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ABSTRACT 

Simulation models have importantly expanded the analysis capabilities in engineering designs. With larg-
er computing power, more variables can be modeled to estimate their effect in ever-larger number of per-
formance measures. Statistical experimental designs, however, are still somewhat focused on the variation 
of less than about a dozen variables. In this work, an effort to identify strategies to deal with tens of va-
riables is undertaken. The aim is to be able to generate designs capable to estimate full-quadratic models. 
Several strategies are contrasted: (i) generate designs with random numbers, (ii) use designs already in the 
literature, and (iii) generate designs under a clustering strategy.  The first strategy is an easy way to gen-
erate a design. The second strategy does focus on statistical properties, but the designs become somewhat 
inconvenient to generate when increasing the number of variables. The third strategy is currently being 
investigated as a possibility to provide a balance between (i) and (ii).  

1 INTRODUCTION 
Systems in Engineering and the Sciences are affected by multiple factors simultaneously. Understanding 
how these factors affect key performance indicators is important for design, control and optimization pur-
poses. Moreover, achieving an appropriate understanding level must commonly be carried out while be-
ing mindful of resource consumption.  Assessing the effects of multiple factors on multiple performance 
measures has been made a lot more convenient with the development of computer simulation.  
 A somewhat standard approach to understand variation through experimental means is the use of a 
regression model. Of special interest to this work is the situation in which curvature is suspected in the 
experimental response of interest, thus, a full quadratic regression model is sought. There seems to be an 
imbalance between the increasing capability of simulation models to relate large numbers of variables to 
similar numbers in performance measures and the restricted focus of statistical experimental designs in 
dealing with a low number of variables.  
 This work attempts to bring attention to this imbalance and foster the generation of designs to investi-
gate dozens of variables at a time. A more effective use of simulation models is possible with develop-
ments in this area including a more powerful capability of simulation optimization.  
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 This manuscript is organized as follows: first, an exploration of the literature in terms of number of 
variables and designs included in several studies is presented followed by a proposed strategy under de-
velopment to approach the study of dozens of variables. Then, three strategies are compared for 10 and 20 
variables on their ability to estimate a full quadratic model: (i) generate a random design; (ii) generate a 
design from techniques already established in the literature (Full Factorial Design, Central Composite De-
sign, D-Optimal Design); and (iii) generate designs under a clustering strategy. Finally, the results of the 
comparison are discussed and future directions are outlined.  

2 LITERATURE REVIEW 
As the technology and the computational capacity increase, the possibility to analyze and simulate sys-
tems that are affected by multiple factors simultaneously is more attractive and feasible. For many expe-
rimental designs, the number of variables being investigated –however- is less than a dozen; in fact, in 
most cases it is only three or four factors (Alkhatib 2011, Anotai 2012, Christin 2008,  Job 2010, Lafer-
riere 2011, Larentis 2011,  Marwa 2011, Rigas 2009, Sudheer 2010, Vishwantha 2010). 
 For many cases, the intention is to predict the parameters for the characterization of the system with a 
second order model (Anotai 2012, Cabrera-Ríos 2002, Larentis 2011, Laferriere 2011, Mahapatra 2009, 
Marwa 2011, Nobuyuki 2010, Rigas 2009, Sudhankar 2011, Vaithanomsat 2011). The experimental de-
sign used for these systems are usually the fractional factorial design, the central composite design or the 
Box-Behnken (Anotai 2012, Cabrera-Ríos 2002, Job 2010, Laferriere 2011,  Marwa 2011, Nair 2008). 
 It is desirable to analyze dozens of factors that significantly affect a system simultaneously to be more 
realistic when trying to characterize and model it. In the literature, it is common to find works that ana-
lyze fewer than ten variables simultaneously. The number of variables tends to be smaller when the objec-
tive is to build a full quadratic model since a minimum of three levels per variable is necessary to estimate 
quadratic effects.(Cabrera-Ríos 2002, Christin 2008, Sudheer 2010). 
 There are different methods to generate experimental designs. In the literature, the full factorial is a 
highly popular one. This design enumerates all possible combinations of the levels of all variables in-
volved. Needless to say, this strategy becomes impractical rapidly with a small number of variables. For 
example, for 10 variables at three levels, the full factorial requires 310= 59,049 runs.  Due to this combina-
torial explosion, a prevalent strategy is to run a fraction of the full factorial design, that is, to run a frac-
tional factorial design. In contrast to two level fractional factorial designs, three-level fractional factorial 
designs have not been favored in the literature due to complex aliasing structures (Sanchez 2005). 
 One of the best-known practices when fitting a full quadratic model is to use a Central Composite De-
sign which entails the use of either a two-level full factorial or fractional factorial design, plus 2 axial runs 
per variable involved, plus a defined number of center runs. This design capitalizes on the use of a frac-
tion of the full factorial to keep the number of runs low while providing a stable and minimal variance in 
the coefficients. Because the fractions of the full factorial used to build the central composite design result 
from the expression 2k-p, where k is the number of variables and p is the number of fraction generators, 
the resulting number of runs might be a lot more than those necessary for a full quadratic model (Alkhabit 
2011, Montgomery 2009, Sayara 2010, Wass 2011, Zambare 2011, Zhou 2010).  
 Another possibility to obtain full quadratic model is the use of D-Optimal design, with which one can 
decide upon the number of experimental runs a priori. This strategy, as coded in many commercial and 
open-source software packages, uses a full factorial enumeration from which the predefined number of 
runs is chosen with the objective to provide a minimum variance across all regression coefficients 
(Langner, 2003). 
 Finally, if simplicity is important, a naïve way to generate a design is by using a probability mass 
function to prescribe a desired number of experimental combinations. This strategy is considered here due 
to its feasibility to explore several tens of variables simultaneously, although no control over variance or 
any other statistical properties can be exercised in this instance.  
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3 CLUSTER DESIGN METHOD 

