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ABSTRACT 

Occupant behavior in buildings can contribute significantly to building energy demand and consumption. 
As a result, occupant behavior interventions to promote sustainability are becoming more widespread. 
Due to the expense in applying interventions, researchers have begun using computer simulations to ana-
lyze potential outcomes and better understand how complex systems can affect intervention success, in 
particular the effect of social network structure.  In previous literature, studies have only evaluated social 
network effects using static social networks which are far from reality. Therefore, in this study we evalu-
ate how a behavior intervention, here a comparative feedback system, is affected as social networks 
evolve over time using agent-based modeling. Results indicate that static social networks are much less 
volatile in their behavior and tend to have more convergent behavior relative to dynamic social networks. 
This implies that for normative interventions, dynamic networks have increased uncertainty in interven-
tion outcome compared to static networks. 

1 INTRODUCTION 

It is predicted that continued increases in atmospheric concentrations of carbon dioxide caused by anthro-
pogenic emissions will lead to significant changes in climate (Houghton et al. 2001) with severe conse-
quences such as increased species extinction risk (Thomas et al. 2004) and sea level rise (Houghton et al. 
2001). In the United States, buildings are the largest single contributor to carbon dioxide emissions, due 
to their vast use of energy which accounts for 40% of all primary energy use (EIA 2012). The carbon di-
oxide emissions from residences alone amounts to 1,184 million metric tons CO2 eq., or 22% of all U.S. 
carbon emissions (EPA 2012).  
 The energy demand of buildings, in particular residential buildings, has been found to be significantly 
affected by occupant behavior (Bahaj, Myers, and James 2007; Emery and Kippenhan 2006; Santin, Itard, 
and Visscher 2009; Yu et al. 2011). In residences occupants have a high level of control over their energy 
use through setting heating and cool points (or not using air conditioners or heaters), appliance use fre-
quency, lighting use, etc. Variations in behavior practices have been found to create differences in energy 
consumption in identical buildings by more than a factor of two (Gill et al. 2011). Changing household 
behaviors has substantial potential to reduce carbon emissions (Dietz et al. 2009; Gardner and Stern 
2008). Accordingly, numerous studies have taken place since the 1970s attempting to promote energy 
conservation in the home (Stern 2011; Wilson and Dowlatabadi 2007). Interventions have used many 
techniques to attempt to change behavior including: using prompts, providing information (attempting to 
change attitudes and providing procedural knowledge), making commitments, providing feedback, social 
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modeling, goal-setting, using norms, and attempts to manipulate intrinsic and extrinsic motivations (De 
Young 1993; Osbaldiston and Schott 2012). These interventions have shown various levels of success and 
can often bring about short term reductions in energy use (long term effects, however, have rarely been 
evaluated).  
 Recently, with advances in technology (e.g., home energy management systems), providing occu-
pants with feedback as an intervention to reduce energy consumption use has been receiving increased at-
tention. In particular, how comparative feedback and descriptive social norms can promote energy con-
servation has been investigated (Peschiera, Taylor, and Siegel 2010; Schultz et al. 2007). Due to the 
expense in applying interventions, researchers have begun using computer simulations to analyze poten-
tial outcomes from implementing comparative feedback interventions (Anderson, Lee, and Menassa 
2013; Chen, Taylor, and Wei 2012). In these studies the authors developed agent-based models (ABM) 
that simulate installing an energy use feedback system into a building (e.g. installing home energy moni-
toring systems) where occupants can view the energy use of friends in their social network which in turn 
influences their energy use behavior. From these studies we have learned that the social network structure 
in the building can play an important role in intervention outcomes, but these studies have only evaluated 
social network effects using static social networks. Once relationships were made between agents in the 
models they never changed nor did people enter or leave the network. In Chen, Taylor, and Wei (2012) 
interventions were analyzed in the short term and in Anderson, Lee and Menassa (2013) the timeframe 
was not specified, so this assumption is plausible. However, to be able to consider the longer term impli-
cation of utilizing comparative peer feedback and group norm feedback interventions, this critical as-
sumption is no longer sufficient.  
Therefore, the objective of this study is to better understand how peer feedback interventions are affected 
as social networks evolve over time. More specifically we aim to answer two questions: 1) How do inter-
vention outcomes, change in energy use, differ in dynamic as opposed to static social networks, and 2) do 
different patterns of energy use within the social network emerge as a result of becoming dynamic. This 
paper proceeds by describing the model that was created to simulate the spread of social norms in social 
networks along with its theoretical foundations and assumptions. Next we present the results and finally 
we conclude with a discussion of the results. 

