
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

WEAPON TRADEOFF ANALYSIS USING DYNAMIC PROGRAMMING FOR A DYNAMIC
WEAPON TARGET ASSIGNMENT PROBLEM WITHIN A SIMULATION

Darryl Ahner
Carl Parson

Air Force Institute of Technology

2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765, USA

ABSTRACT

We consider the sequential allocation of differing weapons to a collection of adversarial targets with the
goal of surviving to destroy a critical target within a combat simulation. The platform which carries the
weapons proceeds through a set of sequential stages and at each stage potentially engages targets with
available weapons. The decision space at each stage is affected by previous decisions and the probability
of platform destruction. Simulation and dynamic programming are then used within a larger dynamic
programming framework to determine allocation strategies and develop value functions for these mission
sets to be used in future, larger and more complex simulations. A simple dynamic programming example
of the problem is considered and used to generate a functional approximation for a more complex system.
The developed methodology provides a tractable approach to addressing complex sequential allocation of
resources within a risky environment.

1 INTRODUCTION

The subject of this paper is the sequential allocation of two competing weapons to a collection of adver-
sarial targets that affect the overall effectiveness of an adversarial system of systems for use within a
combat simulation. It is a subject that has become increasingly important with the development of more
complex weapon systems. For example, the effectiveness of two differing missiles yield varying effects
on targets and the optimal strategy could consist of a mix of these two missiles which may differ by
range, probability of kill, and number able to be carried. To compare these two weapon types, the plat-
form which carries the weapons must proceed through a predefined set of sequential stages and at each
stage a decision must be made to engage targets for that stage and, if so, which missile to use.
 The decision space at each stage is affected by previous stage decisions and the probability of plat-
form destruction at each stage is a function of the current state of the adversarial system of systems.
Therefore, while it is generally less risky for the platform to ignore the current target and continue its mis-
sion, the cumulative risk to mission completion may result in the optimal solution at that stage being to
engage the target. Additionally, while one missile may have a higher probability of destroying the target,
future stages may dictate the use of the less capable missile.
 The special structure of the problem is exploited to recursively update functional approximations rep-
resenting future decisions using the problem’s subgradient information. A dynamic programming meth-
odology is developed to determine allocation strategies and develop value functions for these mission sets
for use in future, larger and more complex simulations. This value function must take into account full
state information to include missiles of each type remaining, the current state of the adversarial system of
systems, and remaining stages to accomplish the destruction of the primary target.

2831978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Ahner and Parson

 First posed by Manne (1958), the weapon target assignment problem has provably optimal solutions
when all the weapons are identical (denBroder et al. [1958] and Katter [1986]) and when the targets can
receive at most one weapon (Chang et al. [1987] and Orlin [1987]). Previous work addressed performing
tasks in uncertain environments where vehicles may fail (Castanon et al. [2008]). A more comprehensive
survey of the weapon-target assignment problem can be found in (Cai et al. [2006]) This paper presents a
strategy based on these algorithms to determine valid subgradient information.

2 DYNAMIC PROGRAMMING USING A POST DECISION STATE

Godfrey and Powell (2002) introduce an adaptive dynamic programming algorithm for stochastic dynam-
ic resource allocation problems. Consider the general problem where the new task arrival information,

TW , is independent of the decision vector tx and the state 1 1 ,(,)t t t tS f S x W+ = where 1f is a function de-
scribing the system dynamics.
 Let),(ttt xSC be the contribution received in period t given the state tS and decision tx X∈ . The

information that arrives in time t is tW , a random variable generated with a known probability distribu-
tion. It is well known that problems that maximize these costs over a finite time horizon can be solved by
Bellman's (1957) optimality equations:

{ }ttttttttttxtt SWxSSJxSCSJ

t

|),,((),(max)(11 +++Ε= (1)

)(tt SJ is commonly referred to as the value-to-go. Equation 1 requires us to take into account the impact
of current decisions on future decisions which depend on future policies. As shown in Puterman (1994)
we write the expectation for the discrete case as

1

1
'

() max (,) (' | ,) (')
t

t

t t t t t t t tx s S
J S C S x p s S x J s

+

+
∈

= + ∑ (2)

where S is the set of potential states and =),|'(tt xSsp the probability the system will be in state 's

given that the current state is tS and we take action tx .

