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ABSTRACT

We consider a newsvendor problem with stationary and temporally dependent demand in the absence of
complete information about the demand process. The objective is to compute a probabilistic guarantee
such that the expected cost of an inventory-target estimate is arbitrarily close to the expected cost of the
optimal critical-fractile solution. We do this by sampling dependent uniform random variates matching the
underlying dependence structure of the demand process – rather than sampling the actual demand which
requires the specification of a marginal distribution function – and by approximating a lower bound on the
probability of the so-called near optimality. Our analysis sheds light on the role of temporal dependence
in the resulting probabilistic guarantee, which has been only investigated for independent and identically
distributed demand in the inventory management literature.

1 INTRODUCTION

An important problem in inventory management is to set inventory targets in the absence of complete
information about the demand generating process. In this paper, we address this problem in a newsvendor
setting for stationary and temporally dependent demand. It is well known that the critical fractile solution
is optimal when the distribution of the demand, conditional on past demand realizations, is known. In
practice, however, this distribution is unknown and must be estimated using only a finite (and sometimes,
very limited) amount of historical demand data. Consequently, the expected cost associated with an estimate
of the critical fractile solution can be far from the minimum expected cost.

The dependence of demand on its past realizations is not uncommon in practice. Erkip, Hausman,
and Nahmias (1990) find that the autocorrelation in monthly demand can reach up to 0.70 in a consumer
products company. Lee, Padmanabhan, and Whang (1997) report dependence between demand realizations
over time – especially positive autocorrelation – in high-tech and grocery industries. Lee, So, and Tang
(2000) show that the sales data of 91% of the items in a supermarket have autocorrelations between 0.26
and 0.89. Similarly, Hosoda et al. (2008) analyze the sales data of soft drink products at a grocery retailer
and find that the autocorrelation in weekly demand varies between 0.77 and 0.83.

A widely used method to model autocorrelation is to construct the temporally dependent process via
classical time series. For example, a linear autoregressive (AR) process with a normally distributed random
shock is often used for demand modeling in inventory management and supply chain analysis; e.g., Lee,
So, and Tang (2000), Luong (2007), Chen and Lee (2012). In this case, an AR process can be expressed as
a linear combination of independent and normally distributed random shocks, implying that the marginal
demand distribution is normal. However, a normal distribution often falls short of an adequate representation
of the demand distribution, leading to inaccurate prediction models and poor operational performance.

For autocorrelated demand, as in this paper, a considerable amount of effort has been devoted to
modeling time series with exponential, gamma, geometric, or general discrete marginal distributions; e.g.,

2643978-1-4799-2076-1/13/$31.00 ©2013 IEEE



Akcay, Biller, and Tayur

Block, Langberg, and Stoffer (1990), Tiku, Wong, Vaughan, and Bian (2002), Akkaya and Tiku (2005),
Gourieroux and Jasiak (2006), and Jose, Lishamol, and Sreekumar (2008). Nevertheless, these models
often allow only limited control of the dependence structure for a given marginal demand distribution.
In addition, there is no one-size-fit-all solution for modeling and estimation of time-series processes. We
overcome these challenges by (i) modeling the temporal dependence in a transformed demand process
which has a standard uniform marginal distribution and matches the underlying dependence structure of
the actual demand process, and (ii) capturing the demand’s distributional shape with the empirical demand
distribution function. To be specific, we model the temporal dependence in {F(Xt); t = 1,2, . . .} rather
than modeling the temporal dependence in the actual demand process {Xt ; t = 1,2, . . .}, where F is the
marginal cumulative distribution function (cdf) of the demand process. We do this by using a copula which
allows a decision maker to avoid any restrictive assumption on the functional form of F . To estimate the
critical fractile solution, the decision maker first obtains the empirical demand distribution function from
the temporally dependent demand data and then uses it in lieu of the true marginal demand distribution
while estimating the copula parameters that characterize the temporal dependence. Finally, an estimate of
the critical fractile solution is obtained as a function of the empirical demand distribution and the estimated
values of the copula parameters.

A natural question to ask is as follows. How good is an inventory target estimated in this way? We
define the goodness of an inventory-target estimate as in Levi, Roundy, and Shmoys (2007) by using the
notion of ε-optimality; i.e., an inventory-target estimate is ε-optimal if its expected cost is at most 1+ ε

of the minimum but unknown expected cost. Clearly, the ε-optimality of an inventory-target estimator is
a random event because the inventory-target estimator is a random variable as a result of being a function
of the historical data randomly generated by the true demand process. In this paper, we consider all the
possible realizations of a demand history, and hence, all the realizations of an inventory-target estimator in
a frequentist framework. Accordingly, we obtain a lower bound on the probability of ε-optimality when
the inventory target is a function of the empirical demand distribution and copula-parameter estimators.
This lower bound, which we refer to as a probabilistic guarantee for near optimality, serves as a level of
confidence for the decision maker to ensure the ε-optimality of an inventory target obtained from a limited
amount of demand data.

