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ABSTRACT 

We consider the sequential allocation of differing weapons to a collection of adversarial targets with the 
goal of surviving to destroy a critical target within a combat simulation. The platform which carries the 
weapons proceeds through a set of sequential stages and at each stage potentially engages targets with 
available weapons. The decision space at each stage is affected by previous decisions and the probability 
of platform destruction. Simulation and dynamic programming are then used within a larger dynamic 
programming framework to determine allocation strategies and develop value functions for these mission 
sets to be used in future, larger and more complex simulations. A simple dynamic programming example 
of the problem is considered and used to generate a functional approximation for a more complex system. 
The developed methodology provides a tractable approach to addressing complex sequential allocation of 
resources within a risky environment.  

1 INTRODUCTION 

The subject of this paper is the sequential allocation of two competing weapons to a collection of adver-
sarial targets that affect the overall effectiveness of an adversarial system of systems for use within a 
combat simulation. It is a subject that has become increasingly important with the development of more 
complex weapon systems. For example, the effectiveness of two differing missiles yield varying effects 
on targets and the optimal strategy could consist of a mix of these two missiles which may differ by 
range, probability of kill, and number able to be carried. To compare these two weapon types, the plat-
form which carries the weapons must proceed through a predefined set of sequential stages and at each 
stage a decision must be made to engage targets for that stage and, if so, which missile to use.  
 The decision space at each stage is affected by previous stage decisions and the probability of plat-
form destruction at each stage is a function of the current state of the adversarial system of systems. 
Therefore, while it is generally less risky for the platform to ignore the current target and continue its mis-
sion, the cumulative risk to mission completion may result in the optimal solution at that stage being to 
engage the target. Additionally, while one missile may have a higher probability of destroying the target, 
future stages may dictate the use of the less capable missile. 
 The special structure of the problem is exploited to recursively update functional approximations rep-
resenting future decisions using the problem’s subgradient information. A dynamic programming meth-
odology is developed to determine allocation strategies and develop value functions for these mission sets 
for use in future, larger and more complex simulations. This value function must take into account full 
state information to include missiles of each type remaining, the current state of the adversarial system of 
systems, and remaining stages to accomplish the destruction of the primary target. 
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 First posed by Manne (1958), the weapon target assignment problem has provably optimal solutions 
when all the weapons are identical (denBroder et al. [1958] and Katter [1986]) and when the targets can 
receive at most one weapon (Chang et al. [1987] and Orlin [1987]). Previous work addressed performing 
tasks in uncertain environments where vehicles may fail (Castanon et al. [2008]). A more comprehensive 
survey of the weapon-target assignment problem can be found in (Cai et al. [2006]) This paper presents a 
strategy based on these algorithms to determine valid subgradient information. 

2 DYNAMIC PROGRAMMING USING A POST DECISION STATE 

Godfrey and Powell (2002)  introduce an adaptive dynamic programming algorithm for stochastic dynam-
ic resource allocation problems. Consider the general problem where the new task arrival information, 

TW , is independent of the decision vector tx  and the state 1 1 ,( , )t t t tS f S x W+ = where 1f  is a function de-
scribing the system dynamics. 
 Let ),( ttt xSC  be the contribution received in period t given the state tS  and decision tx X∈ . The 

information that arrives in time t is tW , a random variable generated with a known probability distribu-
tion. It is well known that problems that maximize these costs over a finite time horizon can be solved by 
Bellman's (1957) optimality equations: 

 
{ }ttttttttttxtt SWxSSJxSCSJ

t

|),,((),(max)( 11 +++Ε=         (1)   

)( tt SJ  is commonly referred to as the value-to-go. Equation 1 requires us to take into account the impact 
of current decisions on future decisions which depend on future policies. As shown in Puterman (1994) 
we write the expectation for the discrete case as 
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where S  is the set of potential states and =),|'( tt xSsp  the probability the system will be in state 's  

given that the current state is tS  and we take action tx .  

 Therefore, if )'(1 sJt+ were known, we would have to sum over the entire feasible outcome space fol-

lowed by the maximization over tx . 

 As an alternative, consider a post-decision state x
tS  at time t. The post decision state evolves accord-

ing to a state equation which has the form ),(2 tt
x
t xSfS =  where 2f  is a function describing the post-

decision state dynamics. x
tS  always exists by simply defining ),( tt

x
t xSS = . This post-decision state is 

the state that is acted upon by a decision tx  but has not yet been acted upon by the exogenous information 

process, tW . The post-decision state is therefore a function of the state at time t, tS , and the decision at 

time t, tx .  