 Therefore, if)'(1 sJt+ were known, we would have to sum over the entire feasible outcome space fol-

lowed by the maximization over tx .

 As an alternative, consider a post-decision state x
tS at time t. The post decision state evolves accord-

ing to a state equation which has the form),(2 tt
x
t xSfS = where 2f is a function describing the post-

decision state dynamics. x
tS always exists by simply defining),(tt

x
t xSS = . This post-decision state is

the state that is acted upon by a decision tx but has not yet been acted upon by the exogenous information

process, tW . The post-decision state is therefore a function of the state at time t, tS , and the decision at

time t, tx .

 In Powell (2007), noting that 1+tS is a function of x
tS and tW , it is shown that if the dynamic pro-

gramming recursion is written around the post-decision state we obtain the post-decision version of Bell-
man's equation:

{ }
1

1 1 1 1() max (, ,) () |
t

x x x x x x
t t t t t t t t tx
J S C S W x J S S

+
+ + + += Ε + (3)

where the value function is indexed with the superscript x to denote the calculation from a post-decision

2832

Ahner and Parson

state. Note that writing the function in terms of the post-decision state allows the expectation to move
outside the maximum operator which is a property that we will exploit later. Since the expectation is
conditioned on x

tS , the information tW is needed in order to determine 1+tx .
 The post-decision state variable requires the solution of a maximization problem within an expecta-
tion. The decision function is now given by

)),((),,(maxarg 1111111
1

+++++++ +=
+

tt
x
t

x
ttt

x
tt

x
t xSSJxWSCx

t

 (4)

 In principle, an optimal policy is found by first numerically solving Bellman's equation and then
computing the optimal policy using the resulting value function. However, this requires computation and
storage of)(x

t
x
t SJ for each post-decision state which is generally not feasible for combinatorial prob-

lems. In the next section we discuss how to mitigate this issue.

3 THE GENERAL ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM

Godfrey and Powell (2002) introduce an adaptive dynamic programming algorithm for stochastic
dynamic resource allocation problems. Again, consider the general problem as defined where the new
task arrival information, tW , is independent of the decision vector tx and the state tS . Assume we have

an approximation of the value-to-go function)(1 x
t

n
t SJ − where n is the current iteration. Given a realiza-

tion { }110
~,~,~ −TWWW … , we compute 0x according to

0 0

, 1
0 0 0 0 1 0 0argmax (,) (())x n x

x X
x C S x J S x−

∈
= + % (5)

We use a forward algorithm recursively from time 1.1 −= Tt … to compute …,11 , xS according to

))((~),~,(maxarg 1,
111 t

x
t

nx
ttt

x
tt

x
t xSJxWSCx

tt

−
+−−

ℵ∈
+= (6)

where tX represents the feasible control space given by the state dynamics. This is possible since given

{ }110
~,~,~ −TWWW … all information is known to solve the equation as a deterministic problem which is then

used to update the approximation)(~ 1 x
t

n
t SJ − for the next sample of { }110

~,~,~ −TWWW … .
We use the sequence of decisions selected for a given sample path of task arrivals, the associated re-

ward values, and subgradient information to update our approximation of the value-to-go function. We
outline the algorithm below:
We call the following algorithm the general adaptive dynamic programming algorithm because it only
shows the overall procedure and not the specifics of how)(~ 1 x

t
n
t SJ − is updated which is problem depend-

ent.