We propose a sampling-based method to compute this probabilistic guarantee independent of any
specific marginal demand distribution and for an arbitrary choice of copula. In particular, our method
builds on the idea of sampling dependent uniform random variates matching the underlying dependence
structure of the demand process rather than sampling the actual demand which requires the specification of
the marginal distribution. We believe that our copula-based demand model and the sampling-based method
of computing a probabilistic guarantee for near optimality have application areas not only in inventory
management but essentially in any decision problem in which an overage and underage trade-off exists
and the random realizations observed in consecutive time periods depend on each other.

The paper is organized as follows. Section 2 presents our copula-based demand model and the
solution of the newsvendor problem with complete information about the temporally dependent demand
process. Section 3 provides a two-step estimation method consistent with the marginal-copula representation
of demand. Section 4 characterizes the ε-optimality for temporally dependent demand and presents our
sampling-based method to compute a probabilistic guarantee for ε-optimality. We conclude with a summary
of the paper in Section 5.

2 MODELING FRAMEWORK

Section 2.1 introduces our copula-based demand model. Section 2.2 presents an overview of the newsvendor
model and characterizes the optimal critical-fractile solution when the marginal demand distribution and
the temporal dependence structure are known.
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2.1 Demand Process

We let the demand {Xt ; t = 1,2, . . .} be a stationary first-order Markov process; i.e.,

P(Xt+1 = xt+1|Xt = xt ,Xt−1 = xt−1, . . . ,X1 = x1) = P(Xt+1 = xt+1|Xt = xt) .

In contrast to using a conditional probability distribution directly, we consider an alternative approach based
on copulas to model the first-order temporal dependence. We do this by constructing the joint distribution
of transformed demand random variables Ut = F(Xt) and Ut+1 = F(Xt+1) by a bivariate copula C(·, ·;θ)
with θ ∈ Θ, where the parameter space Θ is a compact subset of Rd and d is the number of parameters
characterizing the underlying dependence structure.
Definition 1 (Nelsen 2006) A bivariate copula is a function C : [0,1]× [0,1]→ [0,1]; i.e., a mapping of
the unit square into the unit interval with the following properties:

(i) For every (ut ,ut+1) in [0,1]× [0,1], C(ut ,0;θ) = C(0,ut+1;θ) = 0, and C(ut ,1;θ) = ut and
C(1,ut+1;θ) = ut+1;

(ii) For every u′t ,u
′′
t ,u
′
t+1,u

′′
t+1 in [0,1] such that u′t ≤ u′′t and u′t+1≤ u′′t+1, C(u′′t ,u

′′
t+1;θ)−C(u′′t ,u

′
t+1;θ)−

C(u′t ,u
′′
t+1;θ)+C(u′t ,u

′
t+1;θ)≥ 0.

The first condition provides the lower bound on the distribution function and ensures that a bivariate
copula is a two-dimensional distribution function with standard uniform marginal distributions. The second
condition guarantees the probability of observing a point in [0,1]× [0,1] to be nonnegative. The use of
copulas for representing the joint distribution of a random vector has been studied extensively for the past
two decades. We refer the reader to Joe (1997) and Nelsen (2006) for the widely known properties of the
copulas. The use of copulas for modeling the temporal dependence of time series data has recently gained
attention; see Chen and Fan (2006), Beare (2010), and Patton (2012) as the example studies.

Sklar’s theorem (Sklar 1959) and the stationarity of the demand process allow us to construct the
distribution of demand random variables Xt and Xt+1 with a marginal distribution function F and a copula
C(·, ·;θ):
Theorem 1 (Sklar’s Theorem) Let H be a bivariate distribution function with the continuous marginal
cdf F . Then, there exists a bivariate unique copula C such that H(xt ,xt+1) =C(F(xt),F(xt+1);θ) for all
(xt ,xt+1)∈R2. Conversely, if C is a bivariate copula and the marginal cdf F is continuous, then the function
C(F(xt),F(xt+1);θ) is a bivariate distribution function with marginal cdf F .