 In Powell (2007), noting that 1+tS  is a function of x
tS  and tW , it is shown that if the dynamic pro-

gramming recursion is written around the post-decision state we obtain the post-decision version of Bell-
man's equation: 

{ }
1

1 1 1 1( ) max ( , , ) ( ) |
t

x x x x x x
t t t t t t t t tx
J S C S W x J S S

+
+ + + += Ε +     (3)   

 
where the value function is indexed with the superscript x  to denote the calculation from a post-decision 
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state. Note that writing the function in terms of the post-decision state allows the expectation to move 
outside the maximum operator which is a property that we will exploit later. Since the expectation is 
conditioned on x

tS , the information tW  is needed in order to determine 1+tx . 
 The post-decision state variable requires the solution of a maximization problem within an expecta-
tion. The decision function is now given by 

)),((),,(maxarg 1111111
1

+++++++ +=
+

tt
x
t

x
ttt

x
tt

x
t xSSJxWSCx

t

   (4)   

 In principle, an optimal policy is found by first numerically solving Bellman's equation and then 
computing the optimal policy using the resulting value function. However, this requires computation and 
storage of )( x

t
x
t SJ  for each post-decision state which is generally not feasible for combinatorial prob-

lems. In the next section we discuss how to mitigate this issue. 

3 THE GENERAL ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM 

Godfrey and Powell (2002)  introduce an adaptive dynamic programming algorithm for stochastic 
dynamic resource allocation problems. Again, consider the general problem as defined where the new 
task arrival information, tW , is independent of the decision vector tx  and the state tS . Assume we have 

an approximation of the value-to-go function )(1 x
t

n
t SJ −  where n is the current iteration. Given a realiza-

tion { }110
~,~,~ −TWWW … , we compute 0x  according to 

0 0

, 1
0 0 0 0 1 0 0argmax ( , ) ( ( ))x n x

x X
x C S x J S x−

∈
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We use a forward algorithm recursively from time 1.1 −= Tt …  to compute …,11 , xS according to 
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where tX  represents the feasible control space given by the state dynamics. This is possible since given 

{ }110
~,~,~ −TWWW …  all information is known to solve the equation as a deterministic problem which is then 

used to update the approximation )(~ 1 x
t

n
t SJ −  for the next sample of { }110

~,~,~ −TWWW … . 
We use the sequence of decisions selected for a given sample path of task arrivals, the associated re-

ward values, and subgradient information to update our approximation of the value-to-go function. We 
outline the algorithm below: 
We call the following algorithm the general adaptive dynamic programming algorithm because it only 
shows the overall procedure and not the specifics of how )(~ 1 x

t
n
t SJ −  is updated which is problem depend-

ent. 
 
Step 0 Initialization: Initialize },,,0{,~0 TtJt …= Set 0=n  

Step 1 Do while :Nn ≤  Choose Ω∈nW  where nW  is a single sample realization of task arrivals. 
Step 2 Do for :1,,1,0 −= Tt …  

2a Solve 
))((~),~,(maxarg 1,
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2b Update the state tS  
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2c Update the value function approximation )(~ 1 x
t

n
t SJ −  using information collected from the optimi-

zation in step 2a 
Step 3 Return NJ and use it to select 0x  

This algorithmic approach is similar to approximate dynamic programming as shown in Bertsekas 
and Tsitsiklis (1996). Our approach differs in two main ways. First, the post-decision state and a single 
Monte Carlo sample are used rather than sampling a number of forward trajectories as part of an updating 
process. Second, the approximate value function is updated after each Monte Carlo sample.  This pro-
posed approach is explained further in Section 6. 

The general adaptive dynamic programming algorithm must be tailored for the traits of a specific 
problem. Important issues are the form of the value-to-go approximation, the solution method used to 
solve the recursion, and the methods used to update the value-to-go approximation. In the next sections 
we begin by exploring a simple dynamic programming example of the problem and then conjecture a 
functional approximation for future exploration. 