3.1 Initial Version 
The Cluster Design Method is currently under development in our group and it was as follows in its initial 
form: (i) generate a full factorial design as an initial enumeration; (ii) add a column with uniformly distri-
buted random numbers to the full factorial design; (iii) generate k clusters with the k-means algorithm, 
with k being the number of necessary regression coefficients plus one;(iv) retrieve the k-medoids asso-
ciated to the k clusters; (v) delete the values associated to the column with the random numbers, and (vi) 
present the experimental design.  
 The rationale behind step (i) is to provide orthogonal design points. A random dummy variable is in-
troduced as a means to add a controlled perturbation in step (ii). This is necessary because clustering 
equally spaced orthogonal points results in very similar clusters, and thus to very similar centroids in the 
next step. 
 The k-means algorithm is the most basic of the clustering techniques. It iteratively forms a user-
defined number k of exclusive clusters with each cluster organized around its average location or centro-
id. As proposed here, k is set to the number of necessary regression coefficients to fit a full quadratic 
model plus one in step (iii). The number of coefficients for v variables of interest can be calculated as: 

1 + 2𝑣 + ቀ𝑣2ቁ.                                                                             (1) 
 From step (iii), then, k clusters result. In step (iv) the medoid of each cluster is obtained. The medo-
ids, which are data points in the center of a cluster, are intended as the k runs in the resulting cluster de-
sign. In this work, an approximate medoid is computed for each cluster by using the median of each of the 
values of the v variables of interest within the cluster under analysis. Steps (v) and (vi) of the method are 
self-explanatory. 
 Equation (1) is useful also to show the growth of the intended method when increasing the number of 
variables, as shown in Figure 1, where this growth is contrasted with that of the full factorial design. 
Looking at Figure 1, it is clear that –if feasible- the cluster design would be convenient to explore tens of 
variables. However, a limitation also becomes apparent. The first step of the initial version of the method 
requires a full factorial enumeration, thus it would become computationally inconvenient at some point. 
This observation, corroborated by a series of tests, lead to the following modified version of the method. 
 

 
 

Figure 1: Growth in the number of runs as a function of the number of variables for the cluster design and 
the full factorial design.  
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3.2 Modified Version 
The first step of the original method required the generation of a full factorial enumeration, which would 
become computationally inconvenient at some point as shown previously. A slower growing enumeration 
would help alleviate this situation. The following modification was then introduced:  
 

1) Generate a cluster design D1 of moderate size, say one to explore v=10 variables, using the origi-
nal version of the method. D1 will have n runs.  

2) Generate a second cluster design D2 as in the previous step. This second design will be different 
due to the random realization in step (ii).  D2 will also have n runs.  

3) Concatenate every run in D1 together with every run in D2. The resulting enumeration contains 
n2 runs with 2v variables.  
 