The advantage of using copula for demand modeling is that we have the freedom to specify the
marginal demand distribution and the dependence structure separately. That is, we can choose any arbitrary
continuous demand distribution, link the consecutive demand random variables with a copula, and obtain
a legitimate bivariate distribution to characterize the first-order time series. We only impose the following
technical assumption on the dependence structure:
Assumption 1 The copula C(ut ,ut+1;θ) is absolutely continuous with respect to Lebesgue measure on
[0,1]× [0,1], and is neither the Fréchet-Hoeffding upper bound (i.e., C(ut ,ut+1;θ) 6= min(ut ,ut+1)) nor the
Fréchet-Hoeffding lower bound (i.e., C(ut ,ut+1;θ) 6= max(ut +ut+1−1,0)).

Assumption 1 is standard in the context of dependence modeling to rule out the deterministic cases
of Xt = Xt−1 for the upper bound and Xt = F−1(1−F(Xt−1)) for the lower bound. We now illustrate our
method of demand modeling in Example 1 by using the normal copula, which encodes the dependence
precisely the same way a bivariate normal distribution does; we refer the reader to Joe (1997) for other
copulas that enable us to capture any form of dependence structure.
Example 1 (Normal Copula). Let Φ be the standard normal cdf and Φ2(·, ·;θ) be the standard normal
bivariate cdf with correlation θ ∈ (−1,1). The normal copula is defined as

C(ut ,ut+1;θ) = Φ2(Φ
−1(ut),Φ

−1(ut+1);θ).
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As a result of representing a standard normal random variable Zt as Φ−1(Ut) from a standard uniform
random variable Ut = F(Xt), it can be easily seen that normal copula constructs a valid joint distribution
for demand random variables Xt and Xt+1:

Φ2
(
Φ
−1(ut),Φ

−1(ut+1);θ
)

= P
(
Zt ≤Φ

−1(ut),Zt+1 ≤Φ
−1(ut+1)

)
= P

(
Φ
−1(Ut)≤Φ

−1(ut),Φ
−1(Ut+1)≤Φ

−1(ut+1)
)

= P(Ut ≤ ut ,Ut+1 ≤ ut+1)

= P(F(Xt)≤ F(xt),F(Xt+1)≤ F(xt+1))

= P(Xt ≤ xt ,Xt+1 ≤ xt+1)

The last equation follows because an inequality still holds after applying a monotonically increasing
function to both sides of the inequality.

It is worth noting that the dependence structure of a normal copula implies that the demand process
{Xt ; t = 1,2, . . .} accepts an Autoregressive-To-Anything (ARTA) process representation of Cario and Nelson
(1996). In Example 1, the ARTA process first takes an AR(1) model Zt = θZt−1 +Yt with standard normal
Zt and normally distributed independent error term Yt with mean zero and variance 1−θ 2, and then obtains
the demand random variable Xt via the transformation Xt = F−1(Φ(Zt)). Clearly, the use of normal copula
together with normal marginal distribution further reduces the demand process to a classical AR model.

There is a one-to-one mapping between the normal copula parameter θ – which is the autocorrelation
coefficient in the AR(1) model described above – and the autocorrelation of the demand process {Xt ; t =
1,2, . . .}. We refer the reader to Cario and Nelson (1996) for details of the so-called correlation matching
problem. In this paper, we focus on estimating the copula parameter directly.

2.2 Newsvendor Model

The decision maker aims to set the correct number of units in stock to meet the unknown demand in period
n+ 1. The period starts with zero inventory on hand. Ordering too few incurs a shortage cost of b per
unit short, while ordering too many incurs a holding cost of h per unit over. The goal is to minimize the
sum of expected shortage and holding costs conditional on the most recent demand realization since the
demand is known to be a first-order Markov process.

The resulting objective function is convex and minimized by the critical fractile solution (Porteus 2002).
The critical fractile solution requires the knowledge of the distribution of demand Xn+1 conditional on
Xn = xn, which can be derived directly from the copula as follows:

P(Xn+1 ≤ xn+1|Xn = xn) = P(Un+1 ≤ un+1|Un = un)

= lim
δ→0

P(Un+1 ≤ un+1,Un ∈ (un−δ ,un +δ ))

P(Un ∈ (un−δ ,un +δ ))

= lim
δ→0

C(un +δ ,un+1;θ)−C(un−δ ,un+1;θ)

2δ

=
∂C(un,F(xn+1);θ)

∂un

∣∣∣∣
un=F(xn).