4 SIMPLE DYNAMIC PROGRAMMING EXAMPLE FOR WEAPON TRADEOFF 
ANALYSIS 

As an initial formulation, a finite space, infinite horizon dynamic programming problem is considered. 
This example consists of a platform with two weapon types available, each with a single use, facing two 
targets: a defensive target and a C2 building.  Each possible state is investigated to determine the optimal 
control based upon the previous state, decision and outcome.  This formulation also includes the inherent 
risk of not destroying the defensive target prior to engaging the C2 building, meaning that there is a 
nonnegative probability that any remaining weapons will be destroyed if the defensive target is function-
al.   

 
State Space 

 
Here our state consists of a quadruple with each index being a dichotomous variable denoting whether 

the element is functional (1), or destroyed (0). For the most simple example our quadruple will take on the 
form: 

 
(Kinetic Energy (KE) Weapon, Directed Energy (DE) Weapon, Defensive Target, C2 Target) 

 
As an example, the state (1,0,1,1) means that weapon type 1 is still available and both targets are currently 
functional. For this formulation, our initial state is always (1,1,1,1). 
 
Decision Space 
 

At each stage we need to determine whether or not we should engage any remaining targets. What 
will drive this decision is the risk that our aircraft will get shot down in a future stage, which is a function 
of the state of the defensive target.  Our decision will be in the form of a bivariate vector where the indi-
ces denote which target is to be engaged at the current stage.  Each active weapon will be able to make 
one of three choices: 

 
0 = Engage no target 

1 = Engage the defensive target 
2 = Engage the C2 target 
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For example, the decision (1,2) would mean that the first weapon be shot at the defensive target and 
the second weapon be shot at the C2 target.  Given the initial state of our formulation, 9 decisions (or con-
trols) can be applied, though this changes as the states transition. 
 
Reward Function 

  
Our example allows for us to obtain a reward for each target destroyed. We assume that the defensive 

target value, V1, will be less than the value of the C2 building as it is the ultimate goal.  The risk is mod-
eled in this example by including a nonzero probability of our aircraft being shot down.  This probability  
is dynamic, and evolves as the adversarial treats change.  Thus, our expected reward depends on the like-
lihood of being shot down prior to destroying the C2 building.  
 
Transition Function 
 

Even for this simple of an example, several possible transitions are possible at each stage. These tran-
sitions are predicated on predetermined knowledge of the probability of killing a target. For our formula-
tion we will assume 

 
𝑝!
!"# ≝ the probability of killing the defensive target with weapon type i      (7) 

 
𝑝!
!!|!"# ≝ the probability of killing the C2 target with weapon type i  given the defensive target is func-

tional                   (8) 
 
𝑝!
!!|!"  !"# ≝ the probability of killing the C2 target with weapon type i  given the defensive target is de-

stroyed                  (9) 
 

 
where i indexes the KE and DE weapon. 
 In addition, at each stage, the state can transition as a function of the risk of being shot down given 
the defensive target is still operational. 
 
Terminal State 
 

The terminal state happens when the aircraft has either been destroyed, has used all available weap-
ons, or has destroyed the C2 target.  

 

5 SIMPLE EXAMPLE RESULTS 

To obtain exact solutions for this problem formulation, value iteration is used. Value iteration is 
well suited for this problem because for each possible state, it takes into account the expected reward 
from making all possible decisions as well as the expected future reward. Therefore each state transition 
accounts for future information when making the current decision. Once this is done, the control which 
maximizes this function is selected and the algorithm is updated.  Table 1 presents the three initial 
scenarios investigated for our formulation and Table 2 presents the optimal controls which are consistent 
with the format discussed in Section 4 above. 
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Table 1.  Single shot probability of kill for weapon target combinations 

 
 

Table 2.  Optimal controls for feasible states 

 
 
Given a homogeneous weapon set (Scenario 1), and subsequently changing to nonhomogeneity (Scenari-
os 2 & 3), our optimal controls provide substantial insight.  For all scenarios, the defensive target value 
used was 500 and the C2 target was valued at 1000.  These values are arbitrary, so the results would be 
consistent so long as the higher valued target was double the value of the secondary target.  Looking at 
state (1,0,1,1) for the first scenario, it is notable that the optimal control is to shoot the remaining (KE) 
weapon at the defensive target in lieu of targeting the C2 target.  This is a function of the greatly reduced 
marginal probability of kill as well as the risk of being shot down.  Simply put, the expected reward of 
shooting the defensive target is greater than that of shooting the C2 target.  For future formulations, 
weighting the primary target by a large enough margin may be an area of added complexity for investiga-
tion, to include adding it as a factor in an experimental design. 
 