2 METHODS 

In this section we detail our model using the ODD (Overview, Design concepts, Details) protocol for de-
scribing agent-based models (Grimm et al. 2006; Grimm et al. 2010) to improve the clarity, completeness 
and reproducibility of our model. We programmed the model in Java using Repast J v 3.0 (Repast 2013). 

2.1 Purpose 

This model has been developed to enhance our understanding of how normative behavior interventions, 
here peer group norm marketing, are affected by the dynamic characteristics of social networks.  

2.2 Entities, State Variables, and Scales 

The agents in this model are the building occupants. Occupants have multiple attributes. Each occupant 
has a particular energy practices which are summed up by their power rating, or energy use behavior 
(EUB). Agents also have relationships with other agents in the model through their social network. All re-
lationships between occupants are reciprocal. Additionally, agents are assigned a chance to check their 
feedback on a given day and a value which determines how susceptible they are to the influence of their 
social group. Each time step in the simulation represents one day. 
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2.3 Process Overview and Scheduling 

When the model is initialized it first creates all occupants that will be present during the first time step 
and sets their EUB and daily chance to check their feedback. Following this, the model creates the social 
network and assigns occupant relationships. Once the social network has been created the susceptibility of 
occupants to social influence is calculated based on their position in the network, this will be detailed in 
the submodel section.  
 Next the model begins to progress forward in time. During each time step, if the model is dynamic, 
every occupant has a chance to move out of the building, and thus the building’s social network. If the 
model is not dynamic, this does not apply. If an occupant decides it is time to move and leaves the build-
ing (social network) all relationships to this occupant are severed and a new occupant immediately takes 
their place (the occupants are replaced immediately to make net energy use between models directly 
comparable). The new occupant is initialized with an EUB value and creates new friendships with exist-
ing occupants, how this works will be detailed later. The removal and addition of a new occupant requires 
that the susceptibility to peer influence of each occupant is recalculated. Additionally during each time 
step, every occupant has a chance to either randomly change their EUB in either direction or change their 
EUB by comparing with their peer group and conforming. After all occupants have had the opportunity to 
change their EUB the model updates synchronously and data is collected about energy used during that 
time step. The simulation run terminates after two years of simulated time. 

2.4 Design Concepts 

This model is built on the well-documented premise that people tend to conform to group norms (Schultz 
et al. 2007) and exhibit social learning. In the model occupants are provided feedback of peers in their so-
cial group and adjust their behavior to match that of their peers. An important aspect of occupant behavior 
in the model is its relative stability when not observing feedback, as people often develop automated re-
sponses to stimuli in their behavior setting, or habits, which are persistent. However, the model does ac-
count for ‘unexplained’ behavior changes by incorporating in stochasticity in behavior change. Allowing 
for factors beyond feedback to change the occupants’ EUB is required to make agent behavior more real-
istic. It is well known that how humans determine to make decisions regarding behavior is extremely 
complex and subject to numerous determinants. Being able to account for fifty percent of the variance in 
behavior intention, not actual behavior, in psychological studies is considered very respectable. 
 The social network is constructed as a small-world network, which in effect consist of many tightly 
connected groups of individuals, i.e. clichés, all of which are loosely connected together (Watts and 
Strogatz 1998). To maintain a similar network structure when adding new occupants to the existing dy-
namic network, occupants are first randomly assigned to create a connection with one occupant in the 
network. For their subsequent relationships they are given a strong preference to create relationships with 
the friends of their existing friends. However, the new occupants, much the same as the original occu-
pants, have a small chance to make a random connection to any other occupant in the network (p = 0.1). 
This allows the social network to change overtime while maintaining a similar structure. Stochasticity is 
assumed here in making connections to peers, along with determining whether to move out of the build-
ing, whether to check feedback, and whether to change EUB due to other causes. 

