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ABSTRACT 

Most building energy simulation software offers significant building energy performance capabilities; 
however, its use is limited to design phase only. There is significant benefit to have these energy simula-
tion models available during operation phase for detection and diagnostics. Since simulation models and 
real building states are not coupled, the models are initialized in an empty state or run through a warm-up 
period (i.e., off-line simulation). This paper develops the need and research requirements for on-line 
simulation of building energy processes where current state variables obtained from sensors and meters in 
buildings are used to initialize the model. Based on the simulation results, a new corrective decision is 
made and implemented in the real process. This paper argues that on-line simulation can provide decision 
makers with reliable energy models to test different technical and behavioral interventions, and improve 
predictions of building performance, compared to the results obtained with existing off-line models.  

1 INTRODUCTION 

Despite significant advances in energy simulation software (e.g., eQuest 2009; EnergyPlus 2009a), energy 
management and control systems (EMCS) (EIA 2012; Goldman et al. 2010), and occupancy interventions 
(Abrahamse et al. 2005), buildings continue to be the number one consumers of energy in the United 
States (US). They use 40% of the nation’s total primary energy and 70% of the generated electricity (EIA 
2012; DOE 2010). The effects of this excessive energy use impact the economic well-being of the nation, 
contribute to reliance on foreign oil, and result in significant emissions of harmful greenhouse gases. 

One important limitation of existing energy analysis and control systems is that they are highly de-
coupled (i.e., developed for a specific purpose and phase of the building life-cycle), which prevents their 
individual benefits from being collectively exploited to accurately predict, monitor, and improve energy 
efficiency in buildings (Pang et al. 2012). These tools require specific expertise (e.g., facility managers 
might be proficient in the use of EMCS but consider simulation models to be too complex), are time con-
suming, and rely heavily on availability and quality of data. Thus, as parallel advances in energy simula-
tion, EMCS, and occupancy intervention methods continue to evolve, it is critical to extend their capabili-
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ties to allow their collective use for decision-making across different phases of the building life-cycle to 
improve building energy performance and reduce any adverse impacts. 
 This paper explores the need and research requirements of coupling energy simulation models with 
large-scale data collected from sensor systems in monitored buildings to enable on-line simulation of the 
building energy systems. The authors argue that enabling such coupling is necessary to build credible en-
ergy simulations that can model complex behaviors at the building-occupant-energy-controller interface. 

2 BACKGROUND AND SIGNIFICANCE 

The US has an estimated 5 million commercial buildings and 115 million residential households (EIA 
2012; DOE 2010). However, rising energy costs and declining resources could soon render conditioned, 
comfortable and healthy indoor environments in these buildings unaffordable to many (DOE 2010). Thus, 
reducing energy demand of buildings during the operation phase is critical. This phase alone accounts for 
more than 80% of the total energy usage (UNEP-SBCI 2007). 
 Several alternatives are available to curtail wasteful energy use. First, older buildings can be retrofit-
ted to reset building life, improve performance, and make energy use more predictable (Mora 2007). In 
newer buildings, energy consumption can be reduced by continuous monitoring and improvement of 
building performance through methods like energy management (e.g., Energy Star program (US EPA 
2012)), and Fault Detection and Diagnosis (FDD) tools (e.g., Katipamula and Brambley 2005a and 
2005b). These can be supplemented by interventions that target building occupants’ perceptions towards 
energy consumption (Abrahamse et al. 2005). Despite these methods, buildings’ actual energy consump-
tion persistently exceeds that predicted in design phases anywhere from 30% to 100%, due to several rea-
sons (e.g., unpredictable weather conditions, equipment performance, faulty control strategies and unex-
pected occupancy behavior) (Menassa et al. 2012; Yudelson 2010; Dell’lsola and Kirk 2003; Soebarto 
and Williamson 2001). 

