easy to obtain from the manufacturing system. But the pri-

ority data is impossible to determine from a real manufacturing system. For research purpose, we use a

simulation approach to get all required data.

 The simulation approach is shown in Figure 2. A main simulation is used to simulate the manufactur-

ing line. At each decision making point, the main simulation is interrupted and current values of global

factors (one record) and local factors (many records) are saved. Then a subsimulation with the same mod-

el and the same state is built for each job in the queue. One subsimulation selects one job from the queue

2625

Zhang and Rose

and starts the simulation. The sub simulations end when the effects of the decision on the manufacturing

line disappear. The results of each simulation will be used to calculate the priority of each related job.

During the sub simulation, the dispatching decision is made by a base dispatching rule, and each stochas-

tic event such as job release, machine breakdown occurs in all subsimulations at the same time. After all

subsimulations end, the main simulation continues to the next timepoint of interest. The simulation con-

tinues in the same manner until the main simulation reaches the maximal simulation time.

Figure 2: Data acquisition from the simulation

3.3 Two Important Issues of the Data Acquisition

There are two important issues of the data acquisition. (1) How long should the subsimulation run? (2)

How should we get the priority from the subsimulation result. Theoretically, the subsimulation ends when

the effect of current decision disappears. But it is hard to determine this time. Thus, the period of sub

simulation is decided by the number of completed jobs n after the decision timepoint.

/ 2n m WIP 

where m is the number of completed jobs from the decision-making timepoint to the time that jobs in the

queue at the decision timepoint are finished. WIP is the work in process level at the decision point. The

priority is related to the scheduling objective. Here, we give two formulas under two common objectives.

While the objective is to minimize the cycle time,

1/ (/)
p

p

p j J

p P j J

prio c n
 

  

where p denotes a product; P is the set of products. p is the weight of product p. j is a job. Jp is the set of

completed jobs whose product type is p. cj is job j’s cycle time.
pJn is the number of jobs in the set Jp.

While the objective is to minimize total weighted tardiness

1/ (max(,0) /)
p

p

p j j J

p P j J

prio C d n
 

  

where Cj is job j’s completion time and dj is job j’s due date.

4 CLUSTERING

In Section 3, all required data is collected by the simulation. This section will discuss how to cluster the

global factor data so as to classify the state of manufacturing line into several patterns. Because the

amount of global factors is in direct proportion to the number of machines and products, it may be a con-

2626

Zhang and Rose

siderable effort. Thus, spectral clustering (Luxburg 2007) is used to reduce the dimension first, and then

the K-means approach is used for clustering. Spectral clustering techniques make use of the spectrum (ei-

genvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in

fewer dimensions. The Euclidean distance is selected to be the similarity function. The similarity graph is

built by k-nearest neighbor method. The normalized graph Laplacian is used. The algorithm of the spec-

tral clustering is given here.

4.1 Building the Similarity Graph

We treat each record of global factor data as a data point. The collected data is represented by a matrix

globalX . Rows of globalX correspond to points x, columns correspond to global factors g. N is the number

of points needed to be clustered; m is the number of global factors. The k-nearest neighbor method is used

to build the similarity graph W. ix is connected to
jx if

jx is one of k-nearest neighbors. In this case,
,i jw

is the Euclidean distance between points jx and ix ,

2

, , ,

1

()
M

i j i k j k

k

w g g


  .

If jx is not in the k-nearest neighbors of ix , , 0i jw  .

1,1 1,2 1,1

2,1 2,2 2,2

,1 ,2 ,

...

...

...

M

M

global

N N N MN

g g gx

g g gx
X

g g gx

 
 
 
 
 
 

1 2

1,2 1,1

2,1 2,2

,1 ,2

...

0 ...

0 ...

... 0

N

N

N

N NN

x x x

w wx

w wx
W

w wx

 
 
 
 
 
 

4.2 Reducing Dimension According to Jianbo and Jitendra (2000)

The dimensionality reduction is achieved by calculating eigenvectors of a Laplacian matrix L,

L D W  , where D is a diagonal matrix and , ,

1

N

i i j i

j

d w


 . Then we compute the first k generalized ei-

genvectors u1,…,uk corresponding to the first k smallest eigenvalues of the generalized eigen-problem

Lu Du . Let V be the matrix containing k eigenvectors as column. The matrix V is the result of the

dimensionality reduction.