Step 0 Initialization: Initialize },,,0{,~0 TtJt …= Set 0=n

Step 1 Do while :Nn ≤ Choose Ω∈nW where nW is a single sample realization of task arrivals.
Step 2 Do for :1,,1,0 −= Tt …

2a Solve
))((~),~,(maxarg 1,

111 t
x
t

nx
ttt

x
tt

x
t xSJxWSCx

tt

−
+−−

ℵ∈
+=

2b Update the state tS

2833

Ahner and Parson

2c Update the value function approximation)(~ 1 x
t

n
t SJ − using information collected from the optimi-

zation in step 2a
Step 3 Return NJ and use it to select 0x

This algorithmic approach is similar to approximate dynamic programming as shown in Bertsekas
and Tsitsiklis (1996). Our approach differs in two main ways. First, the post-decision state and a single
Monte Carlo sample are used rather than sampling a number of forward trajectories as part of an updating
process. Second, the approximate value function is updated after each Monte Carlo sample. This pro-
posed approach is explained further in Section 6.

The general adaptive dynamic programming algorithm must be tailored for the traits of a specific
problem. Important issues are the form of the value-to-go approximation, the solution method used to
solve the recursion, and the methods used to update the value-to-go approximation. In the next sections
we begin by exploring a simple dynamic programming example of the problem and then conjecture a
functional approximation for future exploration.

4 SIMPLE DYNAMIC PROGRAMMING EXAMPLE FOR WEAPON TRADEOFF
ANALYSIS

As an initial formulation, a finite space, infinite horizon dynamic programming problem is considered.
This example consists of a platform with two weapon types available, each with a single use, facing two
targets: a defensive target and a C2 building. Each possible state is investigated to determine the optimal
control based upon the previous state, decision and outcome. This formulation also includes the inherent
risk of not destroying the defensive target prior to engaging the C2 building, meaning that there is a
nonnegative probability that any remaining weapons will be destroyed if the defensive target is function-
al.

State Space

Here our state consists of a quadruple with each index being a dichotomous variable denoting whether

the element is functional (1), or destroyed (0). For the most simple example our quadruple will take on the
form:

(Kinetic Energy (KE) Weapon, Directed Energy (DE) Weapon, Defensive Target, C2 Target)

As an example, the state (1,0,1,1) means that weapon type 1 is still available and both targets are currently
functional. For this formulation, our initial state is always (1,1,1,1).

Decision Space

At each stage we need to determine whether or not we should engage any remaining targets. What
will drive this decision is the risk that our aircraft will get shot down in a future stage, which is a function
of the state of the defensive target. Our decision will be in the form of a bivariate vector where the indi-
ces denote which target is to be engaged at the current stage. Each active weapon will be able to make
one of three choices:

0 = Engage no target

1 = Engage the defensive target
2 = Engage the C2 target

2834

Ahner and Parson

For example, the decision (1,2) would mean that the first weapon be shot at the defensive target and
the second weapon be shot at the C2 target. Given the initial state of our formulation, 9 decisions (or con-
trols) can be applied, though this changes as the states transition.

Reward Function

Our example allows for us to obtain a reward for each target destroyed. We assume that the defensive

target value, V1, will be less than the value of the C2 building as it is the ultimate goal. The risk is mod-
eled in this example by including a nonzero probability of our aircraft being shot down. This probability
is dynamic, and evolves as the adversarial treats change. Thus, our expected reward depends on the like-
lihood of being shot down prior to destroying the C2 building.

Transition Function

Even for this simple of an example, several possible transitions are possible at each stage. These tran-
sitions are predicated on predetermined knowledge of the probability of killing a target. For our formula-
tion we will assume

𝑝!
!"# ≝ the probability of killing the defensive target with weapon type i (7)

𝑝!
!!|!"# ≝ the probability of killing the C2 target with weapon type i given the defensive target is func-

tional (8)

𝑝!
!!|!" !"# ≝ the probability of killing the C2 target with weapon type i given the defensive target is de-

stroyed (9)

where i indexes the KE and DE weapon.
 In addition, at each stage, the state can transition as a function of the risk of being shot down given
the defensive target is still operational.

Terminal State

The terminal state happens when the aircraft has either been destroyed, has used all available weap-
ons, or has destroyed the C2 target.