 With this new enumeration in place, steps (ii) through (vi) can then be applied to generate a design for 
up to 2v variables. Figure 2 shows the enumeration growth compared to the cluster design and the full 
factorial design.  

 
 

 

Figure 2: Growth on number of runs of the modified version enumeration compared to the full factorial 
enumeration.  

4 COMPARISON 
The comparison was carried out by artificially building a response through the addition of a known func-
tion and a random error. The known function was a full quadratic model, in the first case for 10 variables 
and an extension in a second case for 20 variables, with all regression coefficients arbitrarily set equal to 
10. The random error came from a normal distribution with 0 mean and standard deviation of 1.5 units.  
The idea behind having an artificial response is to provide a controllable expected value and a random 
noise around it. The idea is focused in verification: if true experimental data can be effectively modeled 
with a full quadratic regression model, it will look very similar to our artificial response. If we control the 
artificial response, then we can measure the performance of our method when approaching it. 
 Experimental design from each strategy (i) random design, ii) Full Factorial, Central Composite De-
sign and D Optimal Design, and (iii) the proposed Clustering Design were used to sample and then to es-
timate the artificial response described previously. The following were measured: (M1) Number of runs, 
(M2) Mean Square Error, (M3) Number of regression coefficients estimated, (M4) Adjusted coefficient of 
determination, R2, (M5) The trace of (X'X)-1, that is, the trace of the inverse of the so-called design in-
formation matrix, which is proportional to the covariance of the regression coefficients, and  (M6) The 
determinant of (X'X)-1 (Montgomery, D. C., 2009). 
 Residual analysis was also considered in this comparison to assess the assumptions of normality, in-
dependence and constant variance. This is carried out mostly through hypothesis testing.  The residual is 
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computed for the ith data point in n data points as ei=Yi-Ỹi; i=[1, 2.....n], where Yi is an actual observation 
and  Ỹi is the corresponding fitted value from the regression model (Montgomery 2009). 
 A design with the lowest possible number of runs, the lowest MSE, capable to estimate all regression 
coefficients, with the highest adjusted R2 value, the lowest value of the trace and determinant of (X'X)-1, 
and which complies with the residuals assumptions, would clearly dominate any other option. 
 Furthermore, it was important to assess how easy was to generate a design under each strategy. This 
last was done qualitatively by necessity. Finally, it was decided to tabulate the frequency of the coeffi-
cients by their percentual deviation from the target value. The results of the comparison are shown next 
for both cases set forth.  

5 RESULTS WITH THE INITIAL VERSION OF THE CLUSTER DESIGN METHOD (10 
VARIABLES) 

Table 1 summarizes the comparative results for M1-M6. The D-Optimal design seems to be an overall 
robust and sensitive alternative according to these results, with a minimum number of runs, the lowest 
MSE, the capability to estimate all coefficients, and performing well in goodness-of-fit. Its coefficient va-
riance is only larger than the full factorial and the central composite design. The full factorial and the cen-
tral composite designs, even at 10 variables, start to seem impractical in terms of number of runs. This 
behavior is expected to be more drastic with larger numbers of variables. 
 Qualitatively speaking, the easiest option to generate is the Random Design, although the cost seems 
to come in terms of coefficient variance, where it performs worst. At a competitive number of runs and an 
adequate performance in coefficient variance, the proposed clustering design could be improved to be-
come a competitive option for larger numbers of variables. From running this comparison, it was expe-
rienced that both solving for the D-Optimal design as well as carrying out the clustering procedure can be 
consuming in terms of computing resources. Devising a way to use a more efficient clustering procedure 
as well as to reduce the dependency on a complete enumeration as a starting point should help important-
ly improve the proposed strategy. 
 

Table 1: Comparative results for different experimental design for 10 variables. 
 