1 2

1,1 1,2 1,1

2,1 2,2 2,2

,1 ,2 ,

...

...

...

...

k

k

k

N N N kN

u u u

v v vx

v v vx
V

v v vx

 
 
 
 
 
 

4.3 K-means Clustering and Centroid Calculation

Now the M-dimension global factor data globalX has been reduced to k-dimension data V. Using K-means

method to cluster V, in which each row denotes one point, into k classes, 1 2{ , ,..., }kV V V V . The data

globalX is divided into k classes, 1 2{ , ,..., }global kX X X X , where { |j iX x ,* }i jv V ; ,*i denotes the i-

th row of V. Then we calculate centroids C of classes according to the global factor data in the corre-

2627

Zhang and Rose

sponding class,
1 2,{ , ..., }kC C C C . The centroids make up the pattern pool and will be used in the pat-

tern recognition. A point belongs to class i if the distance between the points and the centroids Ci is the

shortest.

5 NEURAL NETWORKS

A neural network (Haykin 2009) is an interconnected group of artificial neurons that uses a mathematical

or computational model for information processing based on a connectionist approach to computation. In

more practical terms neural networks are non-linear statistical data modeling or decision making tools.

Feed forward networks can be used for any kind of input to output mapping. A feed forward network with

one hidden layer and enough neurons in the hidden layers can fit any finite input-output mapping prob-

lem. Here, we use it to map the relationship between the local factor and the priority.

5.1 Structure of Networks

Three-layer feed forward networks are introduced into the model. The inputs X are the local factors and

the output Y is the priority. The number of nodes J in the hidden layer can be calculated by

,0 10J K M b b     , where K is the output node number; M is the input node number. We use

the tangent sigmoid transfer function () 1/ (1)x

hf x e  in the hidden layer and linear func-

tion ()of x x in the output layer. The sum of square errors (SSE) is defined to evaluate the training pro-

cess

1

()
N

n

n

SSE w e


 , where
2

, ,

1

1
()

2

K

n n k n k

k

e y o


  ,

, , , 0,

1

()
J

n k o j k n j k

j

o f w h w


  ,
, , , 0,

1

()
M

n j h m j n m j

m

h f w x w


  .

where n is the index of training data, N is the data number. en denotes the error of the n-th training data.

The symbols k , j, m denote the node in the output layer, in the hidden layer, and in the input layer re-

spectively; ,n ky is the target output of the node k in the output layer. ,n ko is the actual output. ,n jh is the

node j’s output. ,n mx is the data of the node m in the input layer. 0,kw and 0, jw are biases of the node j in

the hidden layer and the node k in the output layer. ,j kw is the weight between the node j in the hidden

layer and the node k in the output layer.

5.2 Training

We adopt the Levenberg-Marquardt algorithm to train the networks in batches. The Levenberg-Marquardt

algorithm combines the steepest descent method and the Gauss-Newton algorithm. It inherits the speed

advantage of the Gauss-Newton algorithm and the stability of the steepest descent method. A mathemati-

cal description of the LM neural network training algorithm has been presented by Hagan and Menhaj

(1994). The formula of updating weights and biases is
1

1 ()T T

s s s s s sw w Jac Jac I Jac E 

   

where I is an identity matrix, μ is the combination coefficient. The combination coefficient μ is adjusted

automatically according to the error during the training. If the error increases after weights and biases up-

dates, μ is increased by a certain factor; if the error decreases, μ is reduced by the same factor. Jacobian

matrix Jac is shown as following. It can be computed by using the chain rule of calculus and the first de-

rivatives of the transfer functions.