5 SIMPLE EXAMPLE RESULTS

To obtain exact solutions for this problem formulation, value iteration is used. Value iteration is
well suited for this problem because for each possible state, it takes into account the expected reward
from making all possible decisions as well as the expected future reward. Therefore each state transition
accounts for future information when making the current decision. Once this is done, the control which
maximizes this function is selected and the algorithm is updated. Table 1 presents the three initial
scenarios investigated for our formulation and Table 2 presents the optimal controls which are consistent
with the format discussed in Section 4 above.

2835

Ahner and Parson

Table 1. Single shot probability of kill for weapon target combinations

Table 2. Optimal controls for feasible states

Given a homogeneous weapon set (Scenario 1), and subsequently changing to nonhomogeneity (Scenari-
os 2 & 3), our optimal controls provide substantial insight. For all scenarios, the defensive target value
used was 500 and the C2 target was valued at 1000. These values are arbitrary, so the results would be
consistent so long as the higher valued target was double the value of the secondary target. Looking at
state (1,0,1,1) for the first scenario, it is notable that the optimal control is to shoot the remaining (KE)
weapon at the defensive target in lieu of targeting the C2 target. This is a function of the greatly reduced
marginal probability of kill as well as the risk of being shot down. Simply put, the expected reward of
shooting the defensive target is greater than that of shooting the C2 target. For future formulations,
weighting the primary target by a large enough margin may be an area of added complexity for investiga-
tion, to include adding it as a factor in an experimental design.

The results presented in Table 2 also demonstrate how the controls change when weapons capabilities
have shifted. When the single shot pkills are identical for each weapon-target pair (Scenario 2), intuitively
you would want to shoot your weapons at the highest valued target. Our method captures this. Converse-
ly, in Scenario 3 the DE weapon is more effective against the defensive target, and the KE weapon, has a
greater chance of killing the C2 target if the defensive target is functional. As such, our results exhibit this
relationship with the presented controls.

As a means for further investigation, a 12 run latin-hypercube design was employed to gain additional in-
sights into the behavior of the system. The design matrix is presented in Table 3, with the results shown
in Table 4.

KE	
 vs	
 Def KE	
 vs	
 C2|def KE	
 vs	
 C2|no	
 Def DE	
 vs	
 Def DE	
 vs	
 C2|def DE	
 vs	
 C2|no	
 Def
Scenario	
 1 0.6 0.1 0.95 0.6 0.1 0.95
Scenario	
 2 0.5 0.5 0.5 0.5 0.5 0.5
Scenario	
 3 0.6 0.3 0.8 0.8 0.1 0.95

(1,1,1,1) (0,1,1,1) (0,1,0,1) (1,0,0,1) (1,0,1,1)
Scenario	
 1 (1,0) (0,1) (0,2) (2,0) (1,0)
Scenario	
 2 (2,2) (0,2) (0,2) (2,0) (2,0)
Scenario	
 3 (2,1) (0,1) (0,2) (2,0) (0,0)

2836

Ahner and Parson

Table 3. Latin-hypercube design matrix

Table 4. Optimal controls for latin-hypercube design points

One trend is that if the probability of killing the defensive target is low (ex. 0.1), the optimal control is to
shoot the weapon(s) at the C2 target. Though intuitive, the risk incurred by not destroying the defensive
target does not outweigh the expected value of destroying the C2 target. Additionally, as the probability
of killing the defensive target increases, destroying it becomes the dominant control. This is consistent
with the exception of when the probability of killing the C2 target is (practically) independent of the de-
fensive target, as seen in run 6. Further validation of our methodology comes from runs 4 and 11. Be-
cause the single-shot probability of destroying the C2 target given the defensive target is functional, the
technique determines that it is better to save a weapon (the KE weapon in our case) for a later stage be-
cause of the likelihood that the other weapon will destroy the defensive target first. Finally, we discuss
the difficulties that arise as the state and decision spaces occur, and present our method for future analy-
sis.