 Full  
Factorial 

Central 
Composite 

D Optimal 
Design 

Random 
Design 

Clustering 
Design 

Experimental runs 59,049 158 71 71 71 
MSE 2.2558 1.2351 0.0774 0.0902 0.0944 
Estimated coefficients  66/66 66/66 66/66 66/66 66/66 
R-Sq(adjusted) 100% 100% 100% 100% 100% 
Trace of  (X'X)-1 0.065 86.24 140.56 2854.7 670.1 
Determinant of (X'X)-1 0.00 6.33E-124 1.495E-96 3.65E-89 5.39E-66 

 
 Table 2 shows the results of the residual analysis and Figure 3, show residual plots for all designs un-
der comparison. Normality was assessed with the Kolmogorov-Smirnov test, and independence with the 
Signs test. Variance homogeneity was assessed through plot analysis and by measuring the percentage of 
residuals falling within a distance of two standard deviations of the estimated mean. Regarding residuals 
normality test, only the random design showed some deviation, while independence did not seem a con-
cern for any design. The results in standard deviation are somewhat similar across all design and, together 
with Figure 3, nothing too concerning was found in terms of unequal variance. 
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Table 2: Comparative results of the residual analysis for different experimental design for 10 variables. 
 

 
 
 

Central  
Composite  

Design 

D-Optimal 
Design 

Random 
Design 

Clustering 
Design 

P-value of Kolmogorov-Smirnov test > 0.15 > 0.15 0.046 0.138 
  P-value of Signs test 0.3010 0.4764 0.6350 0.8124 
  Standard deviation   1.1149 0.2802 0.3024 0.3094 
  μ  - 2σ  <  ε  <  μ  +  2σ 149/158; 94% 69/71; 97% 66/71, 93% 67/71; 94% 

 

 

 
 

Figure 3: Plot of residuals in time sequence for 10 variables for the D-Optimal Design, Central Composite 
Design, Clustering Design and Random Design.  

6 RESULTS WITH THE MODIFIED VERSION OF THE CLUSTER DESIGN METHOD 
AND A SHORTENED ENUMERATION FOR THE D-OPTIMAL DESIGN (20 
VARIABLES) 

In this second set of results, the treatment of 20 variables was attempted. Table 3 summarizes the compar-
ative results for M1-M6. It is important to note that the D-Optimal Design was generated based on the 
shortened enumeration describe in Section 3.2. In this case, the Random Design presented the lowest 
MSE and has the capability to estimate all coefficients, but the precision for the estimates of the coeffi-
cient is lower than the D-Optimal Design (Table 3). The Clustering Design has an intermediate value of 
MSE, and has the capability to estimate all coefficients, but the precision for the estimates of the coeffi-
cient is less than the obtained by the Random Design and the D-Optimal Design. Of the three designs un-
der comparison, the D-Optimal Design has the best accuracy to estimate the model coefficients and has 
the lowest trace of (X'X)-1. 
 The full factorial and the central composite designs were not used in this comparison since at 20 va-
riables, they are not practical. The Full Factorial Design, for 20 variables at three levels each, requires 
320=3,486,784,401 runs. The Central Composite Design requires 1,048,617 experimental runs in its worst 
case. An important result is that of the D-Optimal paired with the shortened initial enumeration as pro-
posed in this work, becomes feasible and is a competitive alternative for larger number of variables.  
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Table 3: Comparative results for different experimental design of 20 variables. 
 

 D-Optimal Design Random Design Clustering Design 
Experimental runs 232 232 232 
MSE 0.0453 0.0036 0.0142 
Estimates coefficients  231/231 231/231 231/231 
Trace of(X'X)-1 5100.65 15867.87 50480.98 
Determinant of (X'X)-1 0 9.843E-299 0 

 
As in the previous case, a residual analysis was carried out. Table 4 shows the results of the hypothesis 
tests and the assessment of the variance and Figure 4 presents selected residual plots. All designs seemed 
to do well in terms of normality. The clustering design was the only one that showed a deviation from in-
dependence. This is, indeed something to be considered in the next steps in development of the clustering 
design.  
  
Table 4: Comparative results of the residual analysis for different experimental design for 20 variables. 
 

 D-Optimal 
Design 

Random 
Design 

Clustering 
Design 

P-value of Kolmogorov-Smirnov test 0.133 > 0.15 > 0.15 
P-value of Signs test 0.5546 0.7427 0.0105 
Standard deviation   0.2130 0.0591 0.1195 
μ  - 2σ  <  ε  <  μ  +  2σ 221/232; 95% 202/232; 87% 220/232; 95% 

 

   