2.1 Significance 

Whether it is major retrofits for older buildings or energy management for newer buildings, technical so-
lutions to reduce energy demand are abundantly available (Abraham and Nguyen 2004). These are sup-
ported by several fundamental process level components. For example, building codes and standards 
(i.e., IECC 2012 and ASHRAE 2010) provide minimum requirements for energy efficient design and 
construction. Energy simulation software (e.g., eQuest 2009; EnergyPlus 2009a), allow architects and 
engineers to develop detailed models that predict energy consumption during a building’s operation 
phase, and select most efficient and economical technical solutions. On the other hand, energy manage-
ment and control systems (EMCS) allow for continuous and systematic assessment and management of 
energy consumption during a building’s operation phase, while respecting occupant health and comfort 
(Doukas et al. 2009; Capehart et al. 2003). They consist of both hardware (sensors, meters) and software 
components (control interface) (EIA 2012; Goldman et al. 2010; Andrews and Krogmann 2009a). Finally, 
occupancy intervention methods such as education, feedback, and rewards have been investigated in res-
idential (Anderson et al. 2013; Peschiera and Taylor 2012; Abrahamse et al. 2005; Staats et al. 2004; 
Pickens 2002) and commercial buildings (Azar and Menassa 2012; Staats et al. 2000), with varying suc-
cess. However, these disparate fundamental process level components are hard to integrate for problem 
solving and decision-making across different phases of the building life-cycle. Specifically: 

1. The complexity of energy models developed by a design team of a new building limits the 
potential for their re-use in energy management during operation. Facility managers consider 
these models to be too specific and complex for operational decisions (Samuelson et al. 2011).  

2. Energy models rely heavily on user data input, limiting their ability to simulate complex 
processes that need high-fidelity and real-time data, which in turn limits their usefulness to 
building managers investigating energy reduction alternatives (Menassa et al. 2013a). 
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3. Several studies in literature report that when installed and used properly, EMCS can provide 
energy savings, occupancy comfort and safety at relatively low initial cost to building 
stakeholders (Široky´et al. 2011; Goldman et al. 2010; Jiang et al. 2009; Herrmann 2005); 
however, these savings cannot be quantified or guaranteed (Meier et al. 2011 and 2010). 

4. Although some existing EMCS have intelligent FDD capabilities (Wu and Sun 2010; Lee et al. 
2007; Schein et al. 2006; Katipamula and Brambley 2005a), facility managers still primarily use 
EMCS only for equipment control (Lowry 2002). They rely on their experience and go through 
trial periods to explore what technical solutions to building operations will work. 

5. Most of the occupancy intervention approaches are experimental and based on limited data about 
occupancy energy use profiles, and often lead to limited energy savings and relapse after an 
intervention approach is halted (Peschiera et al. 2010; Abrahamse et al. 2005). 

6. Building Information Modeling (BIM) has been used in literature to help provide building 
geometry, location and other data to initiate energy models (e.g., Kim and Anderson 2012). 
However, most of these models still rely on the experience of the modeler to provide initial 
information in BIM. 

The above discussion emphasizes that design and operation phase tools for building simulation and 
energy management are highly de-coupled with the following primary technical limitations: 

1. A single and monolithic model cannot simulate complex processes within a domain with the 
required fidelity and detail (e.g., the use of real data from EMCS can increase model accuracy) 

2. A single set of model developers cannot have expert knowledge in all the details of a domain to 
be simulated (e.g., energy models account for occupancy schedules but not behaviors) 

3. Individuals responsible for managing a building’s energy systems generally do not have the 
training to utilize multiple models and systems that would allow such limitations to be overcome. 

The most notable software that uses a modular middleware for coupling is the Building Controls Vir-
tual Test Bed (BCVTB) developed at Lawrence Berkley National Laboratory (Pang et al. 2012; Wetter 
2011). BCVTB uses Ptolemy II (Brooks et al. 2007) as a modular middleware to couple simulation pro-
grams. One of the limitations of BCVTB is that it integrates with a MATLAB/Simulink model through a 
specific interface, such as the Inter-Process Communication (IPC) and function calls (Wetter 2011). Thus, 
any two models executed using such an interface in one process are tightly coupled. More importantly, 
the coupled models still need to be initialized by the users. 

This paper focuses on the first limitation listed above, and explores the coupling of real data from 
EMCS with energy simulation models in order to increase model accuracy and credibility. The authors 
have recently developed and tested a conceptual framework for an energy simulation federation in an 
IEEE 1516 High Level Architecture (HLA) compliant environment (Menassa et al. 2013a). We coupled a 
DOE 2 energy model with an agent-based model (ABM) of building occupants developed by Azar and 
Menassa (2012) that simulates changes in their behaviors due to feedback. The DOE 2 and ABM do not 
follow the same simulation paradigm or formalism; however, through the HLA federation, these two dis-
tinct and spatially distributed simulation models are able to synchronize their data during run time. We 
used a case study building to illustrate the applicability of the federation for determining optimum feed-
back frequency to building occupants. This framework provides the basic loose coupling strategy that al-
lows us to integrate EMCS data sources with running simulation models to realize on-line simulation. 