2628

Zhang and Rose

 In addition, the early stopping technique is used to avoid over-fitting. The data is divided into three

subsets. The first subset is the training set, which is used for computing the gradient and updating the

network weights and biases. The second subset is the validation set. The error on the validation set is

monitored during the training process. The validation error will normally decrease during the initial phase

of training. However, when the network begins to overfit the data, the error on the validation set will typi-

cally begin to rise. When the times of validation error increasing reach a specified number of iterations,

the training is stopped, and the weights and biases at the minimum of the validation error are returned.

1 0, 1 , 1 0, 1 ,

2 0, 2 , 2 0, 2 ,

0, , 0, ,

j i j k j k

j i j k j k

N j N i j N k N j k

Hidden Layer Output Layer

e w e w e w e w

e w e w e w e w
Jac

e w e w e w e w

        
 
       
 
 
 
         

 ,

1

2

N

e

e
E

e

 
 
 
 
 
 

.

 In Section 4, the global factor data is divided into k classes. Consequently, the local factor data and

the priority data are grouped into k groups due to one record of local factor data relates to one record of

global factor data. Based on each group of local factor data and the priority data, one neural network is

trained. These networks make up the network pool mentioned in Section 2. Combining all above compo-

nents solves the dispatching problem.

6 APPLICATION

In this section, the intelligent dispatching approach is used in a manufacturing system. The system con-

tains 6 machine groups, 24 machines and produces 4 products with 4 process flows and 4 different out-

puts. There are no batch processing machines. Interval times of releasing jobs follow the normal distribu-

tion. Both sequence dependent and independent setups are needed. The interval between two breakdowns

is subject to the exponential distribution and the repairing time follows an exponential distribution too.

The objective of scheduling is to minimize the cycle time.

6.1 Data Acquisition, Clustering and Neural Network Training

32 global factors and 5 local factors are collected at each decision point. The priority of each job is calcu-

lated from the subsimulation results. The main simulation runs 100 days; there are 15800 decision-

making points; subsimulations run 58980 times; the base dispatching rule is SPT during the subsimula-

tions. We obtain a total of 15800 records of global factor data and 58980 records of local factor data and

priority data. The data is grouped by machine groups. For each machine group one dispatcher is built. We

use the try-method to obtain the suitable class number of the global factor data for each machine group,

shown in Table 1.

 The neural networks have 5 inputs and 1 output. The number of nodes in the hidden layer is 6. After

testing, the average accuracy of the 117 networks is 75.32%.

Table 1: class number for each machine group

Machine MA MB MC MD ME MF

Class

Num
12 14 25 28 18 20

2629

Zhang and Rose

6.2 Results and Comparison

We run the simulation one more time using the built dispatchers to obtain the performance measure cycle

time (statistics values and trend chart). Then we compare the intelligent dispatching approach with the

dispatching rules including first in first out (FIFO), shortest processing time (SPT) and SPT+. SPT+ is an

improved version of SPT. In the SPT+, we set a maximal waiting time. If a job’s waiting time is longer

than the maximal waiting time, the job will be dispatched first so as to avoid that the job with the long

processing time will have to wait too long. In addition, after data acquisition, we receive an integrated

schedule in which the job with highest priority is always selected at each decision making point. We put it

into the comparison too and call the approach “simulation”. The proposed approach is called “intelligent”

approach here. The results are show in Figure 3 and Table 2.

 Pa Pb

 Pc Pd

Finger 3: Tendency chart of cycle time grouped by product types (Pa, Pb, Pc, and Pd)

Table 2: Average cycle time of jobs grouped by product type

 Rule Product Pa Pb Pc Pd Summary

FIFO 8.78 8.28 9.51 8.80 8.85

SPT 24.34 6.09 12.94 5.02 13.80

2630

Zhang and Rose

SPT+ 10.25 9.83 9.07 7.76 9.49

Simulation 6.55 5.68 7.87 5.25 6.50

Intelligent 8.23 7.07 7.98 7.03 7.38

 SPT is an optimal rule for minimizing the cycle time in the single machine problem. In this case, we

can see that SPT performs worse than any other approaches for products Pa and Pc. The reason is that Pa

and Pc have a longer raw processing time than Pb and Pd. When we use the SPT+ rule, the cycle times of

products Pa and Pc go down, but go up for products Pb and Pd. The simulation approach is the best for

products Pa, Pb and Pc and the second best for the product Pd. The intelligent approach performs more

stably than FIFO, SPT and SPT+ among the products. From the summary column in Table 2, we can see

that the intelligent approach is the second best one. The single machine optimal rule SPT is the worst one.