Figure 4: Plot of residuals in time sequence for 20 variables 

7 ILLUSTRATIVE EXAMPLE: PRODUCTION LINE WITH 20 WORKSTATIONS 
The capability of dealing with dozens of variables simultaneously opens important analysis possibilities 
ranging from statistical characterization to optimization. This section illustrates, for example, how a 20-
variable simulation-optimization problem can be addressed aided by an experimental design with such 
capability.  
 Consider a production line with 20 workstations simulated with the software package Arena. The si-
mulation is run for 8 hours per day with 10 replicates.  The simulation parameters of interest were the 
mean process time on each of the workstations (WSi). The process time in each workstation was assumed 
to follow a normal distribution with a mean that varied in three levels and a constant standard deviation of 
0.25 minutes. It is further assumed that the nominal process time can be chosen by a particular user. The 
response of interest was the system time defined as the  period of time elapsed since a raw part to be 
processed enters the system until it exits as a finished product. 
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 A simulation optimization method based on design of experiments and metamodeling techniques was 
used(Villarreal-Marroquín, 2013). A summary of this method can be found in Appendix A. The method 
starts with an initial experimental design, which for twenty variables has 232 experimental runs using the 
modified version of the clustering design method. Figure 5 shows the ranges of values to be explored with 
the objective to minimize the system time per unit.  

 
 
 
 
 
 
 
 

 
 
 

Figure  5:  Range  of  values  for  the  workstations’  mean  process  time  in  simulation  model. 
 

 The minimum value for the average cycle time in the experimental design was identified and selected 
as the first best solution (first incumbent solution) (I-1). I-1corresponded to a value of 2125 minutes (Ta-
ble 5), with parameters values as shown in Tables 6 and 7. With the initial experimental design, a full qu-
adratic regression metamodel was built, and used as the objective function to be minimized to obtain a 
predicted competitive solution. A generalized reduced gradient optimization procedure along with a mul-
ti-start strategy was used for this purpose. 

 

Table 5: System Time for the incumbent solution for the production line with 20 workstations. 
 

Run  I-j System Time (minutes) 
82 I-1 2125  

233 I-2 2089.9 
234 I-3 2075.6  
235 I-4 2029 

 

Table 6: Results of the simulation optimization method for the example with 20 workstations (Worksta-
tions 1 thru 10). 

 

I-j Mean process time  (minutes) 
 WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 WS10 

I-1 2.00 1.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00 3.00 
I-2 1.00 3.47 1.00 6.00 4.00 2.52 7.00 1.00 2.00 5.30 
I-3 1.00 3.31 1.56 6.00 4.00 2.00 7.00 2.63 2.00 4.00 
I-4 1.00 4.60 1.00 6.00 4.00 2.00 5.93 1.00 2.00 4.00 

 
Table 7:Results of the simulation optimization method for the example with 20 workstations (Worksta-
tions 11 thru 20). 

 

I-j Mean process time  (minutes) 
 WS11 WS12 WS13 WS14 WS15 WS16 WS17 WS18 WS19 W20 

I-1 6.00 3.00 1.00 6.00 2.00 1.00 1.00 4.32 3.00 5.00 
I-2 6.00 3.00 1.00 6.00 2.00 1.00 1.00 4.22 3.00 5.00 
I-3 6.00 3.00 1.00 6.00 2.00 1.00 1.00 4.19 4.11 5.00 
I-4 6.00 3.00 1.00 6.00 2.00 1.00 1.00 4.32 3.00 5.00 
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 Using the process times prescribed for each workstation by the first predicted competitive solution, a 
simulation was performed and the simulated values were compared with the incumbent solution (I-1) for 
updating purposes. Each iteration of the algorithm follows a similar structure (Appendix A) until either a 
solution that has already been visited is predicted, or a user-defined maximum number of iterations is met. 
For this example, a maximum of 20 iterations was used.  
 In Figure 6, the first 232 points represent the initial experimental design, and the following points are 
the simulation optimization method iterations. The first incumbent solution (I-1), is obtained in the 82th 
experimental run (Figure 6) of the initial DOE. The final solution (I-4) was obtained in the 3rd  iteration 
of the method (Figure 6). The algorithm was stopped once it maxed out the allowed number of iterations. 
The best solution corresponded to a system time of 2029 minutes (I-4)  (Table  5)  with  parameters’  values  
as shown in Tables 6 and 7. 

 

 
 

Figure 6: Results of to the simulation optimization method with the initial version of clustering experi-
mental design. 