2.5 Initialization 

Both the dynamic and static social networks are initialized with 49 occupants which simulates a small 
multi-unit apartment complex of renters. An occupant’s EUB is generated from a log-normal distribution 
with a mean of 168 watts and standard deviation of 123 watts (Chen, Taylor, and Hei 2012). For both the 
dynamic and static networks, a small world network is generated using a probability of 0.1  to create ran-
dom friendship connections. The network is generated using a regular ring lattice and each occupant gen-
erates two friendships. In the end each occupant averages four friendships since all relationships are recip-
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rocal in nature (see Anderson, Lee, and Menassa (2013) for more detail). The chance for random changes 
in behavior is set at ten percent and the chance occupants check their feedback is uniformly distributed 
between five and fifty percent since the frequency of checking feedback has been found to be variable 
(Jain, Taylor, and  Peschiera 2012). Lastly, everyday occupants have a 0.0877% chance to move out (32% 
annual turnover) (Ihrke, Faber, and Koerber 2011). 

2.6 Submodel 

2.6.1 Social Influence Calculations 

When occupants check the feedback system, they update their EUB to conform to the mean of their peer 
group. At the same time occupants are slightly limited by their initial EUB. The method of calculating 
peer influence is based on the social network influence work of Friedkin (2001). We borrow his equations 
for calculating the spread of social influence and slightly simplify them by making each peer of the occu-
pant being evaluated have equal influence on the occupant. The amount an occupant changes their EUB if 
they check their feedback system is determined by  
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2/1

)2(,
,1
11 ⎥⎦

⎤
⎢⎣

⎡

+
−=

−− tti FFti
e

a , 

where F is the mean number of relationships per occupant during the current time step. These formula 
hold except on the occasion when an occupant loses all of their relationships and gets completely separat-
ed from the rest of the social network. In this case, since the occupant is no longer subject to any social 
influence they now only change their EUB by the random change mechanism until they either leave the 
network or become reattached to others in the network. 

2.7 Experiment 

To evaluate the impact a dynamic social network structure has on comparative feedback interventions 
outcomes we ran one thousand simulations for both dynamic and static social networks using the same in-
itialization values. Data is recorded throughout the simulation run at every time step. Three dependent 
variables are being collected for statistical analysis: total energy used over the course of the two year sim-
ulation period, change in mean EUB at the two year mark relative to initialization, and the mean standard 
deviation (SD) in EUB during the simulation runs. Monitoring total energy use permits us to see differ-
ences in the net outcome of installing feedback systems. Tracking the change in EUB from initiation to 
conclusion acts as a snapshot and provides insight in to how variable EUB is at a given time during the 
course of the intervention. The standard deviation of EUB helps identify what sort of dynamics are taking 
place within the model, i.e., do occupants tend to converge to a common norm or do other patterns of 
EUB emerge. 

3 RESULTS 

Two thousand simulation runs were conducted in total, one thousand simulating how implementing a 
comparative feedback system could be expected to function in a static social network and one thousand in 
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a dynamic network. The Kruskal-Wallis test was used for statistical analysis since the modeling assump-
tions for ANOVA could not be satisfied. 
 Total energy used over the course of two years for dynamic and static social network structures did 
not significantly differ (H = 0.0669, n.s., df = 1). On the other hand, network dynamicity had a significant 
effect on the change in mean EUB from model initialization to the two year mark (H = 10.5113, p = 
0.001186, df = 1) (Figure 1). The difference in median values between the two configurations is relatively 
minor when considering that the model initialized occupants from a lognormal distribution with a mean 
EUB value of 168 watts (MStatic = -1.495 watts, MDynamic = -4.460 watts). However, the range of outcomes 
for mean EUB change at the two year mark for dynamic social networks is substantially larger, approxi-
mately twice as large. This pattern was also observed while watching single simulations runs. Fluctua-
tions in mean EUB over the two years tend to be much less dramatic in the static social network (Figure 
2).  