The results presented in Table 2 also demonstrate how the controls change when weapons capabilities 
have shifted.  When the single shot pkills are identical for each weapon-target pair (Scenario 2), intuitively 
you would want to shoot your weapons at the highest valued target.  Our method captures this.  Converse-
ly, in Scenario 3 the DE weapon is more effective against the defensive target, and the KE weapon, has a 
greater chance of killing the C2 target if the defensive target is functional.  As such, our results exhibit this 
relationship with the presented controls. 
 
As a means for further investigation, a 12 run latin-hypercube design was employed to gain additional in-
sights into the behavior of the system.  The design matrix is presented in Table 3, with the results shown 
in Table 4. 
 

KE	
  vs	
  Def KE	
  vs	
  C2|def KE	
  vs	
  C2|no	
  Def DE	
  vs	
  Def DE	
  vs	
  C2|def DE	
  vs	
  C2|no	
  Def
Scenario	
  1 0.6 0.1 0.95 0.6 0.1 0.95
Scenario	
  2 0.5 0.5 0.5 0.5 0.5 0.5
Scenario	
  3 0.6 0.3 0.8 0.8 0.1 0.95

(1,1,1,1) (0,1,1,1) (0,1,0,1) (1,0,0,1) (1,0,1,1)
Scenario	
  1 (1,0) (0,1) (0,2) (2,0) (1,0)
Scenario	
  2 (2,2) (0,2) (0,2) (2,0) (2,0)
Scenario	
  3 (2,1) (0,1) (0,2) (2,0) (0,0)
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Table 3.  Latin-hypercube design matrix 

 
 

Table 4. Optimal controls for latin-hypercube design points 

 
 

One trend is that if the probability of killing the defensive target is low (ex. 0.1), the optimal control is to 
shoot the weapon(s) at the C2 target.  Though intuitive, the risk incurred by not destroying the defensive 
target does not outweigh the expected value of destroying the C2 target.  Additionally, as the probability 
of killing the defensive target increases, destroying it becomes the dominant control.  This is consistent 
with the exception of when the probability of killing the C2 target is (practically) independent of the de-
fensive target, as seen in run 6.  Further validation of our methodology comes from runs 4 and 11.  Be-
cause the single-shot probability of destroying the C2 target given the defensive target is functional, the 
technique determines that it is better to save a weapon (the KE weapon in our case) for a later stage be-
cause of the likelihood that the other weapon will destroy the defensive target first.  Finally, we discuss 
the difficulties that arise as the state and decision spaces occur, and present our method for future analy-
sis. 
 

KE	
  vs	
  Def KE	
  vs	
  C2|def KE	
  vs	
  C2|no	
  Def DE	
  vs	
  Def DE	
  vs	
  C2|def DE	
  vs	
  C2|no	
  Def
Run	
  1 0.53332 0.1 0.1 0.51432 0.1 0.9
Run	
  2 0.9 0.1 0.35383 0.1 0.9 0.15127
Run	
  3 0.1 0.61813 0.11092 0.9 0.42802 0.1
Run	
  4 0.1 0.1 0.899 0.9 0.9 0.63508
Run	
  5 0.10806 0.9 0.83686 0.8935 0.1 0.9
Run	
  6 0.9 0.81229 0.1 0.9 0.84976 0.9
Run	
  7 0.82494 0.9 0.1 0.1 0.1 0.1
Run	
  8 0.9 0.81229 0.1 0.9 0.84976 0.9
Run	
  9 0.1 0.65489 0.27806 0.1 0.9 0.78298
Run	
  10 0.72835 0.9 0.9 0.7183 0.9 0.1
Run	
  11 0.9 0.1 0.84973 0.9 0.1 0.18768
Run	
  12 0.1 0.42209 0.9 0.1 0.12249 0.10017