We denote this conditional distribution by C2|1 (F(·)|F(xn);θ). The critical fractile solution q∗ is then the
value of q that solves the first-order condition

C2|1 (F(q)|F(xn);θ)− b
h+b

= 0, (1)

and it can be written as q∗ = F−1(C−1
2|1 (b/(h+b)|F(xn);θ)). We next discuss a two-step method to estimate

the unknown marginal distribution function F and the d-dimensional copula-parameter vector θ .
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3 MODEL ESTIMATION

The marginal-copula representation of the demand process allows the marginal distribution function and
copula parameters to be estimated separately, potentially with different methods. In this study, we focus on
the case where the decision maker estimates the marginal distribution function with the empirical demand
distribution. Subsequently, the copula parameters are estimated via the maximum likelihood method by
treating the empirical demand distribution as the true marginal distribution. This method is known as
semiparametric estimation as well as canonical maximum likelihood estimation (Patton 2012).

The joint density function of the demand random variables Xt and Xt+1 is given by

∂ 2 C(F(xt),F(xt+1);θ)

∂xt∂xt+1
= f (xt) f (xt+1)c(F(xt),F(xt+1);θ) ,

where f (·) is the marginal probability density function (pdf) and c(u,v;θ) := ∂ 2C(u,v;θ)/(∂u∂v) is the
copula density function. Therefore, the density function of Xt+1 conditional on Xt = xt , which we denote
with f2|1(xt+1|xt), reduces to f (xt+1)c(F(xt),F(xt+1);θ). The likelihood function of the historical demand
data {xt ; t = 1,2, . . . ,n} then takes the form

f (x1)
n−1

∏
t=1

f2|1(xt+1|xt) =
n

∏
t=1

f (xt)
n−1

∏
t=1

c
(

F(xt),F(xt+1);θ

)
. (2)

It is worth noting that the copula density function of independent random variables takes the value of
one and the likelihood function in (2) reduces to the likelihood function ∏

n
t=1 f (xt) of independent and

identically distributed data.
In the first step of semiparametric estimation, the decision maker estimates the marginal distribution

function F(x) by using the empirical demand distribution function Fn(x) := (1/n)∑
n
t=11(Xt ≤ x), where

1(·) is the indicator function. In the second step, the copula-parameter vector θ is estimated by maximizing
the log-likelihood function after replacing the unknown F by Fn and ignoring the terms that do not depend
on θ :

θ̂ = argmax
θ∈Θ

n−1

∑
t=1

log c
(

Fn(xt),Fn(xt+1);θ

)
.

Finally, the decision maker estimates the critical fractile solution q∗ by replacing the marginal distribution
function F by Fn and the copula parameters θ by θ̂ in the functional form of q∗. The inventory-target
estimator, which is a function of the demand random variables {Xt ; t = 1,2, . . . ,n}, then takes the form

Q̂ = F−1
n

(
C−1

2|1

(
b

h+b

∣∣Fn(Xn); θ̂

))
, (3)

where

F−1
n (τ) = min

j=1,2,...,n

{
Xj :

1
n

n

∑
t=1

1(Xt ≤ Xj)≥ τ

}
.

The consistency of the semiparametric copula-parameter estimator θ̂ (Chen and Fan 2006) and the
convergence of the empirical demand distribution to the true marginal distribution imply that, when there
is a large number of demand observations, the inventory-target estimator Q̂ approaches the critical fractile
solution with full knowledge of copula parameters and marginal distribution function. In practice, a
decision maker is rarely fortunate enough to observe a large number of demand observations. In contrast,
the demand history can be very short, casting doubt on the performance of the inventory-target estimator
Q̂ in minimizing the sum of expected inventory holding and shortage costs. In this paper, we focus on
this expected cost associated with Q̂ for finite number of demand observations, which is a more relevant
measure for the decision maker than the asymptotic properties of the estimators Fn and θ̂ .
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4 ε-OPTIMALITY IN INVENTORY-TARGET ESTIMATION

We let q̂ denote the realization of the inventory-target estimator Q̂ from the historical demand data
{xt ; t = 1,2, . . . ,n} of length n. The expected cost associated with q̂ is given by

L(q̂|xn) := h
∫ q̂

−∞

(q̂− xn+1) f2|1(xn+1|xn)dxn+1 +b
∫

∞

q̂
(xn+1− q̂) f2|1(xn+1|xn)dxn+1.