 
 When a comparison between the initial incumbent solution (I-1) with the final one (I-4) was per-
formed, the result was that the system time decreased in 96 minutes. This represents a reduction of 4.52% 
in the system time per unit, in the simulated production system. Although many aspects are interesting in 
this example, it is important to emphasize that it was possible to run this simulation-optimization proce-
dure because there existed an experimental design capable to build a full quadratic regression model for 
20 variables with a low number of runs. 
 
8 CONCLUSION 
 
This study contrasts the performance of different strategies to generate experimental designs, aiming to 
devise feasible options to explore tens of variables simultaneously in the future. It was learnt that a more 
efficient initial enumeration would improve the generation of the D-Optimal Design. It was also learnt 
that the clustering design should be improved in terms of coefficient variance for it to be a competitor to 
the D-Optimal Design. Furthermore, at least the designs included in this preliminary comparison should 
be kept as benchmarks for future developments.  

An illustrative example with simulation optimization was used to show how important analysis possi-
bilities open when having an experimental design that can be used to obtain a full quadratic model with 
the least possible number of experimental runs for tens of variables. This encourages further research into 
the matter. 
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Future work includes exploring cases with larger number of variables as well as improving the clus-
tering design to determine if it can be an option with the D-optimal strategy enhanced with the ideas of 
this work. 
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APPENDIX A 
 
The illustrative example in this work follows a simulation-optimization algorithm developed in our re-
search group and described in (Villarreal-Marroquín, 2013). This algorithm results in high quality solu-
tions that can be achieved efficiently with a modest number of simulation runs. The algorithm starts with 
an initial design of experiments (DOE) from which an incumbent solution is obtained. In each iteration, a 
metamodel is obtained using the available set of points and is used to generate a new attractive point 
where a simulation is performed. The simulated value of the new point is compared against the incumbent 
for updating purposes. A series of stopping criteria are evaluated and, if none is met, the new point is add-
ed to the existing set of points and a new iteration begins. Otherwise, the iteration stops. A more detailed 
description is presented next. 

Initialization 
1. Initial DOE: The initial DOE consists of n runs containing combinations of the v controllable va-

riables of interest, xi = (x1, x2 ,x3, …, xv)i, as well as their evaluations f(xi), where i=1,2,…,n. If a repli-
cated DOE is used, the value of f(xi) will be the average across the replicates.  

2. Select incumbent: Considering a minimization instance, the DOE run with the minimum objective 
value is selected as the current best (incumbent) solution [xk-best, f(xk-best)]. An iteration counter is in-
itialized here at k= 0. 

Main Iteration 
3. Update counter: k = k+1 
4. Obtain metamodel: Using the available points, build the k-th metamodel, f(.)k. In case of having only 

few variables, a saturated metamodel is preferred i.e. one that uses all available degrees of freedom, 
in this case a regression model with (n+k-1) coefficients. 

5. Optimize metamodel: Using the metamodel as objective function in the optimization problem under 
analysis, a multiple-starting-points heuristic is used along with a local optimizer to obtain an attrac-
tive solution, xk. 

6. Simulate the new point: Estimate, via simulation, the value of f(xk) considering that if a replicated 
DOE was used, the same number of replicates is used for the new point and the mean value across 
them is reported. 

7. Evaluate if the new point is better than the incumbent: In this case, evaluate if xk has an objective val-
ue strictly lower than x(k-1)-best i.e. if f(xk) <f(x(k-1)-best ). 

8. Update the incumbent: Update the incumbent according to the evaluation in the previous step. If f(xk) 
<f(x(k-1)-best), then the following is set [xk-best, f(xk-best)] := [xk, f(xk)], otherwise, the incumbent remains 
the same. 

9. Evaluate the stopping criteria: Stop the algorithm if (i) xk belongs to the initial DOE or is similar to 
any of the points generated on previous iterations; (ii) if the coefficient of determination, R2 ≥ε  
(where  ε  is  defined  by  the  user);;  or  (iii)  the  maximum  number  of  iterations  has  been  reached.  Both  the  
ε  and  the  maximum  number  of  iterations  are  defined  by  the  user.   

If any of the stopping criteria is met, the method stops and the incumbent is reported as the final output. 
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Otherwise, xk and its simulated objective function value are added to the set of points available to build a 
new metamodel, and the main iteration is repeated.  
This algorithm has been empirically shown to converge in a moderate number of iterations even in the 
presence of several variables using global optimization test functions (Villarreal-Marroquín, 2013). 
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