KE	
 vs	
 Def KE	
 vs	
 C2|def KE	
 vs	
 C2|no	
 Def DE	
 vs	
 Def DE	
 vs	
 C2|def DE	
 vs	
 C2|no	
 Def
Run	
 1 0.53332 0.1 0.1 0.51432 0.1 0.9
Run	
 2 0.9 0.1 0.35383 0.1 0.9 0.15127
Run	
 3 0.1 0.61813 0.11092 0.9 0.42802 0.1
Run	
 4 0.1 0.1 0.899 0.9 0.9 0.63508
Run	
 5 0.10806 0.9 0.83686 0.8935 0.1 0.9
Run	
 6 0.9 0.81229 0.1 0.9 0.84976 0.9
Run	
 7 0.82494 0.9 0.1 0.1 0.1 0.1
Run	
 8 0.9 0.81229 0.1 0.9 0.84976 0.9
Run	
 9 0.1 0.65489 0.27806 0.1 0.9 0.78298
Run	
 10 0.72835 0.9 0.9 0.7183 0.9 0.1
Run	
 11 0.9 0.1 0.84973 0.9 0.1 0.18768
Run	
 12 0.1 0.42209 0.9 0.1 0.12249 0.10017

(1,1,1,1) (0,1,1,1) (0,1,0,1) (1,0,0,1) (1,0,1,1)
Run	
 1 (1,0) (0,1) (0,2) (2,0) (1,0)
Run	
 2 (1,2) (0,2) (0,2) (2,0) (0,0)
Run	
 3 (2,1) (0,1) (0,2) (2,0) (2,0)
Run	
 4 (0,1) (0,2) (0,2) (2,0) (0,0)
Run	
 5 (2,1) (0,1) (0,2) (2,0) (2,0)
Run	
 6 (1,2) (0,2) (0,2) (2,0) (2,0)
Run	
 7 (2,1) (0,2) (0,2) (2,0) (2,0)
Run	
 8 (1,2) (0,2) (0,2) (2,0) (2,0)
Run	
 9 (2,2) (0,2) (0,2) (2,0) (0,0)
Run	
 10 (1,2) (0,2) (0,2) (2,0) (2,0)
Run	
 11 (0,1) (0,1) (0,2) (2,0) (1,0)
Run	
 12 (2,2) (0,2) (0,2) (2,0) (2,0)

2837

Ahner and Parson

6 USE WITHIN COMBAT SIMULATIONS AND FUNCTIONAL APPROXIMATION

6.1 Value Function Determination

As the size of the state and decision spaces increase, the complexity of the transition function does not
lend itself to an exact solution. The approximate dynamic programming algorithm described previously
uses the simple example to determine)(~ 1 x

t
n
t SJ − , the approximate value-to-go function within a stochas-

tic combat simulation. To accomplish this a predetermined path for the weapon platform is determined
based on its current mission. The path is divided into uniform sequential decision stages each requiring
time tΔ . For a given time t , the current state, x

tS , is defined by the platform location, number of weap-
ons available and the number and location of defensive targets that can act on the platform in the next m
stages. At each stage, a decision consists of whether to assign an available weapon to a single target or
not, and which weapon to assign. The decision is then implemented within the simulation which contin-
ues for tΔ time until another decision is required. The simulation performs the transitions to determine
the state at the next decision epoch. The state space transitions are a function of the previous decision and
the probabilities. This decision process continues within the combat simulation until either all weapon
platforms are destroyed or the critical target is destroyed.

The decision process uses the previous simple example in an approximate dynamic programming frame-
work as demonstrated by the following steps:

1) Consider only the next m stages
2) Use Monte Carlo methods to determine updated the conditional probabilities used in the simple

example
3) Formulate and solve simple problem for all possible states x

tS

4) Update 1
1 ()n x

t tJ S−
+
% for all possible states x

tS

5)))((~),~,(maxarg 1,
111 t

x
t

nx
ttt

x
tt

x
t xSJxWSCx

tt

−
+−−

ℵ∈
+=

6) Continue k times according to Sections 2 and 3 updating)(~ 1 x
t

n
t SJ −

2838

Ahner and Parson

Figure 1. Value Function Determination framework

The value iteration presented earlier is used to determine the decision policy for the state at each decision
epoch through the calculation of ()xt tJ S% . Since only the single-shot probability of destruction is known
for each weapon-target pair, Monte Carlo experiments are conducted at the current state resulting in esti-
mates for the conditional probabilities used in place of Equations 7-9. Just as in the simple example pre-
viously presented, intermediate defensive targets are valued less than the final critical target. The end re-
sult, after sufficient iterations, is a value function that represents the value-to-go approximation, ()xt tJ S% ,

for a given decision, tx , for a given time t .