The decision maker does not necessarily achieve the minimum expected cost L(q∗|xn) by using the inventory-
target estimate q̂ especially when n is small. In this study, we are interested in finding a lower bound to the
probability of the difference L(q̂|xn)−L(q∗|xn) not exceeding a certain threshold for all possible realizations
of the demand history. To this end, we let 0< ε ≤ 1 and define the ε-optimality in inventory-target estimation
as follows:
Definition 2 The inventory-target estimate q̂ is ε-optimal if its expected cost is at most 1+ε of the minimum
expected cost; i.e., L(q̂|xn)≤ (1+ ε)L(q∗|xn).

Considering all possible realizations of the demand observation in period n, we let Q∗ denote the critical
fractile solution which has the functional form F−1(C−1

2|1 (b/(h+b)|F(Xn);θ)). We aim to provide a lower
bound to the probability of the event [

L(Q̂|Xn)≤ (1+ ε)L(Q∗|Xn)
]

to measure the quality of the inventory-target estimator Q̂ in a frequentist framework. If this probability
is sufficiently large, then Q̂ can be used confidently even though it is estimated from a finite number of
demand observations. This is because the expected cost of its realization (before the realization of demand
in period n+1) cannot be more than 1+ ε of the minimum expected cost with high probability for any
historical demand data.

We organize the remainder of this section as follows. Section 4.1 generalizes the characterization of
ε-optimality for temporally dependent demand. Section 4.2 proposes a sampling-based method to compute
a lower bound to the probability of ε-optimality. Section 4.3 provides insights shedding light on the role
of temporal dependence in inventory-target estimation.

4.1 The ε-Optimality for Temporally Dependent Demand Data

The ε-optimality in inventory-target estimation is introduced by Levi, Roundy, and Shmoys (2007) under
the assumption of independent and identically distributed demand data. We start with generalizing the
concept of ε-optimality for stationary and temporally dependent demand data.
Proposition 1. Let C2|1(F(q̂)|F(xn);θ) ≥ b/(h+ b)−α and C2|1(F(q̂)|F(xn);θ) ≤ b/(h+ b)+α . The
expected cost of the inventory-target estimate q̂ is at most 1+ε of the expected cost of the optimal inventory
target q∗ when α is equal to (εhb/(h+b))/(h+b+ ε max(b,h)).

The proof of Proposition 1 is available in Akcay, Biller, and Tayur (2013). In Proposition 1, we
characterize the value of α so that an inventory-target estimate q̂ is guaranteed to be ε-optimal. Therefore,
if the value of α is taken as characterized in Proposition 1, the probability of the event

Y (Q̂,Xn) :=
[
C2|1

(
F(Q̂)|F(Xn);θ

)
≥ b

h+b
−α

]⋂[
C2|1

(
F(Q̂)|F(Xn);θ

)
≤ b

h+b
+α

]
gives a lower bound to the probability of the ε-optimality of the inventory-target estimator Q̂. We denote
the probability of the event Y (Q̂,Xn) with δ for ease in exposition.
Remark 1 Levi, Roundy, and Shmoys (2007) set α to (ε/3)min(b,h)/(h+b) when the historical demand
data is independent and identically distributed. The lower bound on the probability of ε-optimality
is higher when α is set as in Proposition 1, leading to a tighter bound. This is because (εhb/(h+
b))/(h+b+ ε max(b,h)) is always greater than (ε/3)min(b,h)/(h+b).
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4.2 Identifying the Probabilistic Guarantee for ε-Optimality under General Copula

The objective of this section is to provide an arbitrarily close approximation to the lower bound δ on the
probability of ε-optimality; i.e.,

P
(
L(Q̂|Xn)≤ (1+ ε)L(Q∗|Xn)

)
≥ δ . (4)

Clearly, the probability of the random event Y (Q̂,Xn) – which gives the lower bound δ – is a function
of the unknown marginal distribution function F , while our goal is to find a probabilistic guarantee on
ε-optimality for any marginal distribution. The marginal-copula representation of the demand process
allows us to achieve this goal by waiving the requirement to know the true marginal distribution function
of the demand process.

We let {Ut ; t = 1,2, . . . ,n} correspond to a series of dependent standard uniform random variables
represented by the copula function C(·, ·;θ), and let Gn(u) := (1/n)∑

n
t=11(Ut ≤ u) be the empirical

distribution function built from these uniform random variables. Then, we define a random variable U∗ as
follows:

U∗ = min
j=1,2,...,n

{
Uj : Gn(Uj)≥C−1

2|1

(
b

h+b

∣∣Gn(Un); θ̂

)}
. (5)

We also define the event Ỹ (U∗,Un) as[
C2|1 (U

∗|Un;θ)≥ b
h+b

−α

]⋂[
C2|1 (U

∗|Un;θ)≤ b
h+b

+α

]
,

which will lead us to the key result to identify the lower bound δ on the probability of ε-optimality for
any marginal demand distribution:
Proposition 2. The probability of the event Y (Q̂,Xn) is equal to the probability of the event Ỹ (U∗,Un), where
U∗ is defined as in (5) from a series of dependent standard uniform random variables {Ut ; t = 1,2, . . . ,n}
generated from the copula C(·, ·;θ).