(1,1,1,1) (0,1,1,1) (0,1,0,1) (1,0,0,1) (1,0,1,1)
Run	
  1 (1,0) (0,1) (0,2) (2,0) (1,0)
Run	
  2 (1,2) (0,2) (0,2) (2,0) (0,0)
Run	
  3 (2,1) (0,1) (0,2) (2,0) (2,0)
Run	
  4 (0,1) (0,2) (0,2) (2,0) (0,0)
Run	
  5 (2,1) (0,1) (0,2) (2,0) (2,0)
Run	
  6 (1,2) (0,2) (0,2) (2,0) (2,0)
Run	
  7 (2,1) (0,2) (0,2) (2,0) (2,0)
Run	
  8 (1,2) (0,2) (0,2) (2,0) (2,0)
Run	
  9 (2,2) (0,2) (0,2) (2,0) (0,0)
Run	
  10 (1,2) (0,2) (0,2) (2,0) (2,0)
Run	
  11 (0,1) (0,1) (0,2) (2,0) (1,0)
Run	
  12 (2,2) (0,2) (0,2) (2,0) (2,0)
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6 USE WITHIN COMBAT SIMULATIONS AND FUNCTIONAL APPROXIMATION 

6.1 Value Function Determination 

As the size of the state and decision spaces increase, the complexity of the transition function does not 
lend itself to an exact solution. The approximate dynamic programming algorithm described previously 
uses the simple example to determine )(~ 1 x

t
n
t SJ − , the approximate value-to-go function within a stochas-

tic combat simulation. To accomplish this a predetermined path for the weapon platform is determined 
based on its current mission. The path is divided into uniform sequential decision stages each requiring 
time tΔ . For a given time t , the current state, x

tS , is defined by the platform location, number of weap-
ons available and the number and location of defensive targets that can act on the platform in the next m 
stages. At each stage, a decision consists of whether to assign an available weapon to a single target or 
not, and which weapon to assign. The decision is then implemented within the simulation which contin-
ues for tΔ  time until another decision is required. The simulation performs the transitions to determine 
the state at the next decision epoch.  The state space transitions are a function of the previous decision and 
the probabilities.  This decision process continues within the combat simulation until either all weapon 
platforms are destroyed or the critical target is destroyed.   
 
The decision process uses the previous simple example in an approximate dynamic programming frame-
work as demonstrated by the following steps: 
 

1) Consider only the next m stages 
2) Use Monte Carlo methods to determine updated the conditional probabilities used in the simple 

example 
3) Formulate and solve simple problem for all possible states x

tS  

4) Update 1
1 ( )n x

t tJ S−
+
%  for all possible states x

tS  

5) ))((~),~,(maxarg 1,
111 t

x
t

nx
ttt

x
tt

x
t xSJxWSCx

tt

−
+−−

ℵ∈
+=  

6) Continue k times according to Sections 2 and 3 updating )(~ 1 x
t

n
t SJ −  
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Figure 1.  Value Function Determination framework 

The value iteration presented earlier is used to determine the decision policy for the state at each decision 
epoch through the calculation of ( )xt tJ S%  . Since only the single-shot probability of destruction is known 
for each weapon-target pair, Monte Carlo experiments are conducted at the current state resulting in esti-
mates for the conditional probabilities used in place of Equations 7-9. Just as in the simple example pre-
viously presented, intermediate defensive targets are valued less than the final critical target. The end re-
sult, after sufficient iterations, is a value function that represents the value-to-go approximation, ( )xt tJ S% , 

for a given decision, tx , for a given time t . 

6.2 Simulation Implementation 

Implementation within the simulation makes use of the determined value function to determine at each 
stage whether or not to engage targets with available weapons according to Figure 2.  
 

Path 
determination

Decision epoch

Attack/ 
Bypass
(xt ,st)

Value Iteration

Update 
conditional 

probabilities

State Transition
St+1(xt ,Wt)

Value Function Update 
for  1( )tJ + ⋅%

( , )t tx s∀
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Figure 2.  Combat Simulation Implementation 

At each decision epoch, a decision is made based that maximizes the current one step expected reward 
plus the approximated value-to-go.  

 

7 CONCLUSIONS 

A solution methodology for the sequential allocation of differing weapons to a collection of adversarial 
targets with the goal to destroy a critical target within a combat simulation is presented. This approach 
demonstrates exploiting the special structure of the problem to recursively update functional approxima-
tions representing future decisions using the problem’s approximate subgradient information. Simulation 
and dynamic programming are used within a larger dynamic programming framework to determine allo-
cation strategies and develop a value function for these mission sets to be used in future, larger and more 
complex simulations. The developed methodology provides a tractable approach to addressing complex 
sequential allocation of resources within a risky environment. 
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