6.2 Simulation Implementation

Implementation within the simulation makes use of the determined value function to determine at each
stage whether or not to engage targets with available weapons according to Figure 2.

Path
determination

Decision epoch

Attack/
Bypass
(xt ,st)

Value Iteration

Update
conditional

probabilities

State Transition
St+1(xt ,Wt)

Value Function Update
for 1()tJ + ⋅%

(,)t tx s∀

2839

Ahner and Parson

Figure 2. Combat Simulation Implementation

At each decision epoch, a decision is made based that maximizes the current one step expected reward
plus the approximated value-to-go.

7 CONCLUSIONS

A solution methodology for the sequential allocation of differing weapons to a collection of adversarial
targets with the goal to destroy a critical target within a combat simulation is presented. This approach
demonstrates exploiting the special structure of the problem to recursively update functional approxima-
tions representing future decisions using the problem’s approximate subgradient information. Simulation
and dynamic programming are used within a larger dynamic programming framework to determine allo-
cation strategies and develop a value function for these mission sets to be used in future, larger and more
complex simulations. The developed methodology provides a tractable approach to addressing complex
sequential allocation of resources within a risky environment.

REFERENCES

Bellman, R., 1957. Dynamic Programming, Princeton University Press, Princeton, NJ.
Bertsekas D., J. Tsitsiklis. 1996. Neuro-Dynamic Programming, Athena Scientific, Belmont MA.
Castanon D., D Ahner. 2008. Team Task Allocation and Routing in Risky Environments under Human

Guidance, Proceedings of the 47th IEEE Conference on Decision and Control, 1139-1144.
denBroeder. G., R.E. Ellison, L. Emerling, 1959. On Optimum Target Assignments, Operations Research,

7, 322-326.
Godfrey G., W. Powell, 2002. An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Man-

agement, I: Single Period Travel Times, Transportation Science, 36, 21-39.
H. Cai, J. Liu, Y. Chen and H. Wang. 2006. Survey of the research on dynamic weapon-target assign-

ment problem. Journal of Systems Engineering and Electronics, Vol 17, No.3, pp. 559-565.
Katter, J.D. 1986. A solution of the multi-weapon, multi-target assignment problem. Working Paper

26957, MITRE, McLean, VA.

Path
determination

Decision epoch

Attack/
Bypass
(x’t ,s’t)

State Transition
St+1(xt ,Wt)

Value Function
Update for 1tJ +

%

2840

Ahner and Parson

Manne, A., 1958. A Target-Assignment Problem, Operations Research, 6, 346-351.
Powell W., 2007. Approximate Dynamic Programming, John Wiley & Sons, Hoboken, NJ.
Puterman, M., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley

Publishing, New York.

AUTHOR BIOGRAPHIES

DARRYL K. AHNER is the Director, Center for Operational Analysis and an Assistant Professor at the
Air Force Institute of Technology. He earned a M.S. in Applied Mathematics and a M.S. in Operations
Research & Statistics from Rensselaer Polytechnic Institute in Troy, NY and a Ph.D. in Systems Engi-
neering (Operations Research) from Boston University. His research interests include dynamic program-
ming and using the combination of optimization and simulation for complex adaptive systems. His email
address is <darryl.ahner@afit.edu>.

CARL PARSON is currently a PhD Student at the Air Force Institute of Technology. He earned a M.S.
in Operations Research from the Air Force Institute of Technology. His research interests include sto-
chastic optimization, simulation and optimization, dynamic programming and resource allocation. His
email address is carl.parson@afit.edu>.

2841