Proof. It follows from the probability integral transformation and the definition of a copula that the
series of standard uniform random variables {Ut ; t = 1,2, . . . ,n} is equivalent to {F(Xt); t = 1,2, . . . ,n}.
We consider the realizations {ut ; t = 1,2, . . . ,n} and {xt ; t = 1,2, . . . ,n}. Since only the ordinal relation
matters in building an empirical distribution function, the values of Fn(xt) and Gn(ut) are the same for
t = 1,2, . . . ,n. Therefore, C−1

2|1(b/(h+b)|Fn(xn); θ̂) is equal to C−1
2|1(b/(h+b)|Gn(xn); θ̂). The result follows

because ut = F(xt), t = 1,2, . . . ,n and

q̂ = min
j=1,2,...,n

{
x j : Fn(x j)≥C−1

2|1(b/(h+b)|Fn(xn); θ̂)
}

imply the equivalence between

min
j=1,2,...,n

{
u j : Gn(u j)≥C−1

2|1(b/(h+b)|Gn(un); θ̂)
}

and F(q̂) for any realizations of {Ut ; t = 1,2, . . . ,n} and {Xt ; t = 1,2, . . . ,n}.

Proposition 2 plays a critical role in identifying the lower bound δ because it allows us to focus
on the transformed demand random variables {Ut ; t = 1,2, . . . ,n} instead of the actual demand process
{Xt ; t = 1,2, . . . ,n}. We next present an algorithm based on this property to approximate the lower bound
δ on the ε-optimality probability by sampling dependent uniform random variates rather than sampling
the actual demand which requires the knowledge of the marginal distribution.
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Algorithm 1. Computation of the lower bound δ on the probability of ε-optimality
Initialization. Specify an accuracy parameter γ > 0 and a confidence parameter β ∈ (0,1).
Let M =

⌈
log(2/β )/(2γ2)

⌉
and m = 1.

while m≤M:
Generate dependent standard uniform variates (u1,u2, . . . ,un) from the copula C(·, ·;θ).
θ̂ ← argmax

{
∑

n−1
t=1 log c(Gn(ut),Gn(ut+1);θ) : θ ∈Θ

}
.

u∗ ←min j=1,2,...,n

{
u j : Gn(u j)≥C−1

2|1
(
b/(h+b) | Gn(un); θ̂

)}
.

Bm←

{
1 if

∣∣C2|1 (u∗|un;θ)−b/(h+b)
∣∣≤ (εhb/(h+b))/(h+b+ ε max(h,b)),

0 otherwise.

m← m+1.
end
Set B̄ := M−1

∑
M
m=1 Bm.

Return B̄− γ as the value of δ .
Remark 2 The decision maker may question the existence of temporal dependence in the demand process
and choose to set the inventory target as if the demand realizations were independent and identically
distributed. In this case, the algorithm provides the lower bound on the probability of ε-optimality by
choosing u∗ as min j=1,2,...,n

{
u j : Gn(u j)≥ b/(h+b)

}
for each sample path.

The theoretical support for the algorithm above rests upon Hoeffding’s inequality for bounded random
variables (Hoeffding 1963):

P(|B̄−E(B)|> γ)≤ 2exp(−2Mγ
2).

In this representation, E(B) is the unknown mean of the independently sampled indicator random variables
{Bm;m = 1,2, . . . ,M}, and it corresponds to the true value of the lower bound δ on the probability of
ε-optimality. Hoeffding’s inequality immediately leads to the guarantee P(E(B) ∈ [B̄− γ, B̄+ γ])≥ 1−β .
The algorithm provides an arbitrarily close approximation to δ because the values of γ and β can be chosen
arbitrarily smaller to make B̄− γ close enough to the true value of the δ with high confidence. To sum up,
given the confidence level 1−β , the expected cost of any realized value of the inventory-target estimator
Q̂ is at most 1+ ε of the minimum expected cost with probability at least B̄− γ .