 

Figure 1: Left – the relationship between social network structure dynamicity and the change in mean 
EUB from initialization to the two year mark is presented. Network dynamicity has a significant effect on 
change in mean EUB over the course of two years (H = 10.5113, p = 0.001186, df = 1); however, differ-
ences in median values are not particularly large (MStatic = -1.495 watts, MDynamic = -4.460 watts). Right – 
mean standard deviations in EUB in single runs by social network configuration are displayed. Social 
network dynamicity was found to have a significant effect on simulation run mean standard deviations in 
EUB (H = 1276.816, p < 2.2e-16, df = 1). Sizeable differences in median values (MStatic = 12.115 watts, 
MDynamic = 27.300 watts) of mean standard deviation in EUB suggests that dynamic networks have much 
higher levels of grouping behavior relative to static networks. Please note the difference in scales for the 
two boxplots. 

 The last measured variable is the mean SD of EUB throughout the two year period. Social network 
dynamicity was found to have a significant effect on simulation run mean SDs in EUB (H = 1276.816, p 
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< 2.2e-16, df = 1). Sizeable differences exist here in the median values (MStatic = 12.115 watts, MDynamic = 
27.300 watts) of mean SD in EUB. The range of observations once again is substantially wider for the 
dynamic social network relative to the static. Excluding outliers, the range of the mean SD of EUB for the 
dynamic social network simulations is roughly three times larger. 

 

 
Figure 2: These imagines are of single run data for a static (left) and a dynamic social network (right) 
over the course of two years. The x-axis is time and the y-axis is the mean energy use behavior of the oc-
cupants (watts). Both networks are initialized using the same random seed, and the dynamic network ex-
hibits much more volatile changes in behavior although both end around the same value. The black dots 
are the mean energy use behavior values of the occupants at each time step. The red x’s are the corre-
sponding standard deviation at that time. Please note the difference in scale for the y-axis. 

4 DISCUSSION AND CONCLUSIONS 

Results and observations from the experiment provide us with some insight into how behavior interven-
tions targeting occupant energy consumption can be affected by social network dynamicity. In the static 
social network occupant behavior trends toward convergence as occupants alter their behavior to become 
more like their peers. This results in less dramatic shifts in mean EUB in the network. Dynamic social 
networks on the other hand exhibit substantially more volatile changes in mean EUB. Here as occupants 
enter and exit the social network, convergence of behavior network wide is largely prohibited. With the 
dynamic social networks, pockets, or groups, of energy users of various levels emerge. This is the same as 
in static network, but due to constant turnover (32% annually) and changes in network structure these 
groups do fully spread their influence to other groups at a rate sufficient for system wide convergence. 
 Static and dynamic social networks showed no change in system level energy consumption in the ex-
periments, which could be expected considering how occupants alter their EUB. Logically, if people are 
only to conform to social norms and have no other change in motives related to the behavior (e.g. sense of 
moral obligation), while individual behavior may improve or worsen as individuals alter their behavior to 
conform to the norm, the system level behavior should remain relatively constant all things being equal. 
This does not mean, however, that the simulation results do not have any important implications for mod-
eling and performing occupant interventions. The results imply that for normative interventions dynamic 

3056



Anderson and Lee 
 
social networks considerably increase uncertainty in intervention outcome over static social networks. 
Naturally, given that real world social networks are rarely if ever static, but rather are dynamic this sug-
gests that current models simulating occupant interventions are possibly underestimating the range of po-
tential outcomes. This is a critical because when proposing new interventions to facility or property man-
agers, high levels of uncertainty in intervention outcome success, or failure, can provide a significant 
barrier to implementation. 
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