3 ON-LINE SIMULATION OF BUILDING ENERGY PROCESSES 

3.1 On-Line Simulation 

Traditional simulation models have limited use during a system’s operation phase, and are thus often 
called “throw away models” (Rao et al. 2008). In building energy simulation, since the models and the re-
al building processes are not coupled (in most cases, the real buildings may not exist), such models are in-
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itialized either in an empty state or in a state obtained after running the models through a warm-up period. 
In the second case, even if a real building exists, the initial state of the model does not correspond exactly 
to the real building state at a given moment. As the models are disconnected from the real processes, this 
type of simulation can be referred to as ‘Off-Line Simulation’ (Mirdamadi et al. 2007).  

On the other hand, in an ‘On-Line Simulation,’ the model has a direct and persistent connection with 
the real process (Rao et al. 2008). The current state variables monitored from a real process are used to in-
itialize the simulation. Based on the simulation results, a new corrective or policy decision is made and 
immediately implemented in the real process. The real process can then continue to operate until the next 
disruptive or scheduled event occurs, at which time the steps will repeat, thereby realizing an interactive 
control mechanism. The proposed concept is graphically described as a flowchart in Figure 1. In the con-
text of this research, this involves the integration of sensors and meters installed in buildings as part of an 
EMCS with an “off-line” simulation to enable ‘On-Line Simulation’.  

 

 
Figure 1: Principle of real-time control with on-line simulation 
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 On-line simulation can allow facility managers to understand/mitigate problems in a dynamic system 
on a real-time basis (i.e. as they occur). They can also anticipate unexpected problems and can suggest 
means of improving system reactivity (Rao et al. 2008). In building energy analysis, on-line simulation 
can allow decision-makers to select the best alternative among scheduling heuristics or loading rules dur-
ing operation of an HVAC system, evaluate candidate “what-if” scenarios for user comfort in response to 
contemplated actions, and predict building energy performance at any given time. In this case, sensors, 
which may be part of a the building EMCS, will automatically update the energy model with information 
related to indoor/outdoor temperature, indoor/outdoor humidity, occupancy, time of the day and CO2 lev-
els in certain parts of the building. The building manager can use this information to predict energy re-
quired HVAC system and determine if corrective actions are necessary to reduce the energy use profile. 

The basic idea behind on-line simulation is that a decision-maker will avoid taking a controlling ac-
tion based on pre-defined policy, and will instead run several near-future simulations for a small number 
of alternative actions (or decisions), and select the option that optimizes the objective function relevant to 
that context. This is graphically depicted in Figure 2. The goal is thus to obtain a useful anticipated future 
result that can be implemented in the real process within a time frame in which the implemented action is 
still useful. The duration of such a time frame is context specific (e.g., changes in user comfort parameters 
may be required immediately, or at a future scheduled time). The challenge in this regard is thus to create 
a mechanism that allows a controller to interactively identify the number of feasible alternatives to be 
simulated and the simulation duration such that it allows a reaction on the physical system in real-time 
without interfering with the current building operation. For example, based on historical data from sensors 
and real time data collected at time decision is ot be made, the facility manager would be able to use the 
simulation (e.g., computational fluid dynamics-CFD) to determine appropriate time to switch building 
from mechanical to natural ventilation mode (e.g., Menassa et al. 2013 b; Menassa et al. 2013c). The al-
ternatives would be to decide whether to switch to natural ventilation when energy savings exceed a cer-
tain threshold, when there is sufficient evidence to show that natural ventilation can be utilized for a min-
imum time period (e.g., at least 3 hours) or maintain natural ventilation as long as CO2 level in the 
ventilated space are within acceptable limits. 

 

 
 

Figure 2: Arriving at optimal decision with on-line simulation 
 

 The simulation model must be sufficiently close to reality and contain variables that can be associated 
with the state of the real process. It is therefore necessary to have an on-line connection or coupling with 
the real process so that any implemented monitoring technology can interface with the model and auto-
matically initialize the state variables before simulating scenarios in the near future. Sensors and meters 
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installed in a building can be readily encapsulated by a data collection software process to enable federat-
ed on-line simulation. The challenges to achieve this are related to the selection, extraction, and mapping 
of the right data at the required time and frequency to perform on-line building simulations. 
 In designing any simulation experiment, the “depth” indicates the look-ahead duration and the 
“width” indicates the number of simulations to run for each alternative in order to achieve a desired con-
fidence interval (Dalal et al. 2003). The challenge in this regard is thus to create a simulation framework 
that is scalable and can interactively guide a controller in selecting appropriate values for the depth and 
width of the simulation experiments at any decision point. 