4.3 Results

In this section, we implement the algorithm in Section 4.2 to investigate how the lower bound δ for the
probability of ε-optimality is affected by the temporal dependence in the demand process, the length of the
demand history, and the cost parameters. We assume that the decision maker does not know the marginal
demand distribution and the normal-copula parameter θ is the measure of temporal dependence in the
demand process. Letting ϕ denote the critical fractile b/(h+b) for ease in presentation, we set the values
of γ and β to 0.001 and 0.05, respectively.

We let the normal-copula parameter θ take values between −0.9 and 0.9 to represent a wide range
of negative and positive autocorrelations in the demand process. Figure 1 plots the lower bound δ on
the probability of 0.25-optimality as a function of the length of the demand history n. For all values of
n, we observe that the lower bound δ takes its maximum value when there is no autocorrelation in the
demand process; i.e., when θ is equal to zero. Furthermore, we see that the lower bound δ decreases as
the absolute value of the copula parameter θ increases. That is, the probabilistic guarantee to assure that
the expected cost of an inventory-target estimate is at most 1.25 of the optimal expected cost decreases
with the increasing strength of the autocorrelation in the demand process.

The decrease in δ can be explained by the slower convergence of the empirical demand distribution to
the true marginal distribution in the presence of temporal dependence compared to the case with no temporal
dependence. Intuitively, it takes more time for the demand history to discard the initial condition (i.e.,
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Figure 1: ε = 0.25 and ϕ = 0.5 (left); ε = 0.25 and ϕ = 0.95 (right).

the demand realizations at the beginning of the process) which controls the later demand realizations, and
thus, delays the convergence of the empirical demand distribution when the strength of the autocorrelation
is high.

Table 1 and Table 2 provide the number of demand observations necessary to achieve an ε-optimality
guarantee of 50%. They verify the need for a larger number of demand observations with increasing
strength of autocorrelation. For example, Table 1 shows that the expected cost of the inventory-target
estimator in (3) is at most 1.5 of the optimal expected cost with a probability of at least 50% if the
historical demand data includes the past 45 observations of a highly negatively correlated demand process
(i.e., θ =−0.9). The required number of demand observations decreases to 14 when there is no temporal
dependence (i.e., θ = 0), and then increases to 30 for a highly positively correlated demand process (i.e.,
θ = 0.9). Tables 1 and 2 also shed light on how fast the number of demand observations necessary to
achieve a certain level of probabilistic guarantee increases as ε decreases.

Table 1: The number of demand observations necessary to achieve δ = 0.5 with ϕ = 0.5.

ε
θ

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

0.50 45 23 17 14 17 20 30
0.25 145 73 57 52 53 62 87
0.10 749 374 309 290 287 326 401

Table 2: The number of demand observations necessary to achieve δ = 0.5 with ϕ = 0.95.

ε
θ

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

0.50 265 108 100 96 102 136 475
0.25 778 322 280 274 299 387 1384
0.10 3812 1581 1390 1370 1442 1892 6738
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5 CONCLUSION

We consider the problem of estimating the critical-fractile solution in a newsvendor problem when the
demand depends on its past realizations. As opposed to widely-used linear time-series models with normally
distributed random shocks, we introduce a copula-based demand model that allows us to represent the
stationary and temporally dependent demand process with any marginal demand distribution and an arbitrary
dependence structure. Consequently, the decision maker estimates the marginal demand distribution and the
copula parameters that characterize the temporal dependence separately without making any assumptions
on the parametric form of the marginal demand distribution. The objective of our study is to identify a
probabilistic guarantee for the ε-optimality of an estimate of the critical-fractile solution, which is obtained
from the empirical demand distribution and the estimates of the copula parameters.

We propose a sampling-based method to compute this probabilistic guarantee when the marginal
distribution is unknown to the decision maker without any restrictions on the functional form of copula
and the cost parameters. Our method builds on the idea of sampling dependent uniform random variates
matching the underlying dependence structure of the demand process rather than sampling the actual demand
which requires the specification of the marginal demand distribution. Our numerical analysis shows that the
probabilistic guarantee takes its maximum value when there is no temporal dependence, and it decreases
as the strength of the demand autocorrelation increases.

REFERENCES

Akcay, A., B. Biller, and S. Tayur. 2013. “Data-Driven Newsvendor: A Probabilistic Guarantee for Near
Optimality when Demand is Temporally Dependent”. Working Paper, Tepper School of Business,
Carnegie Mellon University, Pittsburgh, PA, USA.

Akkaya, A., and M. Tiku. 2005. “Time series AR(1) model for short-tailed distributions”. Statistics 39 (2):
117–132.