7 CONCLUSION

Using artificial intelligence techniques, we create a specific dispatcher for each machine. The dispatchers

consider a very large amount of information – including global factors and local factors – in the deci-

sion-making process. Thus the dispatchers have a wide scope. Because the dispatchers are built from a da-

ta-driven model, for a given manufacturing line we just need to create its simulation model and to collect

required data. A complicated theoretical analysis can be avoided. The spectral clustering is used for di-

mensionality reduction. It improves the efficiency of the clustering. We use neural networks to map the

relationship between the local factors and the priorities of jobs. The neural network can easily be convert-

ed to online learning which is on our agenda for further work. Finally, the proposed approach is intro-

duced into a manufacturing line and performs better and more steadily than dispatching rules FIFO, SPT

and SPT+. Because the intelligent approach actually learns its behavior from the simulation model and

there must be error in the neural networks, it is impossible that the intelligent approach performs as well

as the simulation approach. But the intelligent approach is more efficient than the simulation approach

due to the time which has to be spent on the subsimulations.

REFERENCES

Chen, B. and T. I. Matis. 2013. "A Flexible Dispatching Rule for Minimizing Tardiness in Job Shop

Scheduling." International Journal of Production Economics. 141: 360-365.

Hagan, M. T. and M. B. Menhaj. 1994. "Training Feedforward Networks with the Marquardt Algorithm."

IEEE Transactions on Neural Networks. 5: 989-993.

Haykin, S. S. 2009. Neural Networks and Learning Machines. 3rd ed. New York: Pearson Prentice Hall.

Holthaus, O. and C. Rajendran. 1997. "Efficient Dispatching Rules for Scheduling in a Job Shop."

International Journal of Production Economics. 48: 87-105.

Jianbo, S. and M. Jitendra. 2000. "Normalized Cuts and Image Segmentation." IEEE Transactions on

Pattern Analysis and Machine Intelligence. 22: 888-905.

Lian, Y., H. M. Shih and T. Sekiguchi. 1998. "Dynamic Selection of Dispatching Rules by Fuzzy

Inference".In proceedings of the IEEE International Conference on Fuzzy Systems, 979-984,

Piscataway, New Jersey: IEEE, Inc.

Luxburg, U. 2007. "A Tutorial on Spectral Clustering." Statistics and Computing. 17: 395-416.

Scholz-Reiter, B., J. Heger and T. Hildebrandt. 2010. "Gaussian Processes for Dispatching Rule Selection

in Production Scheduling: Comparison of Learning Techniques".In proceedings of the IEEE

International Conference on Data Mining Workshops (ICDMW), 631-638, Piscataway, NJ: IEEE Inc.

2631

Zhang and Rose

AUTHOR BIOGRAPHIES

TAO ZHANG is a Ph.D. student working on production planning and scheduling at the Department of

Computer Science of the Universität der Bundeswehr München, Germany. From 2007 to 2009 he re-

ceived his Master in metallurgical engineering with the subject of production planning and scheduling in

iron and steel industry from Chongqing University, China. He is involved in modeling and simulation of

complex system and intelligent optimization algorithms. His email address is tao.zhang@unibw.de.

OLIVER ROSE holds the Chair for Modeling and Simulation at the Department of Computer Science of

the Universität der Bundeswehr, Germany. He received a M.S. degree in applied mathematics and a Ph.D.

degree in computer science from Würzburg University, Germany. His research focuses on the operational

modeling, analysis and material flow control of complex manufacturing facilities, in particular, semicon-

ductor factories. He is a member of IEEE, INFORMS Simulation Society, ASIM, and GI, and has been

the General Chair of WSC 2012. His email address is oliver.rose@unibw.de.

2632