3.2 Implementation of On-Line Simulation Framework 

The implementation of a real-time control framework using on-line simulation involves the following 
steps: monitoring, data-collection, simulation, decision, and implementation. In order to experiment with 
the proposed idea and evaluate its effectiveness in serving as a responsive and objective control mecha-
nism for building energy analysis, methods to integrate EMCS components into the simulation are need-
ed. Figure 3 presents the developed architecture highlighting on-line simulation of building energy sys-
tems as the key enabled cyberinfrastructure capability. 
 

 
 

Figure 3: Implementation of on-line simulation framework 

4 VALIDATION SCHEME 

The purpose of the validation experiments under this section is to verify that the federated simulation 
numbers are consistent with the actual electricity and gas consumption levels at a case study building 
located on the University of Wisconsin – Madison campus. Initial data are collected to develop the energy  
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model using eQuest. The objective of this phase is to establish an accredited model to a level where 
decision makers accept it as a surrogate to the real building system for purposes of experimenting. This 
phase is divided into two main validation experiments with the purpose of verifying the original research 
hypothesis that discrepancy occurs between predicted and actual energy use in buildings because existing 
energy models are oversimplified, and do not consider or model all the interconnected processes that 
eventually determine energy consumption in real buildings. 

4.1.1 Historical Validity Check 
In this phase, monthly energy use data collected for the case study building during 2010, 2011 and 2012 
will be used to validate the model’s energy predictions versus the original estimates obtained for the 
building from using the eQuest model alone. More specifically, the eQuest model provides the baseline 
weekly estimate of the energy consumption in the building denoted as Eb. The federated on-line 
simulation model is then be used to determine predicted monthly energy for the building. .This new 
prediction will be denoted by Ep. Finally, the measured actual energy use in the building from meter data 
will be compiled into Ea for each week as well. Using this information, two values for difference between 
actual and predicted energy use will be calculated as ∆1 = Ea-Eb and ∆2 = Ea-Ep respectively for each 
week in 2010, 2011 and 2012. Given the research hypothesis that the federated simulation model of the 
building provides a better representation of the actual building energy use, we expect that ∆2 will be 
significantly less than ∆1 at 95% confidence level using the pooled variance t-test. If this is the case, then 
we consider the federated simulation model to be validated as it closely represents real word scenario. 
This makes the federated simulation model ready for use as an emulator to test building systems as 
described in the second validation experiment below. This level of model validity, which will also be used 
for subsequent validation experiments, is acceptable for energy simulation calibration (US DOE 2008 and 
2002; ASHRAE 2007b; Yoon at al. 2003; Haberl and Bou-Saada 1998; Kaplan 1992; Pratt 1990). 

4.1.2 Future Validity Check 
This step will use the model to predict the energy consumption levels at the case study building for a short 
period of time, and then collect actual energy use data to test the model’s estimated numbers. The federat-
ed simulation model will be run to estimate the energy consumption levels at the case study building on a 
weekly basis for 3 months. The estimated energy consumption per week is denoted by Epw. After three 
months, actual energy use for the building on a weekly basis, denoted by Eaw, is recorded. If the differ-
ence between these values is less than 10% at 95% confidence level, then the federated simulation model 
is also validated for future prediction of building behavior and energy consumption. 

5 CONCLUSION 

Despite significant advances in energy simulation, energy management and control systems (EMCS), and 
occupancy interventions, buildings continue to use more than 40% of the nation’s total primary energy 
and 70% of the generated electricity. One important limitation of existing energy analysis and control 
tools is that they are developed for a specific purpose and phase of the building life-cycle, which prevents 
their individual benefits from being collectively exploited to accurately predict, monitor, and improve 
energy efficiency in buildings. This paper presented an energy simulation framework and the software 
infrastructure that supports the creation of on-line simulations to model complex behaviors that occur at 
the building-occupant-energy-controller interface in buildings. On-line simulation capabilities can be 
realized by coupling models to an EMCS interface. The paper argued that on-line simulation can provide 
decision makers in buildings with a reliable energy model to test different technical and behavioral 
interventions, and accurately predict building performance, compared to the results obtained with existing 
off-line simulation models.  
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