Beare, B. 2010. “Copulas and temporal dependence”. Econometrica 78 (1): 395–410.
Block, H., N. Langberg, and D. Stoffer. 1990. “Time series models for non-Gaussian processes”. Lecture

Notes-Monograph Series:69–83.
Cario, M., and B. Nelson. 1996. “Autoregressive to anything: Time-series input processes for simulation”.

Operations Research Letters 19 (2): 51–58.
Chen, L., and H. Lee. 2012. “Bullwhip effect measurement and its implications”. Operations Research 60

(4): 771–784.
Chen, X., and Y. Fan. 2006. “Estimation of copula-based semiparametric time series models”. Journal of

Econometrics 130 (2): 307–335.
Erkip, N., W. Hausman, and S. Nahmias. 1990. “Optimal Centralized Ordering Policies in Multi-Echelon

Inventory Systems with Correlated Demands”. Management Science 36:381–392.
Gourieroux, C., and J. Jasiak. 2006. “Autoregressive gamma processes”. Journal of Forecasting 25 (2):

129–152.
Hoeffding, W. 1963. “Probability inequalities for sums of bounded random variables”. Journal of the

American Statistical Association 58 (301): 13–30.
Hosoda, T., M. Naim, S. Disney, and A. Potter. 2008. “Is there a benefit to sharing market sales information?

Linking theory and practice”. Computers & Industrial Engineering 54 (2): 315–326.
Joe, H. 1997. Multivariate Models and Dependence Concepts. Chapman & Hall, London.
Jose, K., T. Lishamol, and J. Sreekumar. 2008. “Autoregressive processes with normal-Laplace marginals”.

Statistics & Probability Letters 78 (15): 2456–2462.
Lee, H., V. Padmanabhan, and S. Whang. 1997. “Information Distortion in a Supply Chain: The Bullwhip

Effect”. Management Science 43:546–558.
Lee, H., K. So, and C. Tang. 2000. “The Value of Information Sharing in a Two-Level Supply Chain”.

Management Science 46:626–643.

2652



Akcay, Biller, and Tayur

Levi, R., R. Roundy, and D. Shmoys. 2007. “Provably near-optimal sampling based policies for stochastic
inventory control models”. Mathematics of Operations Research 32 (4): 821–839.

Luong, H. 2007. “Measure of bullwhip effect in supply chains with autoregressive demand process”.
European Journal of Operational Research 180:1086–1097.

Nelsen, R. 2006. An Introduction to Copulas. 2nd edition, Springer, New York.
Patton, A. 2012. “A review of copula models for economic time series”. Journal of Multivariate Analy-

sis 110:4–18.
Porteus, E. 2002. Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, CA.
Sklar, A. 1959. “Fonctions de repartition à n dimensions et leurs marges”. Publications de l’Institut de

Statistique de L’Universit de Paris 8:229–231.
Tiku, M., W.-K. Wong, D. Vaughan, and G. Bian. 2002. “Time Series Models in Non-Normal Situations:

Symmetric Innovations”. Journal of Time Series Analysis 21 (5): 571–596.

AUTHOR BIOGRAPHIES

ALP AKCAY is an Assistant Professor of Industrial Engineering at Bilkent University. He received his
Ph.D. in Operations Management and Manufacturing from Tepper School of Business at Carnegie Mellon
University. His research interests include the design and analysis of stochastic system simulations and
data-driven decision making under uncertainty with applications in operations management. His email
address is alp.akcay@bilkent.edu.tr.

BAHAR BILLER is an Associate Professor of Operations Management and Manufacturing at Carnegie
Mellon University. Her primary research interest lies in the area of computer simulation experiments for
stochastic systems and more specifically, in multivariate input modeling for dependent input processes
with applications to operations management and financial time-series modeling. Her email address is
billerb@andrew.cmu.edu.

SRIDHAR TAYUR is the Ford Distinguished Research Chair and Professor of Operations Management at
Carnegie Mellon University’s Tepper School of Business. He has published many scholarly publications in
journals such as Operations Research, Management Science, and MSOM Journal, is co-editor of the widely
referenced book, Quantitative Models for Supply Chain Management, and has served on the editorial
boards of Operations Research, Journal of Optimization and Engineering, NRLQ, MSOM Journal and
Management Science. Dr. Tayur also served as President of Manufacturing and Services Operations
Management (MSOM) Society. He is the founder of the software company SmartOps Corporation (2000-)
as well as the founder of OrganJet Corporation (2011-). His email address is stayur@andrew.cmu.edu.

2653


